[go: up one dir, main page]

CN104391311A - Satellite passive positioning method based on GPS broadcast data - Google Patents

Satellite passive positioning method based on GPS broadcast data Download PDF

Info

Publication number
CN104391311A
CN104391311A CN201410461830.4A CN201410461830A CN104391311A CN 104391311 A CN104391311 A CN 104391311A CN 201410461830 A CN201410461830 A CN 201410461830A CN 104391311 A CN104391311 A CN 104391311A
Authority
CN
China
Prior art keywords
msub
mtd
mtr
msup
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410461830.4A
Other languages
Chinese (zh)
Other versions
CN104391311B (en
Inventor
许哲
沈庆丰
叶小舟
陈占胜
黄欣
董泽政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Satellite Engineering
Original Assignee
Shanghai Institute of Satellite Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Satellite Engineering filed Critical Shanghai Institute of Satellite Engineering
Priority to CN201410461830.4A priority Critical patent/CN104391311B/en
Publication of CN104391311A publication Critical patent/CN104391311A/en
Application granted granted Critical
Publication of CN104391311B publication Critical patent/CN104391311B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention provides a satellite passive positioning method based on GPS broadcast data. The method comprises: acquiring measuring data of a satellite; according to the measuring data, calculating a conversion matrix M from an earth-fixed coordinate system to a satellite local system; selecting an earth ellipsoidal model and obtaining corresponding earth geometrical parameters and an earth ellipsoidal surface equation; and according to the conversion matrix M, solving an object position equation, and solving object position coordinates by simultaneously solving the earth ellipsoidal surface equation. The measuring data comprises the GPS broadcast data including a satellite real-time position P<se><-> and a speed V<se><->, object measurement angles beta<x> and beta<y> and attitude angle data, i.e., a pitch angle phi, a yaw angle yaw angle gamma and a roll angle theta, wherein the GPS broadcast data is obtained through a satellite data bus, the beta<x> and the beta<y> are obtained through a load subsystem, and the attitude angle data is obtained through an attitude orbit control subsystem. According to the invention, the high-precision GPS broadcast data is taken as a system input quality, such that the precision of each parameter during a calculation process is ensured, accordingly, the precision of a positioning result is ensured, at the same time, an offline processing process is unnecessary, and the satellite autonomous calculating capability is enhanced.

Description

Satellite passive positioning method based on GPS broadcast data
Technical Field
The invention relates to the technical field of satellite passive positioning, in particular to an on-satellite passive positioning method based on GPS broadcast data.
Background
The outer space is shared by human beings, no national boundary exists, and the positioning of the target by using the satellite is not limited by soil, sea and air. The satellite passive positioning is to position the target by utilizing the self-radiated radio signal of the satellite receiving target, and has the characteristics of long action distance, good concealment and the like, thereby being widely applied. Satellite passive positioning technology has been one of the hot spots in the research of satellite application technology.
The satellite passive positioning process puts high demands on the following capabilities of the satellite:
(1) the positioning principle uses the position and attitude information of the satellite and the direction vector of the target relative to the satellite as input, thereby providing higher requirements for the orbit determination and attitude determination capabilities of the satellite;
(2) in order to adapt to actual use conditions, certain requirements on timeliness and autonomous capability of the positioning system are necessary from the viewpoints of system safety and use convenience.
In the traditional positioning process, an attitude and orbit control system is used for providing recursion position and speed data of a satellite, the positioning calculation precision is relatively low, or target angle measurement data and attitude determination data are downloaded and then processed under a line, and the autonomous ability is weak.
Disclosure of Invention
Aiming at the defects in the prior art, the invention provides a satellite passive positioning method based on GPS broadcast data, and the method can realize high-precision observation data acquisition and rapid satellite autonomous calculation process. The invention has the advantages of high positioning precision, less resource occupation, strong on-satellite autonomous capability and the like.
The satellite passive positioning method based on the GPS broadcast data provided by the invention comprises the following steps:
step 1: collecting measurement data of a satellite;
step 2: calculating a conversion matrix M from the earth-fixed coordinate system to the satellite body system according to the measurement data;
and step 3: selecting an earth ellipsoid model and obtaining corresponding earth geometric parameters and an earth ellipsoid equation;
and 4, step 4: and solving a target position equation according to the conversion matrix M and solving a target position coordinate by combining an earth ellipsoid equation.
Preferably, the measurement data comprises real-time position including satelliteAnd velocityGPS broadcast data, target mapping angle betaxTarget angle betayAnd attitude angle data, i.e. pitch angleA yaw angle gamma, a roll angle theta; said GPS broadcast data is obtained via satellite data bus, betaxAnd betayThe attitude angle data is obtained through a posture and orbit control subsystem.
Preferably, the GPS broadcast data, the target angle measurement data, and the attitude angle data are recursively combined into a combined data packet and added with a time identifier.
Preferably, the step 2 comprises the steps of:
step 2.1: calculating unit vectors of the satellite to target directions under a satellite body coordinate system, wherein specifically, two target measurement angles under the body coordinate system are respectively betax、βyThen the unit vector L of the satellite to the target direction under the satellite system at this time1Expressed as:
<math><mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>l</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msqrt> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow></math>
wherein l1,m1,n1Respectively projecting the target sight direction under the x axis, the y axis and the z axis of the system of the satellite;
step 2.2: unit vector L for directing satellite to target direction1Converted to the orbital coordinate system, expressed as:
is provided withThen L is2=M1·L1
Wherein l2,m2,n2Respectively projecting the target sight line direction under the x axis, the y axis and the z axis of the orbit system;
step 2.3: a unit vector L in an orbit coordinate system2Converting into a ground-fixed coordinate system, specifically: taking the velocity vector of the satellite as an X axis, the reverse vector of the position vector of the satellite as a Z axis, and the cross multiplication of the Z axis and the X axis as a Y axis, then the orbit coordinate system is obtainedUnit vector L of2Converting into a coordinate system of a ground-fixed coordinate system, and expressing as follows: <math><mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>l</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>;</mo> </mrow></math> v is to besiIs expressed as [ v ] in terms of componentx,vy,vz]TThe three unit vectors are obtained as follows:
c 1 c 2 c 3 = - x / x 2 + y 2 + z 2 - y / x 2 + y 2 + z 2 - z / x 2 + y 2 + z 2
<math><mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> <mo>/</mo> <msqrt> <msup> <msub> <mi>v</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>z</mi> </msub> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>/</mo> <msqrt> <msup> <msub> <mi>v</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>z</mi> </msub> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>z</mi> </msub> <mo>/</mo> <msqrt> <msup> <msub> <mi>v</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>z</mi> </msub> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mo>&times;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>x</mi> <mo>/</mo> <msqrt> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>y</mi> <mo>/</mo> <msqrt> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>z</mi> <mo>/</mo> <msqrt> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
according to b 1 b 2 b 3 , c 1 c 2 c 3 To obtain <math><mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&times;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow></math> Wherein v issiThe representation of the inertial velocity of the satellite in the earth-fixed coordinate system is shown, and x, y and z are coordinates of the satellite in the earth-fixed coordinate system respectively; l3,m3,n3The projections of the target sight line direction under the x axis, the y axis and the z axis of the earth fixation system are respectively. [ a ] A1,a2,a3]T,[b1,b2,b3]T,[c1,c2,c3]TRespectively projection of an x axis, a y axis and a z axis of the orbit system under the earth fixation system;
step 2.4: obtaining a conversion matrix M from a ground-fixed coordinate system to a satellite body coordinate system:
M=M2 T·M1 T
preferably, the earth geometric parameters include:
major radius a: a is 6378137 +/-2 m;
product of gravity and mass GM: GM 3.98600441500 x 105km3/s2
Rotational angular velocity ω of the earth: omega 7292115 x 10-11rad/s±0.150×10-11rad/s。
Preferably, the step 4 comprises the steps of:
step 4.1: calculating a target position equation x in a satellite body coordinate systemT,b=Μ(xT,e-xS,e);
Wherein,
xT,bis the target position in the satellite body coordinate system, and the component form [ xT,e,yT,e,zT,e]T,xT,eIs a target position in the earth's fixation system, xS,eFor anchoring to the groundA satellite position of;
step 4.2: the longitude and latitude (L) of any point on the earthT,BT) And geographic elevation (H)T) And (3) converting the data into a ground-fixed coordinate system to obtain an equivalent equation:
x T , e = ( N + H T ) cos L T cos B T y T , e ( N + H T ) cos L T sin B T z T , e = ( N - ( 1 - e 2 ) + H T ) sin B T
wherein,the curvature radius of the local unitary fourth of twelve earthly branches, the earth long radius a is 6378137m, and the square e of the first eccentricity ratio2=0.00669437999013;HTIs the geographic elevation of any point on the earth, LTIs the latitude of any point on the earth, BTLongitude of any point on the earth;
step 4.3: x is to beT,b、xT,eAnd xS,eSubstituting into an earth ellipsoid equation;
step 4.3: and simultaneously establishing an objective position equation, an equivalent equation and an earth ellipsoid equation to obtain the objective position.
Preferably, when the earth-fixed coordinate system is approximately regarded as a coordinate system of fixed axis rotation, thenWhereinIs the angular velocity vector of the rotation of the earth, <math><mrow> <msub> <mover> <mi>&omega;</mi> <mo>&RightArrow;</mo> </mover> <mi>e</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>7.292115</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>5</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow></math> the position of the satellite in the earth-fixed coordinate system, namely the GPS position given by the satellite data bus;the speed of the satellite in the earth-fixed coordinate system, namely the GPS speed given by the satellite data bus.
Preferably, the step 4 further comprises the following steps:
assuming the target is at a distance r from the star, β is measuredx,βyAfter the angle, the azimuth cosine angle measured in the satellite body coordinate system can be decomposed into positions:
xT,b=ru
<math><mrow> <mi>u</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> </mtd> <mtd> <msqrt> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow></math>
thus is provided with
xT,e=xS,e-1xT,b=xS,e+rΜ-1u
Substituting into an earth ellipsoid equation to obtain a unitary quadratic equation about r; and solving the quadratic equation to obtain two roots, wherein the minimum solution is the distance solution of the target position, and further the position solution of the target is obtained, and u is a unit vector of the satellite in the satellite body system from the satellite to the target direction.
Compared with the prior art, the invention has the following beneficial effects:
1. the invention takes the high-precision GPS broadcast data as the input quantity of the system, ensures the precision of each parameter in the calculation process, further ensures the precision of the positioning result, simultaneously does not need the off-line processing process, and enhances the on-board autonomous calculation capability;
2. the invention obtains the satellite inertia speed in the earth-fixed coordinate system by a simple conversion mode, immediately and directly obtains the conversion matrix between the orbit coordinate system and the earth-fixed coordinate system, avoids the complex calculation required by the conversion between the inertia system and the earth-fixed coordinate system, ensures the conversion precision and greatly reduces the occupancy rate of the calculation resources;
3. the invention constructs an earth ellipsoid model based on international standard, which is more accurate than flat earth and spherical earth models.
Drawings
Other features, objects and advantages of the invention will become more apparent upon reading of the detailed description of non-limiting embodiments with reference to the following drawings:
FIG. 1 is a block diagram of a positioning method of the present invention;
FIG. 2 is a schematic view of the angle of measurement definition of the load system of the present invention;
FIG. 3 is a diagram illustrating the relationship between the velocity of the satellite relative to the earth-fixed coordinate system and the inertial velocity of the satellite.
Detailed Description
The present invention will be described in detail with reference to specific examples. The following examples will assist those skilled in the art in further understanding the invention, but are not intended to limit the invention in any way. It should be noted that variations and modifications can be made by persons skilled in the art without departing from the spirit of the invention. All falling within the scope of the present invention.
The satellite positioning method provided by the invention can meet the target positioning precision provided by a user. The method is reasonable and reliable from the test condition in the satellite development process. With the rapid development of the aerospace technology, the satellite plays a more important role in information support combat and support disaster relief, and the method provides reference and basis for a future low-orbit passive electronic investigation satellite positioning method.
In this embodiment, as shown in fig. 1, fig. 2, and fig. 3, the method for passive positioning on a satellite based on GPS broadcast data provided by the present invention includes the following steps:
step 1: acquiring measurement data of a satellite, in particular by acquiring real time data comprising the satellite on a satellite data bus
Position ofAnd velocityCombined with target angle beta of the load subsystemx、βyPosture and orbit control
Attitude angle data of the subsystem, i.e. pitch angleThe yaw angle gamma and the rolling angle theta are combined into the same angle after recursion treatment
And combining the data packets at a moment and adding a time identifier.
Step 2: calculating a conversion matrix M from the earth-fixed coordinate system to a satellite body system according to the measurement data, and comprising the following steps:
step 2.1: the unit vector of the satellite to target direction in the satellite body coordinate system is calculated, specifically, as shown in fig. 2, two target measurement angles in the satellite body coordinate system are β respectivelyx、βyThe unit vector of the satellite to target direction under the satellite system can be expressed as:
<math><mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>l</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msqrt> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> </msqrt> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
wherein l1,m1,n1The projection of the target sight line direction under the x-axis, the y-axis and the z-axis of the system in the satellite is respectively.
Step 2.2: unit vector L for directing satellite to target direction1The conversion to the orbital coordinate system can be expressed as:
is provided withThen L is2=M1·L1
Wherein l2,m2,n2Respectively are the projection of the target sight line direction under the x-axis, the y-axis and the z-axis of the orbital system.
Step 2.3: a unit vector L in an orbit coordinate system2And converting into a ground-fixed coordinate system.
And obtaining the position coordinates (x, y, z) of the satellite in the WGS-84 coordinate system, namely the earth-fixed coordinate system according to the combined data packet, wherein the speed of the satellite relative to the WGS-84 coordinate system is (vx, vy, vz), so that the inertial speed of the satellite in the WGS-84 coordinate system can be obtained.
On the premise that the precision requirement can meet the engineering realization, a ground-fixed coordinate system can be regarded as a coordinate system with fixed axis rotation, and the actual velocity vector is formed by superposing the velocity of a particle under the coordinate system relative to the coordinate system, namely the velocity given by a GPS system.
As shown in fig. 3, vsiRepresenting the direction of flight of the satellite in inertial space, i.e. X in the orbital coordinate systemoDirection in which the axis points, veRepresenting the speed of involvement, v, provided by the earth-fixed coordinate system (rotating coordinate system of fixed axis) for the location of the satelliteseRepresenting the speed provided by the GPS system, i.e. the speed of the earth-fixed coordinate system relative to the rotation of the satellites.
This conversion relationship can be expressed as follows:
<math><mrow> <mover> <msub> <mi>V</mi> <mi>si</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <mover> <msub> <mi>&omega;</mi> <mi>e</mi> </msub> <mo>&RightArrow;</mo> </mover> <mo>&times;</mo> <msub> <mover> <mi>P</mi> <mo>&RightArrow;</mo> </mover> <mi>se</mi> </msub> <mo>+</mo> <msub> <mover> <mi>V</mi> <mo>&RightArrow;</mo> </mover> <mi>se</mi> </msub> </mrow></math>
wherein,is the angular velocity vector of the rotation of the earth, <math><mrow> <msub> <mover> <mi>&omega;</mi> <mo>&RightArrow;</mo> </mover> <mi>e</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>7.292115</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>5</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow></math> the position of the satellite in the earth-fixed coordinate system, namely the GPS position given by the satellite data bus;the velocity of the satellite in the earth-fixed coordinate system, i.e. the GPS velocity given by the bus.
The velocity vector of the satellite is taken as an X axis, the reverse vector of the position vector of the satellite is taken as a Z axis, and the difference product of the X axis and the Z axis is taken as a Y axis. Then the unit vector L in the orbital coordinate system is assigned2Converted to the WGS-84 coordinate system, which can be expressed as:
<math><mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>l</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow></math>
wherein, a 1 a 2 a 3 , b 1 b 2 b 3 , c 1 c 2 c 3 the unit vectors of the X axis, the Y axis and the Z axis of the orbit coordinate system are respectively in the WGS84 coordinate system. V is to besiIs expressed as [ vx, vy, vz]TThe three unit vectors can be found as follows:
c 1 c 2 c 3 = - x / x 2 + y 2 + z 2 - y / x 2 + y 2 + z 2 - z / x 2 + y 2 + z 2
<math><mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> <mo>/</mo> <msqrt> <msup> <msub> <mi>v</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>z</mi> </msub> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>/</mo> <msqrt> <msup> <msub> <mi>v</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>z</mi> </msub> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>z</mi> </msub> <mo>/</mo> <msqrt> <msup> <msub> <mi>v</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>z</mi> </msub> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mo>&times;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>x</mi> <mo>/</mo> <msqrt> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>y</mi> <mo>/</mo> <msqrt> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>z</mi> <mo>/</mo> <msqrt> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
according to b 1 b 2 b 3 , c 1 c 2 c 3 To obtain
<math><mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&times;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow></math>
Wherein v issiX, y and z are respectively the representation of the inertial velocity of the satellite in the earth-fixed coordinate systemCoordinates of the lower part; l3,m3,n3The projections of the target sight line direction under the x axis, the y axis and the z axis of the earth fixation system are respectively. [ a ] A1,a2,a3]T,[b1,b2,b3]T,[c1,c2,c3]TThe projections of the x-axis, the y-axis and the z-axis of the orbit system under the earth fixation system are respectively.
Step 2.4: obtaining a conversion matrix M from a ground-fixed coordinate system to a satellite body coordinate system:
M=M2 T·M1 T
and step 3: the earth model is set up and the earth model,
step 3.1: selecting a reference ellipsoid model, specifically, selecting a WGS-84 model as the reference ellipsoid model, wherein four basic geometric parameters are as follows:
long radius: a is 6378137 +/-2 m
Product of earth's gravity and earth's mass:
GM=3.98600441500×105km3/s2
rotation angular velocity of the earth: omega 7292115 x 10-11rad/s±0.150×10-11rad/s
And 4, step 4: the coordinates of the target position are resolved,
the target position equation in the satellite body coordinate system is
xT,b=Μ(xT,e-xS,e)
In the formula, M is a transformation matrix from the earth-fixed coordinate system to the satellite body coordinate system.
Wherein x isT,bIs the target position in the satellite body coordinate system, and the component form [ xT,e,yT,e,zT,e]T,xT,eFor target position in earth fixation systemX is arrangedS,eIs the satellite position in the earth's fixed system;
assume that the average earth ellipsoid WGS-84 model is used, with the target located on the earth's surface, the geographic latitude and longitude (L) of any point of the earthT,BT) And geographic elevation (H)T) With its three-dimensional rectangular coordinate X of groundT,b=[xT,e yT,e zT,e]TIs in the equivalent form of
x T , e = ( N + H T ) cos L T cos B T y T , e ( N + H T ) cos L T sin B T z T , e = ( N - ( 1 - e 2 ) + H T ) sin B T
Wherein,the curvature radius of the local unitary fourth of twelve earthly branches, the earth long radius a is 6378137m, and the square e of the first eccentricity ratio2=0.00669437999013。
The above formula can be written as another form, namely the earth ellipsoid equation under the WGS84 series
x T , e 2 + y T , e 2 ( N + H T ) 2 + z T , e 2 [ N ( 1 - e 2 ) + H T ] 2 = 1 .
The problem of direction finding positioning can be regarded as the problem of how to solve the target position by using the target position equation and the earth ellipsoid equation under the WGS-84 system. In the above-described system of nonlinear equations, there are a total of three equations and three unknowns. Geometrically, if a positioning solution exists, two intersection points can be obtained by intersecting a general direction-finding line with an ellipsoid of the earth, and in the equation solving process, two solutions are necessarily generated, so that a solution with a larger distance from the other end of the earth needs to be removed, and the position of the radiation source can be solved. The form of the equation used covers the consideration of the height of the target and does not address the situation where the target is located on the surface of the earth as in conventional solutions.
If the distance of the target from the star is assumed to be r, beta is obtained in the measurementx,βyAfter the angle, the azimuth cosine angle measured in the satellite body coordinate system can be decomposed into positions:
xT,b=ru
<math><mrow> <mi>u</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> </mtd> <mtd> <msqrt> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow></math>
thus is provided with
xT,e=xS,e-1xT,b=xS,e+rΜ-1u
Substituting into the earth ellipsoid equation can obtain a quadratic equation of one unit about r. Solving this quadratic equation of one unit can get two roots, the minimum solution is the distance dissociation of the target position. And further obtain a position solution of the target.
However, in the earth ellipse equation, the curvature radius N of the target local unitary fourth-element circle is unknown, and therefore an iterative method can be adopted for solving. That is, considering the closer N values of the satellite and the target, the satellite N is used first0=NSatThe values are substituted into the earth's ellipse equation,
wherein N is0Comprises the following steps: an initial value of the radius of the target local unitary fourth of twelve earthly branches; n is a radical ofSatComprises the following steps: and (5) the radius of the satellite lower point-fourth-prime unitary circle.
Calculating the ith iteration distance riRecalculating the targetCalculating to obtain the curvature radius N of the ith iteration estimated target current-fourth prime unitary ringiAnd circulating the steps until the target distance converges in the following formula.
|ri-ri-1|≤r
WhereinrIs a set distance error threshold.
The invention designs a set of method for positioning a passive target on the ground or at a specified height based on position and speed data of a satellite-borne GPS (global positioning system) aiming at the characteristic that the precision requirement of satellite passive direction finding positioning on measurement data is high, and the method comprises the steps of measurement data acquisition, coordinate system transformation matrix calculation, elliptical earth model setting, target position calculation and the like, wherein the whole positioning flow chart is shown in figure 1. The invention exerts the characteristic of high precision of satellite-borne GPS for measuring the position and speed data of the satellite, can accurately obtain the transformation matrix of the system of the satellite and the earth-fixed coordinate system, and uses the characteristic in cooperation with the high-precision target angle measurement and attitude determination technology, thereby ensuring the positioning precision of the satellite to the target, enhancing the autonomous calculation capability on the satellite, and improving the emergency efficiency of the satellite in the application fields of information support, disaster monitoring and the like. The measurement precision of the current practical engineering can ensure that the theoretical positioning precision of the method is superior to 3 km.
The foregoing description of specific embodiments of the present invention has been presented. It is to be understood that the present invention is not limited to the specific embodiments described above, and that various changes and modifications may be made by one skilled in the art within the scope of the appended claims without departing from the spirit of the invention.

Claims (8)

1. A satellite passive positioning method based on GPS broadcast data is characterized by comprising the following steps:
step 1: collecting measurement data of a satellite;
step 2: calculating a conversion matrix M from the earth-fixed coordinate system to the satellite body system according to the measurement data;
and step 3: selecting an earth ellipsoid model and obtaining corresponding earth geometric parameters and an earth ellipsoid equation;
and 4, step 4: and solving a target position equation according to the conversion matrix M and solving a target position coordinate by combining an earth ellipsoid equation.
2. The method of claim 1, wherein the measurement data comprises a real-time position of the satelliteAnd velocityGPS broadcast data, target angle measurement betaxTarget angle betayAnd attitude angle data, i.e. pitch angleA yaw angle gamma, a roll angle theta; said GPS broadcast data is obtained via satellite data bus, betaxAnd betayThe attitude angle data is obtained through a posture and orbit control subsystem.
3. The method of claim 2, wherein the GPS broadcast data, the target angle measurement data and the attitude angle data are recursively combined into a combined data packet and added with a time identifier.
4. The method for passive positioning on satellite based on GPS broadcast data according to claim 2, wherein the step 2 comprises the following steps:
step 2.1: calculating unit vectors of the satellite to target directions under a satellite body coordinate system, wherein specifically, two target measurement angles under the body coordinate system are respectively betax、βyThen the unit vector L of the satellite to the target direction under the satellite system at this time1Expressed as:
<math> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>l</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msqrt> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math>
wherein l1,m1,n1Respectively projecting the target sight direction under the x axis, the y axis and the z axis of the system of the satellite;
step 2.2: unit vector L for directing satellite to target direction1Converted to the orbital coordinate system, expressed as:
is provided withThen L is2=M1·L1
Wherein l2,m2,n2Respectively projecting the target sight line direction under the x axis, the y axis and the z axis of the orbit system;
step 2.3: a unit vector L in an orbit coordinate system2Converting into a ground-fixed coordinate system, specifically: taking the velocity vector of the satellite as an X axis, the reverse vector of the position vector of the satellite as a Z axis, and the cross multiplication of the Z axis and the X axis as a Y axis, then a unit vector L in an orbit coordinate system is obtained2Converting into a coordinate system of a ground-fixed coordinate system, and expressing as follows: <math> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>l</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>n</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>;</mo> </mrow> </math> v is to besiIs expressed as [ v ] in terms of componentx,vy,vz]TThe three unit vectors are obtained as follows:
c 1 c 2 c 3 = - x / x 2 + y 2 + z 2 - y / x 2 + y 2 + z 2 - z / x 2 + y 2 + z 2
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> <mo>/</mo> <msqrt> <msup> <msub> <mi>v</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>z</mi> </msub> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>/</mo> <msqrt> <msup> <msub> <mi>v</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>z</mi> </msub> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>z</mi> </msub> <mo>/</mo> <msqrt> <msup> <msub> <mi>v</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>v</mi> <mi>z</mi> </msub> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mo>&times;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>x</mi> <mo>/</mo> <msqrt> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>y</mi> <mo>/</mo> <msqrt> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>z</mi> <mo>/</mo> <msqrt> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> </msqrt> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
according to b 1 b 2 b 3 , c 1 c 2 c 3 To obtain <math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&times;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>c</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> Wherein v issiThe representation of the inertial velocity of the satellite in the earth-fixed coordinate system is shown, and x, y and z are coordinates of the satellite in the earth-fixed coordinate system respectively; l3,m3,n3The projections of the target sight line direction under the x axis, the y axis and the z axis of the earth fixation system are respectively. [ a ] A1,a2,a3]T,[b1,b2,b3]T,[c1,c2,c3]TRespectively projection of an x axis, a y axis and a z axis of the orbit system under the earth fixation system;
step 2.4: obtaining a conversion matrix M from a ground-fixed coordinate system to a satellite body coordinate system:
M=M2 T·M1 T
5. the method of claim 4, wherein the geometric parameters of the earth comprise:
major radius a: a is 6378137 +/-2 m;
product of gravity and mass GM: GM 3.98600441500 x 105km3/s2
Rotational angular velocity ω of the earth: omega 7292115 x 10-11rad/s±0.150×10-11rad/s。
6. The method for passive positioning on satellite based on GPS broadcast data according to claim 5, wherein the step 4 comprises the following steps:
step 4.1: calculating a target position equation x in a satellite body coordinate systemT,b=Μ(xT,e-xS,e);
Wherein x isT,bIs the target position in the satellite body coordinate system, and the component form [ xT,e,yT,e,zT,e]T,xT,eIs a target position in the earth's fixation system, xS,eIs the satellite position in the earth's fixed system;
step 4.2: the longitude and latitude (L) of any point on the earthT,BT) And geographic elevation (H)T) And (3) converting the data into a ground-fixed coordinate system to obtain an equivalent equation:
x T , e = ( N + H T ) cos L T cos B T y T , e ( N + H T ) cos L T sin B T z T , e = ( N - ( 1 - e 2 ) + H T ) sin B T
wherein,the curvature radius of the local unitary fourth of twelve earthly branches, the earth long radius a is 6378137m, and the square e of the first eccentricity ratio2=0.00669437999013;HTIs the geographic elevation of any point on the earth, LTIs the latitude of any point on the earth, BTLongitude of any point on the earth;
step (ii) of4.3: x is to beT,b、xT,eAnd xS,eSubstituting into an earth ellipsoid equation;
step 4.3: and simultaneously establishing an objective position equation, an equivalent equation and an earth ellipsoid equation to obtain the objective position.
7. The method of claim 4, wherein the earth-fixed coordinate system is approximately the coordinate system of fixed axis rotationWhereinIs the angular velocity vector of the rotation of the earth, <math> <mrow> <msub> <mover> <mi>&omega;</mi> <mo>&RightArrow;</mo> </mover> <mi>e</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>7.292115</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>5</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math> the position of the satellite in the earth-fixed coordinate system, namely the GPS position given by the satellite data bus;the speed of the satellite in the earth-fixed coordinate system, namely the GPS speed given by the satellite data bus.
8. The method for passive positioning on satellite based on GPS broadcast data according to claim 6, characterized in that, the step 4 is followed by the following steps:
assuming the target is at a distance r from the star, β is measuredx,βyAfter the angle, the azimuth cosine angle measured in the satellite body coordinate system can be decomposed into positions:
xT,b=ru
<math> <mrow> <mi>u</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> </mtd> <mtd> <msqrt> <mn>1</mn> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&beta;</mi> <mi>x</mi> </msub> <mo>-</mo> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mi>&beta;</mi> <mi>y</mi> </msub> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
thus is provided with
xT,e=xS,e-1xT,b=xS,e+rΜ-1u
Substituting into an earth ellipsoid equation to obtain a unitary quadratic equation about r; and solving the quadratic equation to obtain two roots, wherein the minimum solution is the distance solution of the target position, and further the position solution of the target is obtained, and u is a unit vector of the satellite in the satellite body system from the satellite to the target direction.
CN201410461830.4A 2014-09-11 2014-09-11 Passive location method on star based on GPS broadcast datas Active CN104391311B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410461830.4A CN104391311B (en) 2014-09-11 2014-09-11 Passive location method on star based on GPS broadcast datas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410461830.4A CN104391311B (en) 2014-09-11 2014-09-11 Passive location method on star based on GPS broadcast datas

Publications (2)

Publication Number Publication Date
CN104391311A true CN104391311A (en) 2015-03-04
CN104391311B CN104391311B (en) 2017-06-20

Family

ID=52609235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410461830.4A Active CN104391311B (en) 2014-09-11 2014-09-11 Passive location method on star based on GPS broadcast datas

Country Status (1)

Country Link
CN (1) CN104391311B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707321A (en) * 2016-12-30 2017-05-24 中国科学院长春光学精密机械与物理研究所 Aurora measuring instrument control method and system
CN108226978A (en) * 2018-01-15 2018-06-29 电子科技大学 A kind of Double-Star Positioning System method based on WGS-84 models
CN113091728A (en) * 2021-03-11 2021-07-09 上海卫星工程研究所 Method and system for acquiring ground multi-target access window by satellite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353931A (en) * 2011-09-02 2012-02-15 北京邮电大学 Relative positioning method for spatial object
CN102650688A (en) * 2012-04-24 2012-08-29 上海卫星工程研究所 Fast high-precision orbit measurement method of satellite
US20130050024A1 (en) * 2011-08-25 2013-02-28 Embry-Riddle Aeronautical University, Inc. Bistatic radar system using satellite-based transmitters with ionospheric compensation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050024A1 (en) * 2011-08-25 2013-02-28 Embry-Riddle Aeronautical University, Inc. Bistatic radar system using satellite-based transmitters with ionospheric compensation
CN102353931A (en) * 2011-09-02 2012-02-15 北京邮电大学 Relative positioning method for spatial object
CN102650688A (en) * 2012-04-24 2012-08-29 上海卫星工程研究所 Fast high-precision orbit measurement method of satellite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
徐科: ""星载无源定位与基于外辐射源的无源定位精度分析"", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
郭福成: ""基于WGS-84地球模型的单星测向定位方法"", 《宇航学报》 *
龚文斌等: ""星载无源定位系统测向定位方法及精度分析"", 《长沙电力学院学报(自然科学版)》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707321A (en) * 2016-12-30 2017-05-24 中国科学院长春光学精密机械与物理研究所 Aurora measuring instrument control method and system
CN106707321B (en) * 2016-12-30 2019-05-17 中国科学院长春光学精密机械与物理研究所 A kind of aurora measuring instrument control method and system
CN108226978A (en) * 2018-01-15 2018-06-29 电子科技大学 A kind of Double-Star Positioning System method based on WGS-84 models
CN113091728A (en) * 2021-03-11 2021-07-09 上海卫星工程研究所 Method and system for acquiring ground multi-target access window by satellite
CN113091728B (en) * 2021-03-11 2023-02-28 上海卫星工程研究所 Method and system for acquiring ground multi-target access window by satellite

Also Published As

Publication number Publication date
CN104391311B (en) 2017-06-20

Similar Documents

Publication Publication Date Title
CN102565797B (en) Geometric correction method for spotlight-mode satellite SAR (synthetic aperture radar) image
CN106124170B (en) A kind of camera optical axis direction computational methods based on high-precision attitude information
CN101520511B (en) Method for formation configuration of distributed satellites with synthetic aperture radars
CN101893440B (en) Celestial autonomous navigation method based on star sensors
CN103675861B (en) A satellite autonomous orbit determination method based on spaceborne GNSS multi-antenna
CN102878995B (en) Method for autonomously navigating geo-stationary orbit satellite
CN105184002B (en) A kind of several simulating analysis for passing antenna pointing angle
CN103644918A (en) Method for performing positioning processing on lunar exploration data by satellite
CN105160125A (en) Simulation analysis method for star sensor quaternion
CN107727101B (en) Fast solution method for 3D attitude information based on double polarized light vector
CN104236586A (en) Moving base transfer alignment method based on measurement of misalignment angle
CN101846740B (en) A simulation method of space-borne SAR echoes in a specified latitude area
CN112346104A (en) A UAV Information Fusion Positioning Method
CN106918317B (en) Side-sway observation covering band determines method and device to a kind of scan-type satellite over the ground
CN107525492A (en) A kind of drift angle simulating analysis suitable for quick earth observation satellite
CN103335654A (en) Self-navigation method for planetary power descending branch
CN106441372A (en) Method for coarsely aligning static base based on polarization and gravity information
CN104123461B (en) A kind of illumination visible relation computational methods for space object photometric analysis
CN103344958B (en) Based on the satellite-borne SAR high-order Doppler parameter evaluation method of almanac data
CN104391311B (en) Passive location method on star based on GPS broadcast datas
CN103940429A (en) Real-time measuring method of carrier attitude in transverse coordinate system of inertial navigation system
Li et al. Observability analysis of SINS/GPS during in-motion alignment using singular value decomposition
CN103697893A (en) Three-dimensional attitude determination method utilizing atmospheric polarization light
CN106250684B (en) Consolidate the satellite transit time quick calculation method of coefficient evidence based on ground
CN113203981B (en) A method of satellite attitude determination using radiation source positioning payload

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant