CN104383784B - The system and method for separation and Extraction inert gas from environmental gas - Google Patents
The system and method for separation and Extraction inert gas from environmental gas Download PDFInfo
- Publication number
- CN104383784B CN104383784B CN201410705017.7A CN201410705017A CN104383784B CN 104383784 B CN104383784 B CN 104383784B CN 201410705017 A CN201410705017 A CN 201410705017A CN 104383784 B CN104383784 B CN 104383784B
- Authority
- CN
- China
- Prior art keywords
- gas
- fractionation
- krypton
- titanium sponge
- argon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007789 gas Substances 0.000 title claims abstract description 274
- 239000011261 inert gas Substances 0.000 title claims abstract description 51
- 238000000926 separation method Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000000605 extraction Methods 0.000 title claims abstract description 16
- 230000007613 environmental effect Effects 0.000 title claims description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 187
- 238000005194 fractionation Methods 0.000 claims abstract description 99
- 229910052786 argon Inorganic materials 0.000 claims abstract description 93
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 90
- 229910052743 krypton Inorganic materials 0.000 claims abstract description 90
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims abstract description 90
- 238000004817 gas chromatography Methods 0.000 claims abstract description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 80
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 44
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 42
- 229910052757 nitrogen Inorganic materials 0.000 claims description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- 229910052760 oxygen Inorganic materials 0.000 claims description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 16
- 239000012159 carrier gas Substances 0.000 claims description 11
- 239000003673 groundwater Substances 0.000 claims description 11
- 239000001307 helium Substances 0.000 claims description 11
- 229910052734 helium Inorganic materials 0.000 claims description 11
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 11
- 239000000243 solution Substances 0.000 claims description 10
- 239000001569 carbon dioxide Substances 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 4
- 239000002352 surface water Substances 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000010926 purge Methods 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims 8
- DNNSSWSSYDEUBZ-OUBTZVSYSA-N krypton-85 Chemical compound [85Kr] DNNSSWSSYDEUBZ-OUBTZVSYSA-N 0.000 claims 6
- 238000010521 absorption reaction Methods 0.000 claims 4
- 230000000274 adsorptive effect Effects 0.000 claims 2
- 238000007445 Chromatographic isolation Methods 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 64
- 239000000126 substance Substances 0.000 abstract description 56
- 229910052719 titanium Inorganic materials 0.000 description 34
- 239000010936 titanium Substances 0.000 description 34
- 238000013375 chromatographic separation Methods 0.000 description 12
- 238000005070 sampling Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- -1 etc.) Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- MFYMBIZGFDNLPT-UHFFFAOYSA-N CTBT Chemical compound N1=NC2=NN=NN2C2=CC=C(Cl)C=C21 MFYMBIZGFDNLPT-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004454 trace mineral analysis Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本公开涉及一种从环境气体中分离提取惰性气体的系统,所述系统包括:除水分装置;低温分馏装置;海绵钛化学吸附装置;气相色谱分离装置;惰性气体收集装置;和真空装置。本公开还涉及一种从环境气体中分离提取惰性气体的方法,所述方法包括:除水分步骤;低温分馏步骤;海绵钛化学吸附步骤;气相色谱分离步骤;和惰性气体收集步骤。本公开还涉及以上系统和方法用于微升量级氪气和百毫升量级氩气的同步分离提取的用途。
The disclosure relates to a system for separating and extracting inert gas from ambient gas, and the system includes: a moisture removal device; a low temperature fractionation device; a titanium sponge chemical adsorption device; a gas chromatography separation device; an inert gas collection device; and a vacuum device. The present disclosure also relates to a method for separating and extracting inert gas from ambient gas, the method comprising: a moisture removal step; a low-temperature fractionation step; a titanium sponge chemical adsorption step; a gas chromatography separation step; and an inert gas collection step. The present disclosure also relates to the use of the above system and method for simultaneous separation and extraction of krypton gas at the microliter level and argon gas at the hundred milliliter level.
Description
技术领域 technical field
本公开涉及气体样品分离、以及惰性气体提取技术领域,特别是涉及一种从少量环境气体中高效分离提取其中的微量惰性气体的系统和方法。 The present disclosure relates to the technical field of gas sample separation and inert gas extraction, in particular to a system and method for efficiently separating and extracting a trace amount of inert gas from a small amount of ambient gas.
背景技术 Background technique
从少量环境气体(如空气、地下水和冰芯中溶解气等)中高效分离提取惰性气体的系统和方法是一种新型的综合利用低温分馏、化学吸附以及气相色谱分离等方法提取其中的惰性气体(氩气和氪气)的技术。通过该方法所提取的氩气和氪气样品,可用于环境样品的同位素和示踪分析等应用,例如进行放射性同位素39Ar和81Kr、85Kr测年等。具体为:对于环境气体样品(其主要成份为氮气、氧气、甲烷等),首先除去水分和二氧化碳,然后通过低温分馏方法实现对氩气和氪气的分离,再在高温下利用海绵钛进行化学吸附,除去绝大部分的氮气、氧气、甲烷等,实现对氩气和氪气的先后富集,最后利用色谱方法对富集后的氪气进行分离,最终实现氩气和氪气的高效提取。 The system and method for efficiently separating and extracting inert gases from a small amount of ambient gases (such as air, groundwater, and dissolved gases in ice cores, etc.) (Argon and Krypton) technology. The argon and krypton samples extracted by this method can be used for isotope and trace analysis of environmental samples and other applications, such as radioactive isotope 39 Ar and 81 Kr, 85 Kr dating, etc. Specifically: for ambient gas samples (the main components of which are nitrogen, oxygen, methane, etc.), water and carbon dioxide are first removed, and then argon and krypton are separated by low-temperature fractionation, and then chemical sponge titanium is used at high temperature. Adsorption, remove most of nitrogen, oxygen, methane, etc., realize the successive enrichment of argon and krypton, and finally use chromatography to separate the enriched krypton, and finally realize the efficient extraction of argon and krypton .
由于氪气和氩气在环境气体样品中的体积分数一般分别为百万分之几和1%水平,应用中需要同时从一个环境气体样品中高效分离提取体积含量相差四个量级的两种稀有气体难度非常大,尤其样品总量在数百毫升到数十升水平时。目前国际上主要是单一的分离提取氪气或者氩气,通常使用的方法为:对于氪气,一般采用纯粹低温压缩分馏进行氪气富集,然后使用气相色谱分离氪气([1]Yokochi,R.;Heraty,L.J.;Sturchio,N.C.:MethodforPurificationofKryptonfromEnvironmentalSamplesforAnalysisofRadiokryptonIsotopes.AnalyicalChemistry80(2008),No.22,8688-8693)。这种方法最大的缺点就是在纯粹低温压缩分馏阶段,氪气的损失比较大,使得氪气的分离效率并不高。对于氩气,一般采用大剂量气相色谱分离方法,直接将气体样品色谱分离得到氩气([2]Riedmann,R.A.:SeparationofArgonfromatmosphericairandMeasurementsof37ArforCTBTpurposes,UniversityofBern,Dissertation,2011)。此种方法虽然直接,但是对色谱柱填充以及温度控制要求极高,而且分离效率以及产物纯度并不理想。 Since the volume fractions of krypton and argon in ambient gas samples are generally several parts per million and 1% respectively, it is necessary to efficiently separate and extract two kinds of gas with four orders of magnitude difference in volume content from one ambient gas sample at the same time. Noble gases are very difficult, especially when the total sample volume is hundreds of milliliters to tens of liters. At present, it is mainly a single separation and extraction of krypton or argon in the world at present. The commonly used method is: for krypton, generally use pure low-temperature compression fractionation to enrich krypton, and then use gas chromatography to separate krypton ([1]Yokochi, R.; Heraty, LJ; Sturchio, NC: Method for Purification of Krypton from Environmental Samples for Analysis of Radiokrypton Isotopes. Analytical Chemistry 80 (2008), No. 22, 8688-8693). The biggest disadvantage of this method is that in the stage of pure low-temperature compression fractionation, the loss of krypton gas is relatively large, so that the separation efficiency of krypton gas is not high. For argon, a large-dose gas chromatographic separation method is generally used to directly chromatographically separate the gas sample to obtain argon ([2] Riedmann, RA: Separation of Argon from atmospheric air and Measurements of 37 Argon for CTBT purposes, University of Bern, Dissertation, 2011). Although this method is straightforward, it has extremely high requirements for chromatographic column packing and temperature control, and the separation efficiency and product purity are not ideal.
上述两种方法只能实现对单一的氪气或者氩气的分离,过程比较复杂,效率并不高,对应用产生了很大的限制。 The above two methods can only realize the separation of a single krypton or argon gas, the process is relatively complicated, and the efficiency is not high, which greatly limits the application.
发明内容 Contents of the invention
在本公开的一些实施方案中,涉及一种从环境气体中分离提取惰性气体的系统,所述系统包括: In some embodiments of the present disclosure, it relates to a system for separating and extracting inert gas from ambient gas, the system comprising:
除水分装置,所述除水分装置用于除去环境气体样品中的水分和二氧化碳; A moisture removal device for removing moisture and carbon dioxide in an ambient gas sample;
低温分馏装置,所述低温分馏装置用于装载来自所述除水分装置的环境气体样品,并对所述环境气体样品进行低温分馏,产生包含大部分氩气的分馏气体和包含少量氩气和大部分氪气的分馏残余气体; A cryogenic fractionation device for loading an ambient gas sample from the moisture removal device and performing cryogenic fractionation on the ambient gas sample to produce a fractionated gas containing a majority of argon and a fraction containing a small amount of argon and a large amount of argon Part of the fractionated residual gas of krypton;
海绵钛化学吸附装置,所述海绵钛化学吸附装置用于高温下进行化学吸附,先后除去所述低温分馏装置产生的分馏气体和分馏残余气体中的氮气、氧气和甲烷,保留氩气和氪气,先后得到氩气和包含少量氩气和大部分氪气的富氪气体; Sponge titanium chemical adsorption device, the sponge titanium chemical adsorption device is used for chemical adsorption at high temperature, successively removes nitrogen, oxygen and methane in the fractionation gas and fractionation residual gas generated by the low temperature fractionation device, and retains argon and krypton , successively obtain argon and krypton-rich gas containing a small amount of argon and most of krypton;
气相色谱分离装置,所述气相色谱分离装置采用氦载气对经所述海绵钛化学吸附装置化学吸附后得到的富氪气体进行色谱分离; A gas chromatographic separation device, the gas chromatographic separation device uses a helium carrier gas to carry out chromatographic separation of the krypton-rich gas obtained after chemical adsorption by the sponge titanium chemical adsorption device;
惰性气体收集装置,所述惰性气体收集装置用于收集惰性气体,将所述海绵钛化学吸附装置吸附分馏气体得到的氩气与所述气相色谱分离装置得到的氩气合并,一起收集;并且,所述气相色谱分离装置分离得到氪气也被送入惰性气体收集装置进行收集;和 An inert gas collection device, the inert gas collection device is used to collect inert gas, and the argon gas obtained by the adsorption fractionation gas obtained by the sponge titanium chemical adsorption device is combined with the argon gas obtained by the gas chromatography separation device; and, The krypton gas separated by the gas chromatographic separation device is also sent to the inert gas collection device for collection; and
真空装置,所述真空装置用于产生整个系统所需的真空条件。 A vacuum device for generating the vacuum conditions required for the entire system.
在本公开的一些实施方案中,所述低温分馏装置包括: In some embodiments of the present disclosure, the cryogenic fractionation unit includes:
活性炭储气管,所述活性炭储气管装有活性炭,用于液氮温度下物理吸附从所述除水分装置送入的环境气体样品;和/或 Activated carbon gas storage tube, the activated carbon gas storage tube is equipped with activated carbon, used for physical adsorption of the ambient gas sample sent from the moisture removal device at the temperature of liquid nitrogen; and/or
气体质量流量计,所述气体质量流量计用于控制低温分馏过程中分馏气体和分馏残余气体进入所述海绵钛化学吸附装置的速度,并分别记录进入所述海绵钛化学吸附装置的气体量。 A gas mass flowmeter, the gas mass flowmeter is used to control the speed at which fractionation gas and fractionation residual gas enter the sponge titanium chemical adsorption device during the cryogenic fractionation process, and record the gas volume entering the sponge titanium chemical adsorption device respectively.
在本公开的一些实施方案中,所述海绵钛化学吸附装置包括: In some embodiments of the present disclosure, the titanium sponge chemical adsorption device comprises:
海绵钛,所述海绵钛用于高温下进行化学吸附,先后除去所述低温分馏装置送入的分馏气体和分馏残余气体中的氮气、氧气、甲烷;和/或 Titanium sponge, the titanium sponge is used for chemical adsorption at high temperature, and successively removes nitrogen, oxygen, and methane in the fractionation gas and fractionation residual gas fed into the low-temperature fractionation device; and/or
高温反应管,所述高温反应管用作所述海绵钛与气体之间反应的容器;和/或 A high temperature reaction tube used as a container for the reaction between the titanium sponge and the gas; and/or
压力计,所述压力计用于监视海绵钛吸附装置中的气压,以判断所述海绵钛与分馏气体之间、所述海绵钛与分馏残余气体之间化学吸附的进程,判断化学吸附的完成时间。 A pressure gauge, the pressure gauge is used to monitor the air pressure in the sponge titanium adsorption device, to judge the process of chemical adsorption between the sponge titanium and the fractionation gas, between the sponge titanium and the fractionation residual gas, and judge the completion of the chemical adsorption time.
在本公开的一些实施方案中,所述惰性气体收集装置包括: In some embodiments of the present disclosure, the noble gas collection device includes:
氩气收集管,所述氩气收集管装有活性炭,用于液氮温度下收集经所述海绵钛化学吸附装置化学吸附分馏气体得到的氩气以及经所述气相色谱分离装置分离得到的氩气以存储;和/或 An argon gas collection tube, the argon gas collection tube is equipped with activated carbon, and is used to collect the argon gas obtained by the chemical adsorption fractionation gas of the sponge titanium chemical adsorption device and the argon gas separated by the gas chromatographic separation device at the temperature of liquid nitrogen gas for storage; and/or
氪气收集管,所述氪气收集管装有活性炭,用于液氮温度下收集经所述气相色谱分离装置分离得到的氪气以存储。 A krypton gas collection tube, the krypton gas collection tube is equipped with activated carbon, and is used to collect the krypton gas separated by the gas chromatography separation device at the temperature of liquid nitrogen for storage.
在本公开的一些实施方案中,所述环境气体选自空气、地热气体、地下水溶解气、地表水溶解气、海洋水溶解气和冰芯中溶解气。 In some embodiments of the present disclosure, the ambient gas is selected from the group consisting of air, geothermal gas, dissolved gas in groundwater, dissolved gas in surface water, dissolved gas in ocean water, and dissolved gas in ice cores.
在本公开的一些实施方案中,涉及一种从环境气体中分离提取惰性气体的方法,所述方法包括: In some embodiments of the present disclosure, it relates to a method of separating and extracting an inert gas from an ambient gas, the method comprising:
除水分步骤,其中用除水分装置除去环境气体样品中的水分和二氧化碳; a moisture removal step, wherein moisture and carbon dioxide are removed from the ambient gas sample with a moisture removal device;
低温分馏步骤,其中用活性炭储气管在液氮温度下物理吸附由所述除水分装置送入的环境气体样品,并对环境气体样品进行低温分馏,产生包含大部分氩气的分馏气体和包含少量氩气和大部分氪气的分馏残余气体; A low-temperature fractionation step, wherein an activated carbon gas storage tube is used to physically adsorb the ambient gas sample sent in from the moisture removal device at the temperature of liquid nitrogen, and the ambient gas sample is subjected to low-temperature fractionation to produce a fractionated gas containing most of argon and a small amount of argon. Fractionated residual gases of argon and most of krypton;
海绵钛化学吸附步骤,其中在压力计的监视下,用海绵钛在高温反应管中进行高温化学吸附,除去所述低温分馏装置产生的分馏气体和分馏残余气体中的氮气、氧气、甲烷,保留氩气和氪气,先后得到氩气和包含少量氩气和大部分氪气的富氪气体; Sponge titanium chemisorption step, wherein under the monitoring of pressure gauge, use sponge titanium to carry out high-temperature chemisorption in the high-temperature reaction tube, remove the nitrogen, oxygen and methane in the fractionation gas and fractionation residual gas produced by the low-temperature fractionation device, and retain Argon and krypton, successively obtain argon and krypton-rich gas containing a small amount of argon and most of krypton;
气相色谱分离步骤,其中用进样环装载经所述海绵钛化学吸附装置化学吸附后得到的富氪气体,氦载气吹扫进样环中的富氪气体进入色谱柱,富氪气体中的氩气、氮气和氪气经色谱柱分离,再被氦载气依次吹扫进入所述惰性气体收集装置中进行收集; Gas chromatography separation step, wherein the krypton-rich gas obtained after chemical adsorption by the sponge titanium chemical adsorption device is loaded with a sampling loop, the krypton-rich gas in the sampling loop is purged by a helium carrier gas into the chromatographic column, and the krypton-rich gas in the krypton-rich gas is Argon, nitrogen and krypton are separated by a chromatographic column, and then purged by helium carrier gas into the inert gas collection device for collection;
惰性气体收集步骤,其中将经海绵钛高温化学吸附分馏气体得到的氩气与气相色谱分离得到的氩气合并,一起送入氩气收集管中收集,并且将气相色谱分离得到的氪气送入氪气收集管中收集。 The inert gas collection step, in which the argon gas obtained by the sponge titanium high-temperature chemical adsorption fractionation gas is combined with the argon gas separated by gas chromatography, and sent together into the argon collection tube for collection, and the krypton gas obtained by gas chromatography is sent into Krypton collected in the collection tube.
在本公开的一些实施方案中,在所述低温分馏步骤中,用所述低温分馏装置中的活性炭储气管中所装有的活性炭在液氮温度下物理吸附所述除水分装置送入的环境气体样品;和/或 In some embodiments of the present disclosure, in the low-temperature fractionation step, the activated carbon contained in the activated carbon gas storage pipe in the low-temperature fractionation device is used to physically adsorb the environment sent by the moisture removal device at the temperature of liquid nitrogen gas samples; and/or
在所述海绵钛化学吸附步骤中,用所述低温分馏装置中的气体质量流量计控制低温分馏过程中分馏气体和分馏残余气体进入所述海绵钛化学吸附装置的速度,并分别记录进入所述海绵钛化学吸附装置的气体量;和/或 In the titanium sponge chemical adsorption step, use the gas mass flowmeter in the low temperature fractionation device to control the speed at which the fractionation gas and fractionation residual gas enter the titanium sponge chemical adsorption device during the low temperature fractionation process, and record the speed of entering the titanium sponge chemical adsorption device respectively. The gas volume of the sponge titanium chemisorption device; and/or
在所述海绵钛化学吸附步骤中,用所述海绵钛化学吸附装置中的海绵钛在高温下进行化学吸附,先后除去所述低温分馏装置送入的分馏气体和分馏残余气体中的氮气、氧气、甲烷;和/或 In the sponge titanium chemical adsorption step, the titanium sponge in the titanium sponge chemical adsorption device is used for chemical adsorption at high temperature, and nitrogen and oxygen in the fractionation gas and fractionation residual gas sent by the low temperature fractionation device are successively removed , methane; and/or
在所述海绵钛化学吸附步骤中,用所述海绵钛化学吸附装置中的高温反应管作为海绵钛与气体之间反应的容器。 In the titanium sponge chemical adsorption step, the high-temperature reaction tube in the titanium sponge chemical adsorption device is used as a container for the reaction between the titanium sponge and the gas.
在本公开的一些实施方案中,有效分离并分别富集体积分数相差四个数量级的氩气和氪气。 In some embodiments of the present disclosure, argon and krypton whose volume fractions differ by four orders of magnitude are effectively separated and separately enriched.
在本公开的一些实施方案中,所述环境气体选自空气、地热气体、地下水溶解气、地表水溶解气、海洋水溶解气和冰芯中溶解气。 In some embodiments of the present disclosure, the ambient gas is selected from the group consisting of air, geothermal gas, dissolved gas in groundwater, dissolved gas in surface water, dissolved gas in ocean water, and dissolved gas in ice cores.
在本公开的一些实施方案中,涉及本公开中的系统或方法用于微升量级氪气和百毫升量级氩气的同步分离提取的用途。 In some embodiments of the present disclosure, it relates to the use of the system or method in the present disclosure for the simultaneous separation and extraction of krypton gas at the microliter level and argon gas at the hundred milliliter level.
附图说明 Description of drawings
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。 In order to more clearly illustrate the technical solutions in the embodiments of the present disclosure or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments described in the present disclosure. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本公开实施例公开的一种从少量环境气体(如空气、地下水和冰芯中溶解气等)中高效分离提取惰性气体的系统的一种结构示意图; Fig. 1 is a schematic structural diagram of a system for efficiently separating and extracting inert gas from a small amount of ambient gas (such as air, groundwater, and dissolved gas in ice cores) disclosed in an embodiment of the present disclosure;
具体实施方式 detailed description
有鉴于此,本公开的一些具体实施方案涉及一种从少量环境气体(如空气、地下水和冰芯中溶解气等)中高效分离提取惰性气体的系统和方法,以提高分离提取效率。技术方案如下: In view of this, some specific embodiments of the present disclosure relate to a system and method for efficiently separating and extracting inert gas from a small amount of ambient gas (such as air, groundwater, and dissolved gas in ice cores, etc.), so as to improve the efficiency of separation and extraction. The technical solution is as follows:
本公开的一些具体实施方案涉及一种从少量环境气体(如空气、地下水和冰芯中溶解气等)中高效分离提取惰性气体的系统,包括:真空装置、除水分装置、低温分馏装置、海绵钛化学吸附装置、气相色谱分离装置、惰性气体收集装置,其中: Some specific embodiments of the present disclosure relate to a system for efficiently separating and extracting inert gas from a small amount of ambient gas (such as air, groundwater, and dissolved gas in ice cores, etc.), including: a vacuum device, a moisture removal device, a cryogenic fractionation device, and a sponge Titanium chemical adsorption device, gas chromatographic separation device, inert gas collection device, among which:
所述除水分装置用于除去环境气体样品(其主要成份为氮气、氧气、甲烷等)中的水分和二氧化碳,随后环境气体样品被送入所述低温分馏装置; The moisture removal device is used to remove moisture and carbon dioxide in the ambient gas sample (the main components of which are nitrogen, oxygen, methane, etc.), and then the ambient gas sample is sent to the low-temperature fractionation device;
所述低温分馏装置用于装载环境气体样品,并对环境气体样品进行低温分馏,产生分馏气体(包含主要的氩气)和分馏残余气体(包含少量的氩气和主要的氪气),实现对氩气与氪气的分离; The low-temperature fractionation device is used to load ambient gas samples, and perform low-temperature fractionation on the ambient gas samples to generate fractionated gas (including mainly argon) and fractionated residual gas (including a small amount of argon and mainly krypton), so as to realize the Separation of argon and krypton;
所述海绵钛化学吸附装置用于高温下进行化学吸附,先后除去所述低温分馏装置产生的分馏气体和分馏残余气体中的氮气、氧气、甲烷等,氩气和氪气被保留下来,先后得到氩气和富氪气体(包含少量的氩气和主要的氪气),实现对氩气与氪气的富集; The titanium sponge chemical adsorption device is used for chemical adsorption at high temperature, and successively removes nitrogen, oxygen, methane, etc. in the fractionated gas and fractionated residual gas generated by the low temperature fractionation device, and the argon and krypton are retained, and successively obtained Argon and krypton-rich gas (including a small amount of argon and mainly krypton), to achieve the enrichment of argon and krypton;
所述气相色谱分离装置包括色谱柱、进样环和氦载气,所述进样环装载经所述海绵钛化学吸附装置化学吸附后得到的富氪气体,所述氦载气吹扫进样环中的富氪气体进入所述色谱柱中,富氪气体中的氩气、氮气和氪气经色谱柱分离,再被氦载气依次吹扫进入所述惰性气体收集装置中进行收集,从而实现氪气的分离; The gas chromatographic separation device includes a chromatographic column, a sampling loop and a helium carrier gas, the sampling loop is loaded with the krypton-rich gas obtained after chemical adsorption by the sponge titanium chemical adsorption device, and the helium carrier gas purging injection The krypton-rich gas in the ring enters the chromatographic column, and the argon, nitrogen and krypton in the krypton-rich gas are separated by the chromatographic column, and then purged by the helium carrier gas into the inert gas collection device for collection, thereby Realize the separation of krypton gas;
所述惰性气体收集装置用于收集惰性气体,将所述海绵钛化学吸附装置吸附分馏气体得到的氩气与所述气相色谱分离装置得到的氩气合并,一起送入惰性气体收集装置进行收集,最终存储;同样地,所述气相色谱分离装置分离得到氪气也被送入惰性气体收集装置进行收集; The inert gas collection device is used to collect inert gas, the argon gas obtained by the sponge titanium chemical adsorption device absorbing fractionation gas is combined with the argon gas obtained by the gas chromatography separation device, and sent together to the inert gas collection device for collection, Final storage; Similarly, the krypton gas separated by the gas chromatographic separation device is also sent to the inert gas collection device for collection;
所述真空装置包括不锈钢真空管道、真空阀门、真空密封件和真空泵系统,用于产生实验所需的真空条件。 The vacuum device includes a stainless steel vacuum pipeline, a vacuum valve, a vacuum seal and a vacuum pump system for generating the vacuum conditions required for the experiment.
在本公开的一些具体实施方案中,所述低温分馏装置还包括: In some specific embodiments of the present disclosure, the cryogenic fractionation device also includes:
活性炭储气管; Activated carbon gas storage tube;
所述活性炭储气管,装有活性炭,用于液氮温度下物理吸附所述除水装置送入的环境气体样品。 The activated carbon gas storage tube is equipped with activated carbon, which is used for physical adsorption of the ambient gas sample sent by the water removal device at the temperature of liquid nitrogen.
在本公开的一些具体实施方案中,所述低温分馏装置还包括: In some specific embodiments of the present disclosure, the cryogenic fractionation device also includes:
气体质量流量计; Gas mass flow meter;
所述气体质量流量计,用于控制低温分馏过程中分馏气体和分馏残余气体进入所述海绵钛化学吸附装置的速度,并分别记录进入所述海绵钛化学吸附装置的气体量。 The gas mass flowmeter is used to control the speed at which the fractionated gas and fractionated residual gas enter the sponge titanium chemical adsorption device during the low temperature fractionation process, and record the gas volume entering the sponge titanium chemical adsorption device respectively.
在本公开的一些具体实施方案中,所述海绵钛化学吸附装置包括: In some specific embodiments of the present disclosure, the titanium sponge chemical adsorption device includes:
海绵钛; Titanium sponge;
所述海绵钛,用于高温下进行化学吸附,先后除去所述低温分馏装置送入的分馏气体和分馏残余气体中的氮气、氧气、甲烷等。 The titanium sponge is used for chemical adsorption at high temperature, and successively removes nitrogen, oxygen, methane, etc. in the fractionation gas and fractionation residual gas sent by the low-temperature fractionation device.
在本公开的一些具体实施方案中,所述海绵钛化学吸附装置还包括: In some specific embodiments of the present disclosure, the titanium sponge chemical adsorption device further includes:
高温反应管; High temperature reaction tube;
所述高温反应管,用于所述海绵钛与气体之间反应的容器。 The high-temperature reaction tube is used as a container for the reaction between the titanium sponge and the gas.
在本公开的一些具体实施方案中,所述海绵钛化学吸附装置还包括: In some specific embodiments of the present disclosure, the titanium sponge chemical adsorption device further includes:
压力计; pressure gauge;
所述压力计,用于监视海绵钛吸附装置中的气压,用于判断所述海绵钛与分馏气体之间、所述海绵钛与分馏残余气体之间化学吸附的进程,判断化学吸附的完成时间。 The pressure gauge is used to monitor the air pressure in the sponge titanium adsorption device, to judge the process of chemical adsorption between the sponge titanium and the fractionated gas, between the sponge titanium and the fractionated residual gas, and to judge the completion time of the chemical adsorption .
在本公开的一些具体实施方案中,所述惰性气体收集装置包括: In some specific embodiments of the present disclosure, the inert gas collection device includes:
氩气收集管; Argon collection tube;
所述氩气收集管,装有活性炭,用于液氮温度下收集经所述海绵钛化学吸附装置化学吸附分馏气体得到的氩气以及经所述气相色谱分离装置分离得到的氩气,最后存储。 The argon gas collection tube is equipped with activated carbon, which is used to collect the argon gas obtained by the chemical adsorption fractionation gas of the sponge titanium chemical adsorption device and the argon gas separated by the gas chromatographic separation device at the temperature of liquid nitrogen, and finally store .
在本公开的一些具体实施方案中,所述惰性气体收集装置还包括: In some specific embodiments of the present disclosure, the inert gas collection device further includes:
氪气收集管; Krypton collection tube;
所述氪气收集管,装有活性炭,用于液氮温度下收集经所述气相色谱分离装置分离得到的氪气,最后存储。 The krypton gas collection tube is equipped with activated carbon, which is used to collect the krypton gas separated by the gas chromatographic separation device at the temperature of liquid nitrogen, and finally store it.
在本公开的一些具体实施方案中,还涉及一种从少量环境气体(如空气、地下水和冰芯中溶解气等)中高效分离提取惰性气体的方法,包括: In some specific embodiments of the present disclosure, it also relates to a method for efficiently separating and extracting inert gas from a small amount of ambient gas (such as air, groundwater, and dissolved gas in ice cores, etc.), including:
除水分,除水分装置除去环境气体样品(其主要成份为氮气、氧气、甲烷等)中的水分和二氧化碳,随后环境气体样品被送入所述低温分馏装置; Moisture removal, the moisture removal device removes moisture and carbon dioxide in the ambient gas sample (its main components are nitrogen, oxygen, methane, etc.), and then the ambient gas sample is sent to the low-temperature fractionation device;
低温分馏,活性炭储气管液氮温度下物理吸附所述除水分装置送入的环境气体样品,并对环境气体样品进行低温分馏,产生分馏气体(包含主要的氩气)和分馏残余气体(包含少量的氩气和主要的氪气),实现对氩气与氪气的分离; Low-temperature fractionation, the activated carbon gas storage tube physically adsorbs the ambient gas sample sent by the moisture removal device at liquid nitrogen temperature, and performs low-temperature fractionation on the ambient gas sample to generate fractionated gas (including mainly argon) and fractionated residual gas (containing a small amount of argon) The argon and the main krypton), realize the separation of argon and krypton;
海绵钛化学吸附,在压力计的监视下,海绵钛在高温反应管中进行高温化学吸附,除去所述低温分馏装置产生的分馏气体和分馏残余气体中的氮气、氧气、甲烷等,氩气和氪气被保留下来,先后得到氩气和富氪气体(包含少量的氩气和主要的氪气),实现对氩气与氪气的富集; Sponge titanium chemisorption, under the monitoring of the pressure gauge, the sponge titanium carries out high temperature chemisorption in the high temperature reaction tube to remove nitrogen, oxygen, methane, etc., argon and Krypton is retained, and argon and krypton-enriched gas (including a small amount of argon and mainly krypton) are obtained successively to realize the enrichment of argon and krypton;
气相色谱分离,进样环装载经所述海绵钛化学吸附装置化学吸附后得到的富氪气体,氦载气吹扫进样环中的富氪气体进入色谱柱,富氪气体中的氩气、氮气和氪气等成份经色谱柱分离,再被氦载气依次吹扫进入所述惰性气体收集装置中进行收集,从而实现氪气的分离; Gas chromatographic separation, the sample loop is loaded with the krypton-rich gas obtained after chemical adsorption by the sponge titanium chemical adsorption device, the helium carrier gas purges the krypton-rich gas in the sample loop into the chromatographic column, and the argon, Components such as nitrogen and krypton are separated by a chromatographic column, and then purged by helium carrier gas into the inert gas collection device for collection, thereby realizing the separation of krypton;
惰性气体收集,将经海绵钛高温化学吸附分馏气体得到的氩气与气相色谱分离得到的氩气合并,一起送入氩气收集管中收集,最终存储;将气相色谱分离得到的氪气送入氪气收集管中收集,最终存储。 Inert gas collection, the argon gas obtained by sponge titanium high-temperature chemical adsorption fractionation gas is combined with the argon gas separated by gas chromatography, and sent together into the argon collection tube for collection and final storage; the krypton gas obtained by gas chromatography separation is sent to Krypton gas is collected in the collection tube and finally stored.
在本公开的一些具体实施方案中,还包括: In some specific embodiments of the present disclosure, it also includes:
所述低温分馏装置中的活性炭储气管,装有活性炭,用于液氮温度下物理吸附所述除水装置送入的环境气体样品。 The activated carbon gas storage pipe in the low temperature fractionation device is equipped with activated carbon, which is used for physical adsorption of the ambient gas sample sent by the water removal device at the temperature of liquid nitrogen.
在本公开的一些具体实施方案中,还包括: In some specific embodiments of the present disclosure, it also includes:
所述低温分馏装置中的气体质量流量计,用于控制低温分馏过程中分馏气体和分馏残余气体进入所述海绵钛化学吸附装置的速度,并分别记录进入所述海绵钛化学吸附装置的气体量。 The gas mass flowmeter in the low temperature fractionation device is used to control the speed at which fractionation gas and fractionation residual gas enter the sponge titanium chemical adsorption device during the low temperature fractionation process, and record the gas volume entering the sponge titanium chemical adsorption device respectively .
在本公开的一些具体实施方案中,还包括: In some specific embodiments of the present disclosure, it also includes:
所述海绵钛化学吸附装置中的海绵钛,用于高温下进行化学吸附,先后除去所述低温分馏装置送入的分馏气体和分馏残余气体中的氮气、氧气、甲烷等。 The titanium sponge in the titanium sponge chemical adsorption device is used for chemical adsorption at high temperature, and successively removes nitrogen, oxygen, methane, etc. in the fractionation gas and fractionation residual gas fed into the low temperature fractionation device.
在本公开的一些具体实施方案中,还包括: In some specific embodiments of the present disclosure, it also includes:
所述海绵钛化学吸附装置中的高温反应管,用于海绵钛与气体之间反应的容器。 The high-temperature reaction tube in the titanium sponge chemical adsorption device is used as a container for the reaction between titanium sponge and gas.
为使本公开的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本公开作进一步详细的说明。 In order to make the above objects, features and advantages of the present disclosure more comprehensible, the present disclosure will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例 Example
请参阅图1,图1为本公开实施例公开一种从少量环境气体(如空气、地下水和冰芯中溶解气等)中高效分离提取惰性气体的系统,包括:除水分装置102、低温分馏装置110、海绵钛化学吸附装置120、气相色谱分离装置103、惰性气体收集装置130和真空装置101,其中: Please refer to Fig. 1. Fig. 1 discloses a system for efficiently separating and extracting inert gas from a small amount of ambient gas (such as air, groundwater and dissolved gas in ice cores, etc.) according to an embodiment of the present disclosure, including: moisture removal device 102, cryogenic fractionation Device 110, titanium sponge chemical adsorption device 120, gas chromatography separation device 103, inert gas collection device 130 and vacuum device 101, wherein:
真空装置101将整个装置抽真空,将环境气体样品(其主要成份为氮气、氧气、甲烷等)通入除水分装置102除去其中的水分和二氧化碳。 The vacuum device 101 evacuates the whole device, and the ambient gas sample (its main components are nitrogen, oxygen, methane, etc.) is passed into the moisture removal device 102 to remove moisture and carbon dioxide therein.
在液氮温度下,将环境气体样品送入低温分馏装置110中的活性炭储气管1101中,在气体质量流量计1102的控制下,活性炭储气管1101中的分馏气体和分馏残余气体先后被通入海绵钛化学吸附装置120中,实现氩气与氪气的分离。 At the temperature of liquid nitrogen, the ambient gas sample is sent into the activated carbon gas storage pipe 1101 in the cryogenic fractionation device 110, and under the control of the gas mass flowmeter 1102, the fractionated gas and fractionated residual gas in the activated carbon gas storage pipe 1101 are successively passed into the In the titanium sponge chemical adsorption device 120, the separation of argon and krypton is realized.
海绵钛化学吸附装置120中的海绵钛1201,在压力计1203的监视下,在高温反应管1202中进行高温化学吸附,氩气和氪气被保留下来,先后得到氩气和富氪气体(包含少量的氩气和主要的氪气),实现氩气和氪气的富集。 The titanium sponge 1201 in the titanium sponge chemical adsorption device 120, under the monitoring of the pressure gauge 1203, performs high-temperature chemical adsorption in the high-temperature reaction tube 1202, and the argon and krypton are retained, and successively obtain argon and krypton-rich gas (including A small amount of argon and mainly krypton), to achieve the enrichment of argon and krypton.
将海绵钛1201高温吸附产生的富氪气体送入气相色谱分离装置103中,实现氪气的分离。 The krypton-rich gas produced by the high-temperature adsorption of sponge titanium 1201 is sent to the gas chromatography separation device 103 to realize the separation of krypton gas.
将海绵钛1201高温吸附得到的氩气以及气相色谱分离装置103分离得到的氩气合并,一同送入惰性气体收集装置130的氩气收集管1301中收集,最终存储;将气相色谱分离装置103分离后得到的氪气送入惰性气体收集装置130的氪气收集管1302中收集,最终存储。 Combine the argon gas obtained by the high-temperature adsorption of sponge titanium 1201 and the argon gas separated by the gas chromatography separation device 103, and send them together to the argon gas collection tube 1301 of the inert gas collection device 130 for collection and final storage; the gas chromatography separation device 103 separates The obtained krypton gas is sent to the krypton gas collection pipe 1302 of the inert gas collection device 130 for collection, and finally stored.
发明人经过多次实验总结出本公开实施例公开的一种从少量环境气体(如空气、地下水和冰芯中溶解气等)中高效分离提取惰性气体的系统的分离效率非常之高,可以简单快速地从少量环境气体中同时高效率地分离提取出微升氪气和百毫升氩气,具有极大的应用价值和前景。 After many experiments, the inventor concluded that the separation efficiency of a system for efficiently separating and extracting inert gas from a small amount of ambient gas (such as air, groundwater, and dissolved gas in ice cores, etc.) disclosed in the embodiment of the present disclosure is very high, and can be simply Quickly and efficiently separate and extract microliters of krypton and hundred milliliters of argon from a small amount of ambient gas at the same time, which has great application value and prospects.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410705017.7A CN104383784B (en) | 2014-11-27 | 2014-11-27 | The system and method for separation and Extraction inert gas from environmental gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410705017.7A CN104383784B (en) | 2014-11-27 | 2014-11-27 | The system and method for separation and Extraction inert gas from environmental gas |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104383784A CN104383784A (en) | 2015-03-04 |
CN104383784B true CN104383784B (en) | 2016-03-02 |
Family
ID=52601795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410705017.7A Active CN104383784B (en) | 2014-11-27 | 2014-11-27 | The system and method for separation and Extraction inert gas from environmental gas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104383784B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105259291A (en) * | 2015-11-11 | 2016-01-20 | 中国核动力研究设计院 | Analysis method of fission gas |
CN106512702A (en) * | 2016-12-08 | 2017-03-22 | 天津工业大学 | Online purification method for inert gases based on titanium metallic chemical properties |
CN108801712A (en) * | 2018-02-27 | 2018-11-13 | 中国科学院地质与地球物理研究所 | A kind of moon original position rare gas extraction system and method |
CN109323909B (en) * | 2018-10-22 | 2020-10-27 | 中国科学技术大学 | An automated gas separation system for inert gas in low-volume environmental samples |
CN109855913A (en) * | 2019-03-04 | 2019-06-07 | 中国地质科学院水文地质环境地质研究所 | Underground water-borne radioactivity inert gas nucleic surveys year sampling system and its method of sampling |
CN113092654B (en) * | 2021-04-09 | 2022-07-15 | 中国科学技术大学 | In the air85Automatic continuous measurement system for Kr gas separation extraction and content |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1241985A (en) * | 1996-12-24 | 2000-01-19 | 液体空气乔治洛德方法利用和研究有限公司 | Method for purifying a cryogenic fluid by filtration and adsorption |
CN1420079A (en) * | 2001-11-19 | 2003-05-28 | 气体产品与化学公司 | Method and adsorbent for recovering kryptsn and xenon from gas stream or liquid stream |
CN1498851A (en) * | 2002-11-01 | 2004-05-26 | 日本派欧尼株式会社 | Refining method of inert gas |
CN102282100A (en) * | 2009-01-14 | 2011-12-14 | 赖卡有限公司 | Method and device for separating argon from a gas mixture |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7368000B2 (en) * | 2004-12-22 | 2008-05-06 | The Boc Group Plc | Treatment of effluent gases |
-
2014
- 2014-11-27 CN CN201410705017.7A patent/CN104383784B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1241985A (en) * | 1996-12-24 | 2000-01-19 | 液体空气乔治洛德方法利用和研究有限公司 | Method for purifying a cryogenic fluid by filtration and adsorption |
CN1420079A (en) * | 2001-11-19 | 2003-05-28 | 气体产品与化学公司 | Method and adsorbent for recovering kryptsn and xenon from gas stream or liquid stream |
CN1498851A (en) * | 2002-11-01 | 2004-05-26 | 日本派欧尼株式会社 | Refining method of inert gas |
CN102282100A (en) * | 2009-01-14 | 2011-12-14 | 赖卡有限公司 | Method and device for separating argon from a gas mixture |
Also Published As
Publication number | Publication date |
---|---|
CN104383784A (en) | 2015-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104383784B (en) | The system and method for separation and Extraction inert gas from environmental gas | |
US8016916B2 (en) | Apparatus and method for separating gas | |
CN201110847Y (en) | Adsorbent pressure swing adsorption separation performance test and percolation experimental device | |
CN102302886B (en) | Gas component collecting device for preparative gas chromatography | |
CN112629985A (en) | Isotope sample purification and collection preparation system and method and application thereof | |
CN104340959A (en) | Hydrogen and helium gas mixture separation and recovery device | |
CN105092350A (en) | Pretreatment apparatus and method for determination of dissolved helium and neon in water | |
US9851335B2 (en) | Method and system for analyzing a gaseous fluid comprising at least one rare gas by means of a getterizing substrate | |
CN104609583A (en) | System and method for separating and extracting dissolved gas from environmental water | |
CN105954415B (en) | The apparatus and method of nitrous oxide are dissolved in a kind of measure water body | |
CN106018590B (en) | The apparatus and method of dissolved methane in a kind of measure water body | |
CN111847407B (en) | Multistage helium extraction device and multistage helium extraction process | |
CN203758978U (en) | Automatic continuous determination device for volume content of greenhouse gases in atmosphere | |
JP2008296089A (en) | Hydrogen isotope separation and enrichment method | |
CN112892211A (en) | Column type hydrogen-helium separation and concentration coupling device and method | |
CN102489108B (en) | Method for separating and purifying xenon in atmosphere by use of active carbon and device thereof | |
CN204389453U (en) | Nitrogen oxygen isotope measuring device of trace nitrate sample | |
CN109323909B (en) | An automated gas separation system for inert gas in low-volume environmental samples | |
CN102302887B (en) | High-efficient pressurizing and sample-introducing device for preparative gas chromatography | |
CN105954416B (en) | The apparatus and method of isoprene are dissolved in a kind of measure water body | |
Deng et al. | Hydrogen isotopes separation validation of frontal displacement chromatography for various compositions of feed gas and tritium extraction simulation for TBM | |
JP2005519733A (en) | Isotope gas separation method and isotope gas separation apparatus | |
CN102491293A (en) | Method and device utilizing preparative chromatograph to separate krypton and xenon | |
CN204346990U (en) | Microamounts of Hydrogen in gas and oxygen chromatographic device | |
CN211205971U (en) | Isotope Sample Purification and Collection Preparation System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |