CN104372277A - Granular delta-phase uniformly distributed GH4169 alloy preparation method - Google Patents
Granular delta-phase uniformly distributed GH4169 alloy preparation method Download PDFInfo
- Publication number
- CN104372277A CN104372277A CN201410709368.5A CN201410709368A CN104372277A CN 104372277 A CN104372277 A CN 104372277A CN 201410709368 A CN201410709368 A CN 201410709368A CN 104372277 A CN104372277 A CN 104372277A
- Authority
- CN
- China
- Prior art keywords
- alloy
- slab
- phase
- deformation
- granular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种颗粒状δ相均匀分布的GH4169合金制备方法,属于高温合金材料制备的工艺领域。The invention relates to a method for preparing a GH4169 alloy with evenly distributed granular delta phases, and belongs to the technical field of high-temperature alloy material preparation.
背景技术Background technique
由于GH4169合金在-253~650℃之间具有很高的屈服强度、抗拉强度、持久强度和塑性,并且具有良好的抗腐蚀、抗辐照、热加工及焊接性能,在航空、航天、石油、化工及能源等领域具有广泛用途,其用量占世界变形高温合金总产量的45%以上。因此,其组织和相的变化一直是国内外学者研究的重点,尤其是针对合金中存在的δ相含量、分布及形貌变化,更是研究中的热点。Since the GH4169 alloy has high yield strength, tensile strength, durable strength and plasticity between -253 and 650 ° C, and has good corrosion resistance, radiation resistance, thermal processing and welding properties, it is widely used in aviation, aerospace, petroleum, etc. It has a wide range of uses in the fields of chemical, chemical and energy, and its consumption accounts for more than 45% of the world's total output of deformed superalloys. Therefore, the change of its microstructure and phase has always been the focus of research by scholars at home and abroad, especially the content, distribution and shape change of the δ phase in the alloy, which is a hot spot in the research.
有研究表明,δ相对GH4169合金的强度和裂纹的萌生与扩展具有重要影响。在关于δ相对GH4169合金室温力学性能影响的研究中发现,当合金中析出质量分数为3.45%的δ相时,其屈服和抗拉强度分别提高了233MPa和181MPa,原因在于δ相在晶界上析出降低了合金的缺口敏感性;而司家勇等人的研究[司家勇,刘锋.δ相对Inconel 718合金组织与疲劳性能影响的研究进展.材料导报.2013(07):89-92.]表明,当δ相以颗粒状析出并且均匀分布于晶界和晶内时,合金的力学性能最佳,原因是在变形过程中δ相对位错的阻碍作用由绕过变成切过机制,合金强度进一步得到提高。此外,Viskari等人[L Viskari,Y Cao,M Norell,et al.Grainboundary microstructure and fatigue crack growth in Allvac 718Plus superalloy.2011,528(6):2570-2580]分析了Inconel 718合金(GH4169)含δ相和不含δ相情况下合金持久疲劳极限的变化,研究结果表明:当合金中存在δ相时可有效降低裂纹的扩展速率,从而提高材料的持久疲劳性能。在热成形过程中,由于温度受周围环境影响较大,因此工件或坯料的温度场分布往往很不均匀,而δ相的含量、形貌及分布对温度又十分敏感。利用热成形方式,效率低,能耗大,工件或坯料表面也会由于高温而发生严重氧化。因此,采用热成形方式获得均匀分布的颗粒状δ相是不可行的。Studies have shown that δ has an important influence on the strength and crack initiation and propagation of GH4169 alloy. In the study on the influence of δ relative to the mechanical properties of GH4169 alloy at room temperature, it was found that when the δ phase with a mass fraction of 3.45% was precipitated in the alloy, its yield and tensile strength increased by 233MPa and 181MPa, respectively, because the δ phase was on the grain boundary Precipitation reduces the notch sensitivity of the alloy; and Si Jiayong et al. [Si Jiayong, Liu Feng. Research progress on the influence of δ relative to the structure and fatigue properties of Inconel 718 alloy. Materials Herald. 2013(07):89-92 .] show that the mechanical properties of the alloy are the best when the δ phase is precipitated in granular form and uniformly distributed in the grain boundary and in the grain, because the hindering effect of the δ relative dislocation changes from bypassing to shearing mechanism during deformation , the strength of the alloy is further improved. In addition, Viskari et al [L Viskari, Y Cao, M Norell, et al. Grainboundary microstructure and fatigue crack growth in Allvac 718Plus superalloy.2011,528(6):2570-2580] analyzed the Inconel 718 alloy (GH4169) containing δ The change of the endurance fatigue limit of the alloy with and without the δ phase. The research results show that: when the δ phase exists in the alloy, the crack growth rate can be effectively reduced, thereby improving the endurance fatigue performance of the material. In the hot forming process, because the temperature is greatly affected by the surrounding environment, the temperature field distribution of the workpiece or blank is often very uneven, and the content, morphology and distribution of the δ phase are very sensitive to temperature. The use of hot forming method has low efficiency and high energy consumption, and the surface of the workpiece or blank will also be severely oxidized due to high temperature. Therefore, it is not feasible to obtain a uniform distribution of granular δ phase by thermoforming.
因此,有必要考虑将GH4169合金变形与热处理析出δ相分开,最终获得在晶界和晶内均匀分布的颗粒状δ相。Therefore, it is necessary to consider separating the deformation of GH4169 alloy from the precipitation of δ phase during heat treatment, and finally obtain the granular δ phase uniformly distributed in the grain boundary and within the grain.
发明内容Contents of the invention
本发明的目的在于基于冷变形和热处理工艺相结合的方式,提供一种颗粒状δ相均匀分布的GH4169合金高效制备方法,从而进一步提高GH4169合金的强度,降低其裂纹扩展速率,提高疲劳寿命。The purpose of the present invention is to provide a high-efficiency preparation method of GH4169 alloy with uniform distribution of granular δ phase based on the combination of cold deformation and heat treatment process, so as to further improve the strength of GH4169 alloy, reduce its crack growth rate and improve fatigue life.
本发明的技术方案是:Technical scheme of the present invention is:
一种颗粒状δ相均匀分布的GH4169合金制备方法,包括GH4169合金的冷变形与热处理,首先对固溶后的板坯进行30%以上的冷轧变形,再经985℃±5℃保温1h后真空氩气保护下快速冷却,然后对板坯进行标准双时效处理,最终获得在GH4169合金晶界和晶内均匀分布的颗粒状δ相。A preparation method of GH4169 alloy with uniform distribution of granular δ phase, including cold deformation and heat treatment of GH4169 alloy. Firstly, the slab after solid solution is subjected to cold rolling deformation of more than 30%, and then it is kept at 985°C ± 5°C for 1 hour. Rapid cooling under the protection of vacuum argon, and then the standard double aging treatment on the slab, finally obtained the granular δ phase uniformly distributed in the grain boundaries and grains of the GH4169 alloy.
所述的颗粒状δ相均匀分布的GH4169合金制备方法,GH4169合金的冷变形及热处理包括如下步骤:The preparation method of the GH4169 alloy in which the granular δ phase is uniformly distributed, the cold deformation and heat treatment of the GH4169 alloy include the following steps:
a)对GH4169板料进行985℃±5℃保温1h固溶处理;a) The GH4169 sheet is subjected to solid solution treatment at 985°C±5°C for 1h;
b)对板坯进行变形量为30%以上的轧制变形;b) Carry out rolling deformation to the slab with a deformation amount of more than 30%;
c)对冷变形后的板坯用酒精或丙酮进行清洗;c) cleaning the cold deformed slab with alcohol or acetone;
d)对冷变形板坯进行热处理,热处理制度为:985℃±5℃保温1h,真空氩气保护下快速冷却;d) Carry out heat treatment on the cold deformed slab, the heat treatment system is: 985°C ± 5°C for 1h, rapid cooling under the protection of vacuum argon;
e)对板坯进行双时效处理:720℃±5℃保温8h,以50℃/h冷却至620℃±5℃保温8h,真空氩气保护下快速冷却。e) Perform double aging treatment on the slab: heat preservation at 720°C±5°C for 8 hours, cool at 50°C/h to 620°C±5°C and heat preservation for 8 hours, and rapidly cool under the protection of vacuum argon.
所述的颗粒状δ相均匀分布的GH4169合金制备方法,对板坯进行轧制变形的变形量优选为40~70%。In the preparation method of the GH4169 alloy in which the granular δ phase is uniformly distributed, the deformation amount of the slab is preferably 40-70% after rolling deformation.
本发明的设计思想是:Design idea of the present invention is:
本发明首先对固溶后的GH4169合金板坯进行30%以上的冷轧变形;再在特定的985℃±5℃保温1h后真空氩气保护下快速冷却;然后对板坯进行双时效处理(720℃±5℃保温8h,以50℃/h冷却至620℃±5℃保温8h,真空氩气保护下冷却)。从而可以获得在合金晶界和晶内均匀分布的颗粒状δ相,最终实现提高GH4169合金强度,降低其裂纹扩展速率,获得更好疲劳性能的目的。In the present invention, firstly, the GH4169 alloy slab after solid solution is subjected to more than 30% cold-rolling deformation; then it is rapidly cooled under the protection of vacuum argon after being kept at a specific temperature of 985°C ± 5°C for 1 hour; and then the slab is subjected to double aging treatment ( 720°C ± 5°C for 8 hours, cooled at 50°C/h to 620°C ± 5°C for 8 hours, and cooled under the protection of vacuum argon). In this way, the granular δ phase uniformly distributed in the alloy grain boundary and in the grain can be obtained, and finally the purpose of improving the strength of the GH4169 alloy, reducing its crack growth rate, and obtaining better fatigue performance can be achieved.
本发明的优点及有益效果是:Advantage of the present invention and beneficial effect are:
本发明包含了GH4169合金冷变形与热处理两部分,利用本发明可获得在晶界和晶内均匀分布的颗粒状δ相,不仅提高GH4169合金强度,降低其裂纹扩展速率;还能提高生产效率,降低材料氧化程度,减少材料浪费。The invention includes two parts of cold deformation and heat treatment of GH4169 alloy, and the granular δ phase uniformly distributed in the grain boundary and in the grain can be obtained by using the invention, which not only improves the strength of GH4169 alloy, reduces its crack growth rate, but also improves production efficiency, Reduce material oxidation and reduce material waste.
附图说明Description of drawings
图1为GH4169合金的扫描电镜图。Figure 1 is a scanning electron microscope image of GH4169 alloy.
具体实施方式Detailed ways
在具体实施方式中,本发明颗粒状δ相均匀分布的GH4169合金制备方法,包括GH4169合金的冷变形与热处理,其冷变形与热处理包括如下步骤:In a specific embodiment, the method for preparing a GH4169 alloy with a uniform distribution of granular δ phases of the present invention includes cold deformation and heat treatment of the GH4169 alloy, and the cold deformation and heat treatment include the following steps:
a)首先对GH4169板料进行985℃±5℃保温1h固溶处理,以消除变形历史带来残余应力、组织和相的不均匀性;a) Firstly, the GH4169 sheet is subjected to solution treatment at 985°C±5°C for 1 hour to eliminate the residual stress, structure and phase inhomogeneity caused by the deformation history;
b)对板坯进行变形量为30%以上(一般为40~70%)的轧制变形,变形过程中注意板坯的清洁和轧辊的润滑效果;b) Carry out rolling deformation to the slab with a deformation amount of more than 30% (generally 40-70%), and pay attention to the cleaning of the slab and the lubricating effect of the roll during the deformation process;
c)对冷变形后的板坯用酒精或丙酮进行清洗,以除去板坯表面的油渍,防止其在后续热处理时发生严重氧化;c) Clean the slab after cold deformation with alcohol or acetone to remove the oil stain on the surface of the slab and prevent it from being severely oxidized during subsequent heat treatment;
d)对冷变形板坯进行热处理,热处理制度为:985℃±5℃保温1h,真空氩气(先抽真空,再充氩气)保护下快速冷却。其中,热处理温度可随变形量增大适当提高,最高温度不超过990℃;d) Perform heat treatment on the cold deformed slab. The heat treatment system is: 985°C±5°C for 1h, and rapid cooling under the protection of vacuum argon (evacuate first, then fill with argon). Among them, the heat treatment temperature can be appropriately increased with the increase of deformation, and the maximum temperature should not exceed 990 °C;
e)最后对板坯进行双时效处理:720℃±5℃保温8h,以50℃/h冷却至620℃±5℃保温8h,真空氩气保护下快速冷却。e) Finally, double-aging treatment is performed on the slab: heat preservation at 720°C±5°C for 8 hours, cooling at 50°C/h to 620°C±5°C and heat preservation for 8 hours, rapid cooling under vacuum argon protection.
下面通过实施例和附图对本发明进一步详细说明。The present invention will be further described in detail below through the embodiments and the accompanying drawings.
实施例Example
对GH4169板料进行985℃1h固溶处理,消除变形历史带来残余应力、组织和相的不均匀性;对板坯进行变形量为50%的轧制变形;对冷轧后的板坯用丙酮进行清洗,除去板坯表面的油渍;冷轧板坯进行热处理,热处理制度为:985℃1h,真空氩气保护下快速冷却;然后板坯进行双时效处理:720℃保温8h,以50℃/h冷却至620℃保温8h,真空氩气保护下快速冷却。The GH4169 sheet is subjected to solution treatment at 985°C for 1 hour to eliminate the residual stress, structure and phase inhomogeneity caused by the deformation history; the slab is subjected to rolling deformation with a deformation amount of 50%; the cold-rolled slab is used Wash with acetone to remove oil stains on the surface of the slab; heat-treat the cold-rolled slab, the heat treatment system is: 985°C for 1h, and quickly cool under the protection of vacuum argon; /h cooling to 620°C for 8h, rapid cooling under vacuum protection of argon.
如图1所示,从GH4169合金的扫描电镜的扫描电镜可以看出,合金晶界和晶内的组织中析出均匀分布的颗粒状δ相。As shown in Figure 1, it can be seen from the scanning electron microscope of the GH4169 alloy that evenly distributed granular δ phases are precipitated in the alloy grain boundaries and intragranular structures.
实施例结果表明,当合金晶界和晶内均匀分布的颗粒状δ相时,可有效降低裂纹的扩展速率,从而提高材料的持久疲劳性能。The results of the examples show that when the granular δ phase is evenly distributed in the alloy grain boundary and in the grain, the crack growth rate can be effectively reduced, thereby improving the durability fatigue performance of the material.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410709368.5A CN104372277B (en) | 2014-11-28 | 2014-11-28 | A kind of graininess δ phase equally distributed GH4169 alloy preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410709368.5A CN104372277B (en) | 2014-11-28 | 2014-11-28 | A kind of graininess δ phase equally distributed GH4169 alloy preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104372277A true CN104372277A (en) | 2015-02-25 |
CN104372277B CN104372277B (en) | 2016-10-05 |
Family
ID=52551468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410709368.5A Expired - Fee Related CN104372277B (en) | 2014-11-28 | 2014-11-28 | A kind of graininess δ phase equally distributed GH4169 alloy preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104372277B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106834991A (en) * | 2017-02-15 | 2017-06-13 | 贵州大学 | A kind of method for making δ phases in GH4169 bolts separate out in gradient |
CN106929652A (en) * | 2017-02-15 | 2017-07-07 | 贵州大学 | A kind of GH4169 separates out heat treatment method to connecting bolt second-phase dispersion |
CN107201431A (en) * | 2016-03-18 | 2017-09-26 | 贵州航天精工制造有限公司 | A kind of aging treatment method of raising GH2132 bolt high temperature endurance performances |
CN108491658A (en) * | 2018-04-02 | 2018-09-04 | 北京航空航天大学 | A kind of low cycle fatigue life appraisal procedure for considering GH4169 alloy microstructures and influencing |
CN109252120A (en) * | 2018-09-26 | 2019-01-22 | 中南大学 | A kind of method of uniform refinement GH4169 alloy forged piece tissue |
CN109338260A (en) * | 2018-11-29 | 2019-02-15 | 中国航发沈阳黎明航空发动机有限责任公司 | A kind of heat treatment process for restoring GH4169 alloy forged piece weld assembly Notch Stress-Rupture |
CN110068507A (en) * | 2018-01-22 | 2019-07-30 | 中国科学院金属研究所 | The method that a kind of pair of tradition recrystallization model is modified |
CN111270178A (en) * | 2020-03-11 | 2020-06-12 | 北京钢研高纳科技股份有限公司 | High-efficiency energy-saving heat treatment process for GH4169 alloy |
CN112708838A (en) * | 2020-11-30 | 2021-04-27 | 河钢股份有限公司 | Preparation method of high-strength nickel-copper alloy cold-drawing aging bar |
CN112795857A (en) * | 2020-12-12 | 2021-05-14 | 河钢股份有限公司 | Method for improving comprehensive performance of GH4169 alloy plate |
CN113414246A (en) * | 2021-04-12 | 2021-09-21 | 中航上大高温合金材料股份有限公司 | Preparation method of regenerated GH4169 alloy cold-drawn bar |
CN113981345A (en) * | 2020-07-27 | 2022-01-28 | 大连中航钢研特种材料有限公司 | Heat treatment process for improving performances of Inconel 718 cold-rolled strip and plate |
CN115491621B (en) * | 2022-09-21 | 2023-06-09 | 贵阳安大宇航材料工程有限公司 | Method for optimizing grain boundary precipitated phase of GH3128 high-temperature alloy component |
CN117683989A (en) * | 2024-02-02 | 2024-03-12 | 成都先进金属材料产业技术研究院股份有限公司 | High-temperature alloy sheet and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1507962A (en) * | 2002-12-18 | 2004-06-30 | 中国科学院金属研究所 | A kind of processing method of superalloy tube billet |
-
2014
- 2014-11-28 CN CN201410709368.5A patent/CN104372277B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1507962A (en) * | 2002-12-18 | 2004-06-30 | 中国科学院金属研究所 | A kind of processing method of superalloy tube billet |
Non-Patent Citations (3)
Title |
---|
吕宏军等: "GH4169合金细晶成形工艺与机理及其性能研究", 《机械工程材料》 * |
李荣斌等: "冷轧对GH4169合金组织与性能的影响", 《金属热处理》 * |
陈国胜等: "GH4169合金细晶棒材的径锻工艺及其组织与性能", 《宝钢技术》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107201431A (en) * | 2016-03-18 | 2017-09-26 | 贵州航天精工制造有限公司 | A kind of aging treatment method of raising GH2132 bolt high temperature endurance performances |
CN106929652A (en) * | 2017-02-15 | 2017-07-07 | 贵州大学 | A kind of GH4169 separates out heat treatment method to connecting bolt second-phase dispersion |
CN106929652B (en) * | 2017-02-15 | 2018-07-24 | 贵州大学 | Heat treatment method is precipitated to connecting bolt second-phase dispersion in a kind of GH4169 |
CN106834991A (en) * | 2017-02-15 | 2017-06-13 | 贵州大学 | A kind of method for making δ phases in GH4169 bolts separate out in gradient |
CN110068507A (en) * | 2018-01-22 | 2019-07-30 | 中国科学院金属研究所 | The method that a kind of pair of tradition recrystallization model is modified |
CN108491658A (en) * | 2018-04-02 | 2018-09-04 | 北京航空航天大学 | A kind of low cycle fatigue life appraisal procedure for considering GH4169 alloy microstructures and influencing |
CN108491658B (en) * | 2018-04-02 | 2019-05-07 | 北京航空航天大学 | A low-cycle fatigue life assessment method |
CN109252120A (en) * | 2018-09-26 | 2019-01-22 | 中南大学 | A kind of method of uniform refinement GH4169 alloy forged piece tissue |
CN109338260A (en) * | 2018-11-29 | 2019-02-15 | 中国航发沈阳黎明航空发动机有限责任公司 | A kind of heat treatment process for restoring GH4169 alloy forged piece weld assembly Notch Stress-Rupture |
CN111270178A (en) * | 2020-03-11 | 2020-06-12 | 北京钢研高纳科技股份有限公司 | High-efficiency energy-saving heat treatment process for GH4169 alloy |
CN113981345A (en) * | 2020-07-27 | 2022-01-28 | 大连中航钢研特种材料有限公司 | Heat treatment process for improving performances of Inconel 718 cold-rolled strip and plate |
CN112708838A (en) * | 2020-11-30 | 2021-04-27 | 河钢股份有限公司 | Preparation method of high-strength nickel-copper alloy cold-drawing aging bar |
CN112795857A (en) * | 2020-12-12 | 2021-05-14 | 河钢股份有限公司 | Method for improving comprehensive performance of GH4169 alloy plate |
CN113414246A (en) * | 2021-04-12 | 2021-09-21 | 中航上大高温合金材料股份有限公司 | Preparation method of regenerated GH4169 alloy cold-drawn bar |
CN113414246B (en) * | 2021-04-12 | 2022-03-29 | 中航上大高温合金材料股份有限公司 | Preparation method of regenerated GH4169 alloy cold-drawn bar |
CN115491621B (en) * | 2022-09-21 | 2023-06-09 | 贵阳安大宇航材料工程有限公司 | Method for optimizing grain boundary precipitated phase of GH3128 high-temperature alloy component |
CN117683989A (en) * | 2024-02-02 | 2024-03-12 | 成都先进金属材料产业技术研究院股份有限公司 | High-temperature alloy sheet and preparation method thereof |
CN117683989B (en) * | 2024-02-02 | 2024-04-30 | 成都先进金属材料产业技术研究院股份有限公司 | High-temperature alloy sheet and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104372277B (en) | 2016-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104372277B (en) | A kind of graininess δ phase equally distributed GH4169 alloy preparation method | |
CN103045906B (en) | Process method of producing high-grade TC4 alloy hot rolled plate with high material-obtaining rate and low cost | |
CN105349925B (en) | A cold working process of Al-Mg alloy in liquid nitrogen temperature zone | |
WO2012032610A1 (en) | Titanium material | |
CN108977689B (en) | Metastable beta titanium alloy plate and processing method thereof | |
CN104313278B (en) | Delta ferrite level control method in a kind of martensite type refractory steel | |
CN105088118A (en) | A method for ultra-fine crystallization of nickel-based superalloy plate | |
CN105506525A (en) | Preparation method of Ti2AlNb-based alloy large-size uniform fine-grain bar | |
CN105234173A (en) | Rolling machining method for improving microstructure texture and mechanical property of magnesium alloy sheet strip | |
CN104451291A (en) | Homogenizing heat treatment process of Er and Zr composite microalloyed Al-Zn-Mg-Cu alloy | |
CN106350713A (en) | Al-Mg-Si alloy and preparation process of Al-Mg-Si alloy panel | |
CN112011749B (en) | Machining process of nickel-based alloy N08120 ring piece without island structure | |
JP5605232B2 (en) | Hot rolling method of α + β type titanium alloy | |
CN105154738B (en) | Vanadium, chrome and titanium alloy plate and preparation method thereof | |
CN111020293A (en) | High-performance TA1 rod wire material and preparation method thereof | |
CN103121034B (en) | Super duplex stainless steel ingot hot working cogging method | |
Sha et al. | Dynamic and static recrystalization behaviour of coarse-grained austenite in a Nb-V-Ti microaloyed steel | |
CN109468477A (en) | A kind of welding production method of aluminium alloy sheet plate | |
CN101509115A (en) | Thermal treatment method for Al-Zn-Mg-Sc-Zr alloy | |
CN102626724B (en) | Method for producing titanium alloy pipe | |
CN103388116B (en) | Method for effectively rolling Mg-Al-Zn magnesium alloys | |
CN102747368B (en) | Etchant for maraging steel and examination method of maraging steel macrostructure | |
CN107236918A (en) | The preparation method of beta gamma TiAl alloy sheet materials containing tiny lath-shaped γ recrystallized structures | |
CN104278222A (en) | Al-Zn-Mg aluminum alloy two-stage aging heat treatment regime | |
JP5382518B2 (en) | Titanium material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161005 |