[go: up one dir, main page]

CN104370820B - Preparation method and applications of porous metal organic skeleton material - Google Patents

Preparation method and applications of porous metal organic skeleton material Download PDF

Info

Publication number
CN104370820B
CN104370820B CN201310351980.5A CN201310351980A CN104370820B CN 104370820 B CN104370820 B CN 104370820B CN 201310351980 A CN201310351980 A CN 201310351980A CN 104370820 B CN104370820 B CN 104370820B
Authority
CN
China
Prior art keywords
porous metal
organic framework
framework material
metal
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310351980.5A
Other languages
Chinese (zh)
Other versions
CN104370820A (en
Inventor
王树东
孙天军
胡江亮
任新宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201310351980.5A priority Critical patent/CN104370820B/en
Publication of CN104370820A publication Critical patent/CN104370820A/en
Application granted granted Critical
Publication of CN104370820B publication Critical patent/CN104370820B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种多孔金属有机骨架材料的制备方法,所述的多孔金属有机骨架材料含有至少一种金属离子与至少一种可与金属离子配位的有机化合物,所述的合成方法采用将金属化合物、有机配体与缓释性碱一起混合于溶剂中,在一定温度与压力下直接水(溶剂)热合成多孔金属有机骨架材料。本发明操作方法简单、适合大规模工业化生产,适用于多孔金属有机骨架膜的合成,所涉及的多孔金属有机骨架材料适用于气体的吸附分离与存储。A method for preparing a porous metal organic framework material, the porous metal organic framework material contains at least one metal ion and at least one organic compound that can coordinate with the metal ion, and the synthesis method adopts a metal compound, an organic The ligand and the slow-release base are mixed in a solvent, and the porous metal organic framework material is synthesized directly in water (solvent) under a certain temperature and pressure. The operation method of the invention is simple, suitable for large-scale industrial production, suitable for the synthesis of porous metal organic framework membranes, and the involved porous metal organic framework materials are suitable for adsorption, separation and storage of gases.

Description

一种多孔金属有机骨架材料的制备方法及应用Preparation method and application of a porous metal organic framework material

技术领域technical field

本发明属于化学材料合成与应用工程技术领域,具体涉及一种多孔金属有机骨架材料的制备方法及应用。The invention belongs to the technical field of chemical material synthesis and application engineering, and in particular relates to a preparation method and application of a porous metal organic framework material.

背景技术Background technique

多孔金属有机骨架材料(Metal-organic Frameworks,MOFs),具有特定的孔道结构和超高比表面积,以及可精细调节的表面结构,近十年来一直是多孔材料领域的研究热点。Porous metal-organic frameworks (Metal-organic Frameworks, MOFs), with specific pore structures, ultra-high specific surface areas, and finely adjustable surface structures, have been a research hotspot in the field of porous materials in the past decade.

以美国Yaghi教授为代表的研究团队,近几年连续在Science上发表新型结构MOFs的合成、孔径调节与表面性能调控方法[Science,2002,295,469;2010,330,650;2012,336,1018;]。同时,以德国BASF SE为代表的大型国际化学公司也公开了大量的多孔金属有机骨架材料的制备技术,包括Al、Mg、Cu、Zn等金属的金属有机骨架材料及其制备方法。当前MOFs的制备方法主要包括:电化学合成法[CN1886536A、WO2005049892],水或溶剂热合成[CN101384537A、Cu-BTC US5648502、US20030078311、US20030148165、US20030222023、US20040081611、US2004265670],球磨法[Angew.Chem.Int.Ed.2006,45,142,2010,49,712],微波法[WO2008057140],以及扩散法[US6965026]等等。综合这些MOFs材料的制备技术来看,水热和溶剂热合成技术当前仍然是MOFs材料大量合成的最佳技术之一。The research team represented by Professor Yaghi from the United States has successively published methods for the synthesis, pore size adjustment, and surface performance adjustment of novel structure MOFs in Science in recent years [Science, 2002, 295, 469; 2010, 330, 650; 2012, 336, 1018;]. At the same time, large international chemical companies represented by BASF SE in Germany have also disclosed a large number of preparation technologies for porous metal organic framework materials, including metal organic framework materials of Al, Mg, Cu, Zn and other metals and their preparation methods. The preparation methods of current MOFs mainly include: electrochemical synthesis [CN1886536A, WO2005049892], water or solvothermal synthesis [CN101384537A, Cu-BTC US5648502, US20030078311, US20030148165, US20030222023, US2004600816412, US5607 ball milling method [ng. .Ed.2006,45,142,2010,49,712], microwave method [WO2008057140], and diffusion method [US6965026], etc. From the perspective of the preparation technologies of these MOFs materials, hydrothermal and solvothermal synthesis technologies are still one of the best technologies for mass synthesis of MOFs materials.

一般来说,金属有机配合物的制备多采用直接合成法,即金属盐溶液和配体在水溶液或有机溶剂(如DMF、甲醇、乙醇、乙二醇等)中,通过水热法或溶剂热法反应得到桥联配合物。从化学组成来看,多孔金属有机骨架材料是由金属离子与阴离子配体组成,类似于金属盐,所以从理论上讲可以通过置换或酸碱反应直接制备。然而,多孔金属有机骨架材料的影响MOFs合成有诸多因素,如pH值、浓度、温度、阴离子类型、氢键、π-π堆积相互作用、渗透作用、包含物和客体分子等因素。其中温度是关键因素,然而这些因素对MOFs合成的影响是相互关联的。Generally speaking, the preparation of metal-organic complexes mostly adopts the direct synthesis method, that is, the metal salt solution and the ligand are mixed in an aqueous solution or an organic solvent (such as DMF, methanol, ethanol, ethylene glycol, etc.), by hydrothermal method or solvothermal method. reaction to obtain a bridged complex. From the perspective of chemical composition, porous metal-organic framework materials are composed of metal ions and anionic ligands, similar to metal salts, so theoretically they can be directly prepared by replacement or acid-base reaction. However, there are many factors affecting the synthesis of MOFs with porous metal-organic frameworks, such as pH, concentration, temperature, anion type, hydrogen bonding, π-π stacking interactions, osmosis, inclusions, and guest molecules. Among them, temperature is the key factor, however, the influence of these factors on the synthesis of MOFs is interrelated.

金属-有机配合物的结构主要受到配体去质子化作用程度和与金属中心配位的辅助配体性质的影响。因为借助溶剂和有机配体去质子化可以得到预期的网络结构,并同时增强所得结构的热稳定性和刚性。多孔金属有机骨架材料在合成过程中,通常利用氢氧化钠、氢氧化钾、嘧啶、三乙胺、醋酸钠、醋酸或稀盐酸等调节pH。在不同pH下,有机配位基团能够完全或部分的去质子化,从而使配体表现出丰富的配位方式,而所生成的配合物结构也发生了明显的变化。The structure of metal-organic complexes is mainly influenced by the degree of ligand deprotonation and the nature of auxiliary ligands coordinated to the metal center. Because the expected network structure can be obtained by deprotonation with the help of solvent and organic ligand, and the thermal stability and rigidity of the resulting structure can be enhanced at the same time. In the synthesis process of porous metal organic framework materials, sodium hydroxide, potassium hydroxide, pyrimidine, triethylamine, sodium acetate, acetic acid or dilute hydrochloric acid are usually used to adjust the pH. At different pH, the organic coordinating groups can be completely or partially deprotonated, so that the ligands show a variety of coordination modes, and the structure of the generated complexes also changes significantly.

从当前的专利技术看,在弱碱环境下的MOFs合成技术存在产率低、合成条件苛刻等缺点;在强碱性环境下的MOFs合成技术通常使用大量强腐蚀性的碱(如NaOH,US2012/0082864)进行有机配体的去质子化。强腐蚀碱的使用可以实现MOFs材料的低温下合成,但也会造成设备的腐蚀与操作的危险性,并会造成材料后续净化的困难,还可能因为碱金属离子的存在影响多孔MOFs材料的一些性能。According to the current patented technology, the MOFs synthesis technology in a weak alkaline environment has disadvantages such as low yield and harsh synthesis conditions; the MOFs synthesis technology in a strong alkaline environment usually uses a large amount of highly corrosive alkali (such as NaOH, US2012 /0082864) for deprotonation of organic ligands. The use of strong corrosive alkali can realize the synthesis of MOFs materials at low temperature, but it will also cause corrosion of equipment and danger of operation, and will cause difficulties in the subsequent purification of materials, and may also affect some of the porous MOFs materials due to the presence of alkali metal ions. performance.

鉴于现有MOFs材料水热或溶剂热合成技术中存在的缺点,本发明的目的在于提供一种简单、实用,易于大量生产的多孔MOFs材料合成方法。In view of the shortcomings existing in the existing MOFs material hydrothermal or solvothermal synthesis techniques, the purpose of the present invention is to provide a simple, practical and easy mass-produced porous MOFs material synthesis method.

发明内容Contents of the invention

本发明的目的在于提供一种多孔金属有机骨架材料的制备方法及应用。The object of the present invention is to provide a preparation method and application of a porous metal organic framework material.

本发明提供了一种多孔金属有机骨架材料的制备方法,将含有金属离子的金属化合物、与金属离子配位的有机配体、缓释碱,在溶剂中充分混合,在一定的温度和压力下,通过配位络合作用而自组装形成具有超分子网络结构化合物,然后经过过滤、洗涤、干燥、活化后形成多孔金属有机骨架材料;The invention provides a method for preparing a porous metal-organic framework material. A metal compound containing metal ions, an organic ligand coordinating with the metal ions, and a slow-release base are fully mixed in a solvent. , self-assemble through coordination and complexation to form a compound with a supramolecular network structure, and then filter, wash, dry, and activate to form a porous metal-organic framework material;

所述金属离子为CuII、AlIII、MgII、MnII、FeIII、NiII、CoII、ZnII中的一种或几种;The metal ion is one or more of Cu II , Al III , Mg II , Mn II , Fe III , Ni II , Co II , Zn II ;

所述有机配体为具有至少一个独立的选自氧、硫、氮的原子,且所述有机配体通过他们可配位络合于所述金属离子。The organic ligand has at least one atom independently selected from oxygen, sulfur, and nitrogen, and the organic ligand can coordinate and complex with the metal ion through them.

本发明涉及的多孔金属骨架材料包含的金属离子不必都是两种或两种以上,包含的有机配体也不必都是两种以上,但是包含的金属离子与有机配体必须至少有一对可以互相配位形成多孔金属有机骨架结构。The porous metal framework material involved in the present invention does not necessarily contain two or more kinds of metal ions, nor does it need to contain more than two kinds of organic ligands, but there must be at least one pair of metal ions and organic ligands that can interact with each other. Coordinated to form a porous metal-organic framework structure.

本发明提供的多孔金属有机骨架材料的制备方法,所述有机配体包括有机羧酸类化合物、有机磺酸类化合物、咪唑类化合物、吡啶类化合物、胺类化合物及其衍生物中的任意一种或任意几种的混合。In the preparation method of porous metal organic framework material provided by the present invention, the organic ligand includes any one of organic carboxylic acid compounds, organic sulfonic acid compounds, imidazole compounds, pyridine compounds, amine compounds and their derivatives species or any combination of species.

本发明提供的多孔金属有机骨架材料的制备方法,所述有机配体选自于丁二酸、富马酸、1,2,3-苯三甲酸、1,2,4-苯三甲酸、1,3,5-苯三甲酸、1,4-苯二甲酸、2,5-二羟基-1,4-苯二甲酸、1,3-苯二甲酸、1,4-萘二酸、2,6-萘二酸、异烟酸、3-吡啶甲酸、3,4-吡啶二甲酸、2,5-吡啶二甲酸、2,6-萘二磺酸钠、3-吡啶磺酸、4,5-二羟基-1,3-二苯磺酸、咪唑、2-甲基咪唑、4-甲基咪唑、2-硝基咪唑、苯并咪唑、4,4’-联吡啶、乙二胺、三乙烯二胺。特别优选的有机配体选自于富马酸、1,3,5-苯三甲酸、1,4-苯二甲酸、2,5-二羟基-1,4-苯二甲酸、1,3-苯二甲酸、异烟酸、咪唑、2-甲基咪唑、4,4’-联吡啶、三乙烯二胺。尤其特别优选的有机配体有富马酸、1,3,5-苯三甲酸、1,4-苯二甲酸、1,3-苯二甲酸、异烟酸、咪唑、2-甲基咪唑、三乙烯二胺。The preparation method of the porous metal organic framework material provided by the present invention, the organic ligand is selected from succinic acid, fumaric acid, 1,2,3-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1 ,3,5-Benzenetricarboxylic acid, 1,4-benzenedicarboxylic acid, 2,5-dihydroxy-1,4-benzenedicarboxylic acid, 1,3-benzenedicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 2, 6-naphthalene dicarboxylic acid, isonicotinic acid, 3-pyridine carboxylic acid, 3,4-pyridine dicarboxylic acid, 2,5-pyridine dicarboxylic acid, 2,6-sodium naphthalene disulfonate, 3-pyridine sulfonic acid, 4,5 -Dihydroxy-1,3-dibenzenesulfonic acid, imidazole, 2-methylimidazole, 4-methylimidazole, 2-nitroimidazole, benzimidazole, 4,4'-bipyridine, ethylenediamine, tri Ethylenediamine. Particularly preferred organic ligands are selected from fumaric acid, 1,3,5-benzenetricarboxylic acid, 1,4-benzenedicarboxylic acid, 2,5-dihydroxy-1,4-benzenedicarboxylic acid, 1,3- Phthalic acid, isonicotinic acid, imidazole, 2-methylimidazole, 4,4'-bipyridine, triethylenediamine. Especially particularly preferred organic ligands are fumaric acid, 1,3,5-benzenetricarboxylic acid, 1,4-benzenedicarboxylic acid, 1,3-benzenedicarboxylic acid, isonicotinic acid, imidazole, 2-methylimidazole, Triethylenediamine.

本发明提供的多孔金属有机骨架材料的制备方法,所述金属离子优先选自于CuII、AlIII、FeIII、NiII、CoII、ZnII。特别优选的金属离子选自于CuII、AlIII、CoII、ZnIIIn the preparation method of the porous metal organic framework material provided by the present invention, the metal ions are preferably selected from Cu II , Al III , Fe III , Ni II , Co II , Zn II . Particularly preferred metal ions are selected from Cu II , Al III , Co II , Zn II .

本发明提供的多孔金属有机骨架材料的制备方法,所述金属化合物为金属离子对应的硝酸盐、硫酸盐、氯化物、醋酸盐、草酸盐、氢氧化物、碳酸盐、碱式碳酸盐中的一种或多种组合。In the preparation method of the porous metal organic framework material provided by the present invention, the metal compound is nitrate, sulfate, chloride, acetate, oxalate, hydroxide, carbonate, basic carbon corresponding to the metal ion One or more combinations of acid salts.

本发明提供的多孔金属有机骨架材料的制备方法,所述溶剂为水、甲醇、乙醇、乙二醇、DMF中的一种或者多种的混合。特别优选的溶剂选自于水、甲醇、乙醇中的一种或者多种的混合。尤其特别优选的溶剂为水。In the preparation method of the porous metal organic framework material provided by the present invention, the solvent is one or a mixture of water, methanol, ethanol, ethylene glycol, and DMF. A particularly preferred solvent is selected from one or more of water, methanol, and ethanol. An especially particularly preferred solvent is water.

本发明提供的多孔金属有机骨架材料的制备方法,所述缓释碱为尿素、六亚甲基四胺中的一种或其混合物,优选为尿素。In the preparation method of the porous metal-organic framework material provided by the present invention, the slow-release base is one of urea and hexamethylenetetramine or a mixture thereof, preferably urea.

本发明涉及的金属离子与有机配体使用比例的设计基准是金属总电荷数与有机配体总齿数比为1,考虑到实际水(溶剂)热过程,将金属化合物或有机配体原料之一过量使用。本发明涉及的多孔金属有机骨架材料合成中,所述金属化合物与有机配体的使用比例为金属总电荷数与有机配体总齿数之比介于0.5~2之间;所述金属化合物与有机配体的使用比例为金属总电荷数与有机配体总齿数之比优选介于0.8~1.2之间。The design basis for the proportion of metal ions and organic ligands involved in the present invention is that the ratio of the total number of metal charges to the total number of teeth of the organic ligands is 1. Considering the actual water (solvent) thermal process, one of the metal compounds or organic ligands Excessive use. In the synthesis of the porous metal-organic framework material involved in the present invention, the use ratio of the metal compound and the organic ligand is such that the ratio of the total charge of the metal to the total number of teeth of the organic ligand is between 0.5 and 2; the metal compound and the organic ligand The use ratio of the ligand is preferably between 0.8 and 1.2 in the ratio of the total charge number of the metal to the total tooth number of the organic ligand.

本发明涉及的多孔金属有机骨架材料合成中,所述缓释碱与有机配体的使用比例为缓释碱摩尔数与有机配体总齿数之比介于0.1~10之间;所述缓释碱摩尔数与有机配体总齿数之比优选介于0.2~2之间。本发明的特征之一是缓释碱的使用是必需的,如果不考虑生产成本问题,缓释碱的使用量(摩尔数)与有机配体总齿数之比可以大于10。但是,考虑到实际生产成本与后续洗涤问题,应尽可能的减少缓释碱使用量。In the synthesis of the porous metal-organic framework material involved in the present invention, the ratio of the slow-release base to the organic ligand is that the ratio of the molar number of the slow-release base to the total number of teeth of the organic ligand is between 0.1 and 10; the slow-release The ratio of the number of moles of base to the total number of teeth of the organic ligands is preferably between 0.2 and 2. One of the characteristics of the present invention is that the use of slow-release base is necessary. If the production cost is not considered, the ratio of the amount (moles) of slow-release base to the total number of teeth of the organic ligand can be greater than 10. However, considering the actual production cost and subsequent washing problems, the amount of slow-release alkali used should be reduced as much as possible.

本发明提供的多孔金属有机骨架材料的制备方法,所述温度为40-180℃,优选为80-150℃。In the preparation method of the porous metal organic framework material provided by the present invention, the temperature is 40-180°C, preferably 80-150°C.

在本发明涉及的一种多孔金属有机骨架材料制备方法的某些实施方案中,采用的反应温度在90℃~150℃。In some embodiments of the method for preparing a porous metal-organic framework material involved in the present invention, the reaction temperature used is between 90°C and 150°C.

本发明提供的多孔金属有机骨架材料的制备方法,所述合成压力为相应溶液在反应温度下的饱和蒸气压(优选为常压)。In the preparation method of the porous metal organic framework material provided by the present invention, the synthesis pressure is the saturated vapor pressure (preferably normal pressure) of the corresponding solution at the reaction temperature.

常压反应在常压反应容器中进行,如玻璃圆底烧瓶,常压反应釜;高压反应在高压反应器中进行,如带有聚四氟乙烯内衬的高压釜。Atmospheric pressure reactions are carried out in normal pressure reaction vessels, such as glass round bottom flasks, normal pressure reaction kettles; high pressure reactions are carried out in high pressure reactors, such as autoclaves with Teflon liners.

在本发明的所涉及的多孔金属有机骨架材料制备方法的某些实施方案中,采用的反应容器为带有聚四飞乙烯内衬的150ml高压釜。In some embodiments of the preparation method of the porous metal organic framework material involved in the present invention, the reaction vessel used is a 150ml autoclave lined with polytetrafluoroethylene.

反应温度是金属有机骨架材料合成中最关键的影响参数。本发明最大的特点就是利用缓释碱去质子性能随反应温度变化的可调节性,以满足不同配体与金属形成金属有机骨架所需要的生长环境。The reaction temperature is the most critical influencing parameter in the synthesis of metal-organic frameworks. The greatest feature of the present invention is to use the adjustability of the deprotonation performance of the slow-release base with the change of reaction temperature to meet the growth environment required by different ligands and metals to form metal-organic frameworks.

本发明第二大特点就是所述缓释碱,既可以在水作为溶剂的多孔金属有机骨架材料的合成中用作去质子碱,也可以在有机溶剂作为溶剂的多孔金属有机骨架材料的合成中用作去质子碱。The second major feature of the present invention is that the slow-release base can be used as a deprotonated base in the synthesis of porous metal-organic framework materials with water as a solvent, or in the synthesis of porous metal-organic framework materials with organic solvents as a solvent Used as a proton base.

本发明提供的一种制备多孔金属有机骨架材料的方法,在本发明涉及的多孔金属有机骨架材料制备的某些实施方案中,采用的反应时间是介于30分钟至48小时之间。The present invention provides a method for preparing porous metal organic framework materials. In some embodiments of the preparation of porous metal organic framework materials involved in the present invention, the reaction time used is between 30 minutes and 48 hours.

本发明提供的多孔金属有机骨架材料制备方法,所述过滤过程,可以采用自然沉降分离,真空抽滤,压滤,或者离心分离得到所述的多孔金属有机骨架材料。In the preparation method of the porous metal organic framework material provided by the present invention, the filtration process may adopt natural sedimentation separation, vacuum filtration, pressure filtration, or centrifugal separation to obtain the porous metal organic framework material.

在本发明所涉及的多孔金属有机骨架材料制备方法的某些实施方案中,采用的分离沉淀固体的方式是真空抽滤或离心分离。In some embodiments of the preparation method of the porous metal organic framework material involved in the present invention, the method of separating the precipitated solid is vacuum filtration or centrifugation.

本发明提供的多孔金属有机骨架材料制备方法,所述过滤过程用溶剂对固体进行洗涤。固体洗涤一方面需要用溶剂将未反应的有机配体和金属盐除去,另一方面需要用溶剂将滞留在孔中的有机配体和反应需要的溶剂以“萃取方式”置换出去。尤其是当有机配体和反应需要的溶剂为高沸点化合物时,如反应所需溶剂是DMF,DEF,NMP时,可以采用低沸点的溶剂置换出来。优选的萃取溶剂为水,甲醇,乙醚,丙酮。In the preparation method of the porous metal organic framework material provided by the invention, the solid is washed with a solvent in the filtration process. On the one hand, solid washing needs to use a solvent to remove unreacted organic ligands and metal salts, and on the other hand, it needs to use a solvent to replace the organic ligands retained in the pores and the solvent required for the reaction by "extraction". Especially when the organic ligand and the solvent required for the reaction are high boiling point compounds, such as DMF, DEF, NMP, the solvent required for the reaction can be replaced by a low boiling point solvent. Preferred extraction solvents are water, methanol, ether, acetone.

本发明提供的多孔金属有机骨架材料的制备方法,所述洗涤后的多孔金属骨架材料通常经过干燥、活化后形成多孔金属有机骨架材料。In the preparation method of the porous metal organic framework material provided by the invention, the porous metal organic framework material after washing is usually dried and activated to form the porous metal organic framework material.

根据本发明所提供的方法合成的多孔金属有机骨架材料具有高的比表面,往往吸附水、空气、有机物等,需要进一步活化才能用于混合气体的分离。一般,采用超临界CO2置换或长时间高温高真空处理来活化金属有机骨架材料。The porous metal-organic framework material synthesized according to the method provided by the present invention has a high specific surface area, and often absorbs water, air, organic matter, etc., and requires further activation before it can be used for the separation of mixed gases. Generally, supercritical CO2 replacement or long-term high-temperature and high-vacuum treatment are used to activate MOFs.

本发明提供的多孔金属有机骨架材料制备方法,所涉及的金属有机骨架材料活化的某些实施例中,采用真空进行活化处理。但是,真空条件活化在本发明中所涉及的金属有机骨架材料不是必须的。由于不同多孔MOFs材料合成过程中所用溶剂与配体的物理性质不同,所以本发明中采用的活化温度也是不同的。在本发明提供的多孔金属有机骨架材料活化过程中,采用的活化温度介于60-200℃之间,活化压力介于0-1bar之间,活化时间通常介于2-72小时之间。本发明的一些实施例,所使用的活化温度选择为100-160℃,活化时间推荐为2-8小时,为了提高效率通常采用在0.1-0.2bar的真空条件下活化。此外,如果金属有机骨架材料因洗涤困难或成本因素造成其洗涤不充分或不完全,可以通过提高活化温度的方法改善吸附剂性能,最高活化温度可以达到300℃以上。In the preparation method of the porous metal-organic framework material provided by the present invention, in some embodiments of the activation of the metal-organic framework material involved, vacuum is used for activation treatment. However, vacuum conditions are not necessary to activate the MOF involved in the present invention. Due to the different physical properties of solvents and ligands used in the synthesis of different porous MOFs materials, the activation temperature used in the present invention is also different. During the activation process of the porous metal organic framework material provided by the present invention, the activation temperature used is between 60-200° C., the activation pressure is between 0-1 bar, and the activation time is usually between 2-72 hours. In some embodiments of the present invention, the activation temperature used is selected to be 100-160° C., and the activation time is recommended to be 2-8 hours. In order to improve the efficiency, the activation is usually performed under a vacuum condition of 0.1-0.2 bar. In addition, if the washing of metal-organic framework materials is insufficient or incomplete due to washing difficulties or cost factors, the performance of the adsorbent can be improved by increasing the activation temperature, and the highest activation temperature can reach above 300 °C.

本发明提供的多孔金属有机骨架材料的制备方法,所述方法特别适用于在玻璃、陶瓷、炭材料、有机聚合物、氧化硅、硅等任一固体基体上生长多孔金属有机骨架膜。The preparation method of the porous metal organic framework material provided by the present invention is particularly suitable for growing porous metal organic framework membranes on any solid substrate such as glass, ceramics, carbon materials, organic polymers, silicon oxide, and silicon.

本发明还提供了一种所述方法制备的多孔金属有机骨架材料,该多孔金属有机骨架材料含有至少一种金属离子与至少一种可与金属离子配位的有机配体。The present invention also provides a porous metal organic framework material prepared by the method. The porous metal organic framework material contains at least one metal ion and at least one organic ligand capable of coordinating with the metal ion.

本发明提供的多孔金属有机骨架材料的制备方法,所述多孔金属有机骨架材料,具有通过Langmuir方法确定的比表面积大于10m2/g。优选的比表面积大于100m2/g。比较优选的比表面积大于500m2/g,更优选的比表面积大于1000m2/g。The preparation method of the porous metal organic framework material provided by the present invention, the porous metal organic framework material has a specific surface area determined by the Langmuir method greater than 10m 2 /g. A preferred specific surface area is greater than 100 m 2 /g. A more preferred specific surface area is greater than 500m 2 /g, and a more preferred specific surface area is greater than 1000m 2 /g.

本发明提供的多孔金属有机骨架材料的制备方法,所述多孔金属有机骨架材料包含孔,尤其是微孔和(或)中孔。根据国际纯粹与应用化学联合会(IUPAC)对孔的分类,微孔是具有小于或等于2nm的孔,中孔是具有大于2nm、小于或等于50nm的孔。The invention provides a method for preparing a porous metal organic framework material, wherein the porous metal organic framework material contains pores, especially micropores and (or) mesopores. According to the classification of pores by the International Union of Pure and Applied Chemistry (IUPAC), micropores are pores less than or equal to 2 nm, and mesopores are pores greater than 2 nm and less than or equal to 50 nm.

根据本发明提供的一种制备多孔金属有机骨架材料的方法所制备的多孔金属有机骨架材料,所述的多孔金属有机骨架材料用于气体储存、气体分离,作为催化剂、传感器或离子导体,用于光或磁应用,作为多孔材料特别适用于天然气、空气、惰性气体的吸附分离与存储。According to the porous metal organic framework material prepared by a method for preparing porous metal organic framework material provided by the present invention, the porous metal organic framework material is used for gas storage, gas separation, as a catalyst, sensor or ion conductor, for Optical or magnetic applications, as a porous material, it is especially suitable for the adsorption separation and storage of natural gas, air, and inert gases.

本发明制备的多孔金属有机骨架和/或根据本发明制备的并且包含至少一种根据本发明制备的多孔金属有机骨架的成型体上可以以多种方式使用,比如传感器或离子导体,用于光或磁应用。The porous metal-organic frameworks produced according to the invention and/or shaped bodies produced according to the invention and comprising at least one porous metal-organic framework produced according to the invention can be used in various ways, such as sensors or ion conductors, for light or magnetic applications.

特别优选其中可利用框架的高比表面积的应用。比如气体或液体的纯化或分离,催化剂或催化剂载体,以及液体或气体的存储与释放。Particular preference is given to applications in which the high specific surface area of the framework can be utilized. Examples include purification or separation of gases or liquids, catalysts or catalyst supports, and storage and release of liquids or gases.

通过本发明方法制备的金属有机骨架材料特别适用于气体分离。特别是作为新型高效的吸附剂,在天然气的净化领域有很好的应用效果,通过CO2/CH4,CH4/N2,CO2/N2/CH4的分离,进行天然气的脱碳和脱氮。The metal-organic framework materials prepared by the method of the invention are particularly suitable for gas separation. Especially as a new and efficient adsorbent, it has a good application effect in the field of natural gas purification. It can decarbonize natural gas through the separation of CO 2 /CH 4 , CH 4 /N 2 and CO 2 /N 2 /CH 4 and denitrification.

通过本发明方法制备的有机骨架材料适用于催化剂或催化剂载体。The organic framework material prepared by the method of the invention is suitable for use as a catalyst or a catalyst support.

本发明的有益效果是:本发明提供的多孔金属有机骨架材料的制备方法,采用缓释碱作为去质子碱,其去质子性质可以根据反应温度调节,所以本发明操作方法简单、条件相对温和、适合大规模工业化生产,所涉及的多孔金属有机骨架材料适用于气体的吸附分离与存储。The beneficial effects of the present invention are: the preparation method of the porous metal organic framework material provided by the present invention uses a slow-release base as the deprotonating base, and its deprotonating properties can be adjusted according to the reaction temperature, so the operation method of the present invention is simple and the conditions are relatively mild. It is suitable for large-scale industrial production, and the involved porous metal organic framework material is suitable for adsorption, separation and storage of gases.

具体实施方式detailed description

下面的实施例将对本发明予以进一步的说明,但并不因此而限制本发明。The following examples will further illustrate the present invention, but do not limit the present invention thereby.

除非另外指出,在本发明说明书和权利要求书中出现的所有数字,均不应该被理解为绝对精确值,该数值在本技术领域内的普通技术人员所理解的、公知技术所允许的误差范围内。在本发明说明书和权利要求书中出现的精确的数值应该被理解为构成本发明的部分实施例。Unless otherwise indicated, all numbers appearing in the description and claims of the present invention should not be understood as absolute precise values, and the numerical values are understood by those skilled in the art and within the range of error allowed by known techniques Inside. The precise numerical values appearing in the specification and claims of the present invention should be construed as forming part of the embodiments of the present invention.

术语“A,B,C,…及其组合”是指包含如下元素的组合:A,B,C,…,以及其中任意2种或2种以上以任意比例的组合。The term "A, B, C, ... and combinations thereof" refers to a combination of the following elements: A, B, C, ..., and a combination of any two or more of them in any proportion.

实施例1:合成Zn-二甲基咪唑框架Embodiment 1: Synthesis of Zn-dimethylimidazole framework

将26g的ZnSO4·7H2O溶于150g水中;将16g尿素与15g2-甲基咪唑溶于50g水与100g甲醇的混合液中;然后将硫酸锌溶液与2-甲基咪唑溶液混合,搅拌20min直到混合均匀后,转入500ml的高压反应釜,在110℃条件下反应5小时。自然降温,过滤白色沉淀,然后用100ml水洗涤2次。将滤饼在100℃下干燥6小时,然后在130℃和真空(0.2巴)条件下干燥活化8小时,获得21g产物;Dissolve 26g of ZnSO 4 ·7H 2 O in 150g of water; dissolve 16g of urea and 15g of 2-methylimidazole in a mixture of 50g of water and 100g of methanol; then mix the zinc sulfate solution with the 2-methylimidazole solution and stir After 20 minutes until the mixture is uniform, transfer to a 500ml autoclave and react at 110°C for 5 hours. Cool down naturally, filter the white precipitate, and then wash twice with 100ml of water. The filter cake was dried at 100°C for 6 hours, then activated by drying at 130°C under vacuum (0.2 bar) for 8 hours to obtain 21 g of product;

N2比表面积为1476m2/g(Langmuir方法确定)。N 2 specific surface area is 1476m 2 /g (determined by Langmuir method).

实施例2:合成Zn-二甲基咪唑框架Embodiment 2: Synthesis of Zn-dimethylimidazole framework

将26g ZnSO4·7H2O,20g尿素与15g2-甲基咪唑溶于300g水中,在搅拌条件下,100℃回流7小时。形成白色沉淀,然后用100ml水洗涤1次,50ml水洗涤三次。将滤饼在100℃下干燥6小时,然后在130℃和真空(0.2巴)条件下干燥活化12小时,获得20.2g产物;Dissolve 26g of ZnSO 4 ·7H 2 O, 20g of urea and 15g of 2-methylimidazole in 300g of water, and reflux at 100°C for 7 hours while stirring. A white precipitate formed and was washed once with 100 ml of water and three times with 50 ml of water. The filter cake was dried at 100°C for 6 hours and then activated for 12 hours at 130°C under vacuum (0.2 bar) to obtain 20.2 g of product;

N2比表面积为876m2/g(Langmuir方法确定)。N 2 specific surface area is 876m 2 /g (determined by Langmuir method).

实施例3:合成Zn-二甲基咪唑框架Embodiment 3: Synthesis of Zn-dimethylimidazole framework

将27g ZnNO3·6H2O,溶于150g水中;将12g六亚甲基四胺与15g2-甲基咪唑溶于50g水与100g甲醇的混合液中;然后将硝酸锌溶液与2-甲基咪唑溶液混合,搅拌20min直到混合均匀后,转入500ml的高压反应釜,在120℃条件下反应6小时。自然降温,过滤白色沉淀,然后用100ml水洗涤2次。将滤饼在100℃下干燥6小时,然后在130℃和真空(0.2巴)条件下干燥活化8小时,获得22g产物;Dissolve 27g ZnNO 3 6H 2 O in 150g water; dissolve 12g hexamethylenetetramine and 15g 2-methylimidazole in a mixture of 50g water and 100g methanol; then dissolve zinc nitrate solution with 2-methyl The imidazole solution was mixed, stirred for 20 minutes until the mixture was uniform, then transferred to a 500ml autoclave, and reacted at 120°C for 6 hours. Cool down naturally, filter the white precipitate, and then wash twice with 100ml of water. The filter cake was dried at 100°C for 6 hours, then activated by drying at 130°C under vacuum (0.2 bar) for 8 hours to obtain 22 g of product;

N2比表面积为1346m2/g(Langmuir方法确定)。N 2 specific surface area is 1346m 2 /g (determined by Langmuir method).

实施例4:常压合成Al-富马酸铝框架Embodiment 4: Atmospheric pressure synthesis Al-aluminum fumarate frame

将35g的Al2(SO4)3·18H2O,20g尿素与12g富马酸溶于300g水中加热至100℃,回流6小时,形成白色沉淀。过滤,然后用50ml水洗涤5次。将滤饼在100℃下干燥2小时,然后在130℃和真空(0.2巴)条件下干燥活化12小时,获得15g产物。35g of Al 2 (SO 4 ) 3 ·18H 2 O, 20g of urea and 12g of fumaric acid were dissolved in 300g of water, heated to 100°C, and refluxed for 6 hours to form a white precipitate. Filter and wash 5 times with 50 ml of water. The filter cake was dried at 100°C for 2 hours and then activated for 12 hours at 130°C under vacuum (0.2 bar) to obtain 15 g of product.

N2比表面积为1176m2/g(Langmuir方法确定)。N 2 specific surface area is 1176m 2 /g (determined by Langmuir method).

实施例5:高压合成Al-富马酸铝框架Example 5: High-pressure synthesis of Al-aluminum fumarate framework

将35g的Al2(SO4)3·18H2O,12g六亚甲基四胺与12g富马酸溶于300g水中,搅拌30min直到混合均匀,然后转入500ml的高压反应釜,在130℃条件下无搅拌反应5小时,形成白色沉淀。自然降温,过滤,然后用50ml水洗涤5次。将滤饼在100℃下干燥2小时,然后在130℃和真空(0.2巴)条件下干燥活化12小时,获得15g产物。Dissolve 35g of Al 2 (SO 4 ) 3 ·18H 2 O, 12g of hexamethylenetetramine and 12g of fumaric acid in 300g of water, stir for 30min until evenly mixed, then transfer to a 500ml autoclave, at 130°C The reaction was carried out without stirring for 5 hours under the conditions, and a white precipitate was formed. Cool down naturally, filter, and then wash 5 times with 50ml of water. The filter cake was dried at 100°C for 2 hours and then activated for 12 hours at 130°C under vacuum (0.2 bar) to obtain 15 g of product.

N2比表面积为931m2/g(Langmuir方法确定)。N 2 specific surface area is 931m 2 /g (determined by Langmuir method).

实施例6:合成Cu-2-甲基咪唑框架Example 6: Synthesis of Cu-2-methylimidazole framework

称取9g乙酸铜(Cu(CH3COO)2·H2O)、8g2-甲基咪唑与10g尿素,溶于100ml甲醇与200ml水的混合溶液,搅拌30min直到均匀,得到混合溶液;将混合溶液转移到带有聚四氟乙烯内衬的500ml高压釜中密封紧密,置于140℃的烘箱中反应48h,然后自然降温。离心分离得到的固体;分别用甲醇(100ml)、水(100ml)依次洗涤固体;将固体在110℃下过夜干燥,然后在160℃和真空(0.2巴)条件下干燥活化12小时,得到11g。Weigh 9g of copper acetate (Cu(CH 3 COO) 2 ·H 2 O), 8g of 2-methylimidazole and 10g of urea, dissolve in a mixed solution of 100ml of methanol and 200ml of water, stir for 30min until uniform, and obtain a mixed solution; The solution was transferred to a 500ml autoclave with a polytetrafluoroethylene liner, sealed tightly, placed in an oven at 140°C for 48 hours, and then cooled naturally. The resulting solid was separated by centrifugation; the solid was washed successively with methanol (100 ml) and water (100 ml); the solid was dried overnight at 110°C and then activated by drying at 160°C under vacuum (0.2 bar) for 12 hours to yield 11 g.

N2比表面积为183.2m2/g(Langmuir方法确定)。N 2 specific surface area is 183.2m 2 /g (determined by Langmuir method).

实施例7:合成Cu-BTC框架Example 7: Synthesis of Cu-BTC framework

称取11g三水硝酸铜和12g均苯三甲酸(H3BTC)溶于240ml水-乙醇(水:乙醇=1:1重量比)中,加入3.5g尿素,搅拌30min直到均匀;转入500ml高压反应釜加热升温至110℃,反应18h,自然降温,离心分离得到的固体;乙醇150ml洗涤固体1次。将固体在80℃干燥,然后在130℃和真空(0.2巴)条件下干燥活化4小时,得到12g固体。Weigh 11g of copper nitrate trihydrate and 12g of trimesic acid (H 3 BTC) and dissolve in 240ml of water-ethanol (water:ethanol=1:1 weight ratio), add 3.5g of urea, stir for 30min until uniform; transfer to 500ml Heat the autoclave to 110°C, react for 18 hours, cool down naturally, and centrifuge the obtained solid; wash the solid once with 150ml of ethanol. The solid was dried at 80°C and then activated by drying at 130°C under vacuum (0.2 bar) for 4 hours, yielding 12 g of solid.

N2比表面积为2435m2/g(Langmuir方法确定)。N 2 specific surface area is 2435m 2 /g (determined by Langmuir method).

实施例8:合成Co-2-甲基咪唑框架Example 8: Synthesis of Co-2-methylimidazole framework

将26g的Co(NO3)2·6H2O溶于150g水中;将16g尿素与15g2-甲基咪唑溶于150g甲醇中;然后将硝酸钴溶液与2-甲基咪唑溶液混合,搅拌20min直到混合均匀后,转入500ml的高压反应釜,在120℃条件下反应24小时。自然降温,过滤沉淀,然后用100ml水洗涤2次。将滤饼在100℃下干燥6小时,然后在160℃和真空(0.2巴)条件下干燥活化8小时,获得18.6g产物。Dissolve 26g of Co(NO 3 ) 2 ·6H 2 O in 150g of water; dissolve 16g of urea and 15g of 2-methylimidazole in 150g of methanol; then mix the cobalt nitrate solution with the 2-methylimidazole solution and stir for 20min until After mixing evenly, transfer to a 500ml autoclave and react at 120°C for 24 hours. Cool down naturally, filter the precipitate, and then wash twice with 100ml of water. The filter cake was dried at 100°C for 6 hours and then activated by drying at 160°C under vacuum (0.2 bar) for 8 hours, yielding 18.6 g of product.

N2比表面积为1986m2/g(Langmuir方法确定)。N 2 specific surface area is 1986m 2 /g (determined by Langmuir method).

实施例9:合成Co-咪唑框架Example 9: Synthesis of Co-imidazole framework

将26g的Co(NO3)2·6H2O溶于150g水中;将16g尿素与13g咪唑溶于100g甲醇与50g丁醇的混合液中;然后将硝酸钴溶液与咪唑溶液混合,搅拌20min直到混合均匀后,转入500ml的高压反应釜,在140℃条件下反应36小时。自然降温,过滤沉淀,然后用100ml水洗涤2次。将滤饼在100℃下干燥6小时,然后在130℃和真空(0.2巴)条件下干燥活化8小时,获得17g产物。Dissolve 26g of Co(NO 3 ) 2 ·6H 2 O in 150g of water; dissolve 16g of urea and 13g of imidazole in a mixture of 100g of methanol and 50g of butanol; then mix the cobalt nitrate solution with the imidazole solution and stir for 20min until After mixing evenly, transfer to a 500ml autoclave and react at 140°C for 36 hours. Cool down naturally, filter the precipitate, and then wash twice with 100ml of water. The filter cake was dried at 100°C for 6 hours and then activated by drying at 130°C under vacuum (0.2 bar) for 8 hours, yielding 17 g of product.

N2比表面积为113m2/g(Langmuir方法确定)。N 2 specific surface area is 113m 2 /g (determined by Langmuir method).

对比例10:合成Zn-2-甲基咪唑框架—CN101830918AComparative Example 10: Synthesis of Zn-2-methylimidazole framework—CN101830918A

将40.7g的ZnO,与82.1g的二甲基咪唑,添加到200ml甲醇与50ml25%的氨水组成的混合液中,在500ml的烧瓶中室温下剧烈搅拌24小时。过滤,滤饼用100ml甲醇洗涤三遍,120℃烘干得到产品110g。然后在120℃和真空(0.2巴)条件下活化6小时.Add 40.7g of ZnO and 82.1g of dimethylimidazole to a mixture of 200ml of methanol and 50ml of 25% ammonia water, and vigorously stir in a 500ml flask at room temperature for 24 hours. After filtering, the filter cake was washed three times with 100ml of methanol, and dried at 120°C to obtain 110g of the product. It was then activated at 120 °C under vacuum (0.2 bar) for 6 h.

N2比表面积为1076m2/g(Langmuir方法确定)。N 2 specific surface area is 1076m 2 /g (determined by Langmuir method).

对比例11:合成富马酸铝—BASF专利US2012/0082864AlComparative example 11: Synthesis of aluminum fumarate - BASF patent US2012/0082864Al

将70g的Al2(SO4)3·18H2O溶于300g水中加热至60℃;将25.32g NaOH与24.47g富马酸溶于362g水中加热至60℃;然后将富马酸与NaOH的溶液在搅拌的条件下泵入硫酸铝溶液中,泵入时间为30分钟,形成白色沉淀,然后用100ml水洗涤1次,50ml水洗涤三次。将滤饼在100℃下干燥12小时,然后在130℃和真空(0.2巴)条件下干燥活化12小时,获得30g产物;Dissolve 70g of Al 2 (SO 4 ) 3 ·18H 2 O in 300g of water and heat to 60°C; dissolve 25.32g of NaOH and 24.47g of fumaric acid in 362g of water and heat to 60°C; The solution was pumped into the aluminum sulfate solution under stirring for 30 minutes to form a white precipitate, which was then washed once with 100 ml of water and three times with 50 ml of water. The filter cake was dried at 100°C for 12 hours, then activated by drying at 130°C under vacuum (0.2 bar) for 12 hours to obtain 30 g of product;

N2比表面积为1076m2/g(Langmuir方法确定)。N 2 specific surface area is 1076m 2 /g (determined by Langmuir method).

Claims (7)

1.一种多孔金属有机骨架材料的制备方法,其特征在于:将含有金属离子的金属化合物、与金属离子配位的有机配体、缓释碱,在溶剂中充分混合,在一定的温度和压力下,通过配位络合作用而自组装形成具有超分子网络结构化合物,然后经过过滤、洗涤、干燥、活化后形成多孔金属有机骨架材料;所述温度为40-180℃;所述压力为相应溶液在反应温度下的饱和蒸气压;1. A method for preparing a porous metal-organic framework, characterized in that: the metal compound containing metal ions, the organic ligand coordinated with the metal ions, and the slow-release alkali are fully mixed in a solvent, and the mixture is mixed at a certain temperature and Under pressure, self-assemble through coordination and complexation to form a compound with a supramolecular network structure, and then filter, wash, dry, and activate to form a porous metal-organic framework material; the temperature is 40-180 ° C; the pressure is The saturated vapor pressure of the corresponding solution at the reaction temperature; 所述金属离子为CuII、AlIII、MgII、MnII、FeIII、NiII、CoII、ZnII中的一种或几种;The metal ion is one or more of Cu II , Al III , Mg II , Mn II , Fe III , Ni II , Co II , Zn II ; 所述有机配体具有至少一个独立的选自于富马酸、1,2,3-苯三甲酸、1,2,4-苯三甲酸、1,3,5-苯三甲酸、咪唑、2-甲基咪唑;且所述有机配体通过他们可配位络合于所述金属离子;The organic ligand has at least one independently selected from fumaric acid, 1,2,3-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, imidazole, 2 - Methylimidazole; and said organic ligands can coordinate complex to said metal ion through them; 所述缓释碱为尿素、六亚甲基四胺中的一种或其混合物。The slow-release base is one of urea, hexamethylenetetramine or a mixture thereof. 2.按照权利要求1所述多孔金属有机骨架材料的制备方法,其特征在于:所述金属离子为CuII、AlIII、FeIII、NiII、CoII、ZnII中的一种或几种。2. according to the preparation method of the described porous metal organic framework material of claim 1, it is characterized in that: described metal ion is Cu II , Al III , Fe III , Ni II , Co II , Zn II in one or more . 3.按照权利要求1所述多孔金属有机骨架材料的制备方法,其特征在于:所述金属化合物为金属离子对应的硝酸盐、硫酸盐、氯化物、醋酸盐、草酸盐、氢氧化物、碳酸盐、碱式碳酸盐中的一种或多种组合。3. according to the preparation method of the described porous metal organic framework material of claim 1, it is characterized in that: described metal compound is the corresponding nitrate, sulfate, chloride, acetate, oxalate, hydroxide of metal ion , one or more combinations of carbonates and basic carbonates. 4.按照权利要求1所述多孔金属有机骨架材料的制备方法,其特征在于:所述溶剂为水、甲醇、乙醇、乙二醇、DMF中的一种或者多种的混合。4. The preparation method of the porous metal-organic framework material according to claim 1, wherein the solvent is one or more of water, methanol, ethanol, ethylene glycol, and DMF. 5.按照权利要求1所述多孔金属有机骨架材料的制备方法,其特征在于:缓释碱与有机配体的使用比例为缓释碱摩尔数与有机配体总齿数之比介于0.1~10之间。5. According to the preparation method of the porous metal organic framework material according to claim 1, it is characterized in that: the use ratio of the slow-release base and the organic ligand is that the ratio of the molar number of the slow-release base to the total number of teeth of the organic ligand is between 0.1 and 10. between. 6.一种权利要求1所述方法制备的多孔金属有机骨架材料,其特征在于:该多孔金属有机骨架材料含有至少一种金属离子与至少一种可与金属离子配位的有机配体。6. A porous metal organic framework material prepared by the method of claim 1, characterized in that the porous metal organic framework material contains at least one metal ion and at least one organic ligand capable of coordinating with the metal ion. 7.权利要求6所述多孔金属有机骨架材料的应用,其特征在于:该多孔金属有机骨架材料作为催化剂、传感器或离子导体,用于光或磁应用;作为多孔材料,适用于空气、惰性气体的吸附分离与存储。7. The application of the porous metal organic framework material according to claim 6, characterized in that: the porous metal organic framework material is used as a catalyst, sensor or ion conductor for optical or magnetic applications; as a porous material, it is suitable for air, inert gas Adsorption separation and storage.
CN201310351980.5A 2013-08-13 2013-08-13 Preparation method and applications of porous metal organic skeleton material Expired - Fee Related CN104370820B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310351980.5A CN104370820B (en) 2013-08-13 2013-08-13 Preparation method and applications of porous metal organic skeleton material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310351980.5A CN104370820B (en) 2013-08-13 2013-08-13 Preparation method and applications of porous metal organic skeleton material

Publications (2)

Publication Number Publication Date
CN104370820A CN104370820A (en) 2015-02-25
CN104370820B true CN104370820B (en) 2017-05-24

Family

ID=52550057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310351980.5A Expired - Fee Related CN104370820B (en) 2013-08-13 2013-08-13 Preparation method and applications of porous metal organic skeleton material

Country Status (1)

Country Link
CN (1) CN104370820B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11883808B2 (en) 2017-08-30 2024-01-30 Uchicago Argonne, Llc Nanofiber electrocatalyst
US12155075B2 (en) * 2017-08-29 2024-11-26 Uchicago Argonne, Llc Carbon dioxide reduction electro catalysts prepared for metal organic frameworks

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104817577A (en) * 2015-04-08 2015-08-05 广东工业大学 Preparation method and catalysis applications of efficient and simple zeolite imidazole framework ZIF-8 crystals with different morphologies
CN104785209A (en) * 2015-04-09 2015-07-22 厦门大学 Metal organic framework material as well as preparation method and application thereof
CN105348198B (en) * 2015-09-29 2018-10-26 中能科泰(北京)科技有限公司 Metal organic framework film and preparation method thereof
CN105148752A (en) * 2015-09-29 2015-12-16 北京林业大学 Polyamide reverse-osmosis composite membrane containing MIL type metal-organic framework material and preparation method thereof
CN105312028A (en) * 2015-11-20 2016-02-10 华南理工大学 Zinc and copper bi-metal organic framework material and preparation method and application thereof
CN106807330A (en) * 2015-11-27 2017-06-09 中国科学院大连化学物理研究所 The preparation and sorbing material and application of a kind of ordered structure sorbing material
CN105510395B (en) * 2015-12-13 2018-09-28 中国科学院福建物质结构研究所 Metal oxide-metal organic frame nano-core-shell structure one-dimensional array and its preparation method and application
CN105588860B (en) * 2015-12-13 2018-09-28 中国科学院福建物质结构研究所 Transition metal oxide surface heterogeneous medium epitaxial metal organic frame shell and its preparation method and application
CN105418645B (en) * 2015-12-22 2017-10-03 中国科学院长春光学精密机械与物理研究所 A kind of molecular sieve analog Porous Cu metal-organic framework materials and its preparation method and application
CN105771907B (en) * 2016-04-11 2018-09-14 华南理工大学 A kind of bis- ligand adsorbing material Fe-btc (dobdc) of MOFs and preparation method thereof
CN105713209B (en) * 2016-04-20 2018-06-15 郑州轻工业学院 Cluster base crystalline material and its preparation method and application
CN105837831B (en) * 2016-04-20 2018-07-10 郑州轻工业学院 A kind of micropore cobalt coordination polymer, preparation method and application
CN106018360B (en) * 2016-05-13 2018-07-17 深圳职业技术学院 A method of urea is detected based on metal-organic framework materials fluorescent optical sensor
CN106000279B (en) * 2016-06-27 2018-09-04 温州大学 A kind of nano-nickel oxide and preparation method thereof with adsorptivity
CN106057490B (en) * 2016-07-21 2018-03-30 中国石油大学(华东) A kind of nano-oxide based on Metal-organic frame and preparation method thereof
CN106279033B (en) * 2016-08-05 2019-01-04 安徽建筑大学 Sheet intersects ZIF-L and preparation method thereof
CN106472958B (en) * 2016-09-14 2020-07-07 安徽农业大学 A method for efficiently and selectively reducing fluoride ions in high-fluoride foods
CN106480012A (en) * 2016-09-30 2017-03-08 清华大学 A kind of interfacial synthesis method of the complex of protein and metal-organic framework materials
CN106345527B (en) * 2016-09-30 2019-08-30 上海理工大学 Mn Base Metal organic framework catalyst, preparation method and the application in Air Pollution prevention and control
CN106543450B (en) * 2016-10-21 2019-01-22 西安建筑科技大学 A kind of preparation method and application of functionalized magnetic bipyridine coordination polymer
CN106501332B (en) * 2016-11-06 2019-02-26 桂林理工大学 Zn-MOFs/glassy carbon electrode and its fabrication method and application
CN108114580B (en) * 2016-11-26 2020-07-31 中国科学院大连化学物理研究所 Separation method of hydrogen and methane mixed gas
CN106693899A (en) * 2016-12-07 2017-05-24 华南理工大学 Metal organic framework material/functional ionic liquid composite material as well as preparation and application thereof
CN108242549B (en) * 2016-12-27 2021-08-17 中国科学技术大学 A kind of VIII group monatomic dispersed catalyst and preparation method thereof
CN106832317B (en) * 2017-01-19 2019-08-20 陕西师范大学 A kind of tetrazole porous complex and its preparation method
CN106829887B (en) * 2017-01-19 2019-05-24 南开大学 A method of based on MOFs synchronous material synthesis of organic substance and metallic compound nano particle
CN106905539B (en) * 2017-02-28 2019-11-05 中国工程物理研究院化工材料研究所 Metal-organic framework containing energy and preparation method thereof
CN107099036A (en) * 2017-03-13 2017-08-29 中国科学院长春应用化学研究所 Fluorescence chemical sensor material suitable for the liquid different scale molecule of explosive containing nitro and its preparation method and application
CN107099284B (en) * 2017-04-12 2019-05-14 安徽师范大学 The fluorescent nano material Zn-PDC:Tb of antibiotic selection's detection3+Preparation method
CN107141491B (en) * 2017-06-16 2021-06-08 北京化工大学 A method for detecting atmospheric pollutant SO2 and its derivatives with fluorescent test paper
CN107398186B (en) * 2017-07-11 2020-03-27 中国科学技术大学 Metal organic framework separation layer film and preparation method thereof
CN107649179B (en) * 2017-09-21 2020-01-24 江苏大学 A kind of preparation method of photocatalytic water oxidation catalyst
CN108043466B (en) * 2017-12-26 2020-09-25 山东大学 A kind of zeolite imidazolate framework structure composite material for NOx removal and preparation method and application
CN111936667B (en) * 2018-03-30 2022-12-13 大金工业株式会社 Manufacturing method of laminated body
CN108654564B (en) * 2018-05-14 2020-11-24 聊城大学 Preparation method and application of a coordination polymer porous material
US20210206990A1 (en) * 2018-06-26 2021-07-08 Nippon Fusso Co., Ltd Fluororesin-containing bakeable powder coating composition and liquid coating composition, and coating and coated body comprising this bakeable powder coating composition or liquid coating composition
CN108774325B (en) * 2018-07-17 2020-11-03 宁夏大学 Synthesis method of metal coordination polymer and its application and equipment in the detection of diamines
CN108911009B (en) * 2018-07-24 2020-08-21 湖南大学 Method for removing antibiotics in water body by using nickel-doped metal organic framework material
CN109179483A (en) * 2018-10-12 2019-01-11 温州大学 A kind of synthetic method of ZnO microsphere derived from coordination polymer
CN109400898B (en) * 2018-10-25 2021-05-18 陕西科技大学 A kind of manganese coordination polymer and its preparation method and application
CN111187417B (en) * 2018-11-15 2021-06-15 中国科学院大连化学物理研究所 A kind of modification method and application of metal organic framework material
CN109183063A (en) * 2018-11-23 2019-01-11 南京科技职业学院 A kind of batch electrochemistry formated device of metal-organic framework materials
CN109920655A (en) * 2019-03-20 2019-06-21 北京理工大学 A kind of preparation method of MOF-derived porous carbon electrode
CN110157471B (en) * 2019-05-14 2020-12-11 东南大学 Preparation method of fluorescence visualization magnetic MOFs demulsifier
CN110372876A (en) * 2019-07-29 2019-10-25 南京工业大学 Method for preparing metal organic framework material by solvent evaporation induction
CN110527106B (en) * 2019-08-26 2021-09-24 福建师范大学 Multinuclear and multivariable metal-organic frameworks and their synthesis and applications
CN110975648B (en) * 2019-09-30 2021-08-20 宁波大学 Metal-organic framework glass film and preparation method thereof
CN112973636A (en) * 2019-12-12 2021-06-18 中国科学院大连化学物理研究所 Metal-organic framework material for adsorbing ethylene glycol and preparation method thereof
CN110938213B (en) * 2019-12-19 2021-05-07 北京工业大学 Preparation method of copper-based microporous metal organic framework material and gas separation application thereof
CN111217450A (en) * 2020-02-10 2020-06-02 何亚婷 Process for treating nitrogen-containing wastewater by coupling porous organic-inorganic hybrid material and organisms and control method
CN111392813B (en) * 2020-03-24 2022-01-28 西南石油大学 Preparation method of MIL-100(Fe) composite material capable of circularly and rapidly demulsifying
CN111763331B (en) * 2020-08-25 2022-03-01 内蒙古农业大学 An alkaline earth metal [ Mg (lna) ]2]nSingle crystal adsorbing material and preparation method and application thereof
CN112871214A (en) * 2020-12-06 2021-06-01 理工清科(北京)科技有限公司 Method for preparing normal-temperature degradable formaldehyde filtering membrane based on metal organic framework material
CN114904356B (en) * 2021-02-08 2024-03-26 中国科学院大连化学物理研究所 Method for separating nitrogen and oxygen
CN113019352A (en) * 2021-03-16 2021-06-25 山东建筑大学 Preparation method of embedded alkaline earth metal oxide solid base and application of embedded alkaline earth metal oxide solid base in biodiesel production
US11986814B2 (en) 2021-03-16 2024-05-21 Shandong Jianzhu University Preparation method of embedded alkaline earth metal oxide solid alkali and application thereof in biodiesel production
CN113331425B (en) * 2021-06-07 2022-06-14 中国农业大学 A kind of cartilage polysaccharide sustained-release agent and its preparation method and application
CN113461964B (en) * 2021-07-23 2022-11-18 同济大学 Metal organic framework material
CN114989439B (en) * 2022-01-19 2023-06-30 长沙理工大学 Method for preparing UIO-66 type cerium (IV) based metal organic framework material in room temperature aqueous phase
CN114685806B (en) * 2022-04-18 2023-04-07 浙江大学衢州研究院 Acid-modified ultrathin metal organic framework nanosheet catalyst and preparation method and application thereof
WO2023236139A1 (en) * 2022-06-09 2023-12-14 宁德时代新能源科技股份有限公司 Preparation method for metal organic framework material
CN115212652A (en) * 2022-07-01 2022-10-21 北京师范大学 Argil water filtration material containing metal organic framework derived carbon and argil water purifier
CN115634666B (en) * 2022-11-09 2024-04-05 合肥工业大学 A method for preparing an adsorbent using fly ash as raw material and its application in separation of methane and nitrogen
CN115850720B (en) * 2022-12-26 2023-09-12 成都师范学院 Preparation method and application of zinc-based metal organic framework material fluorescence sensor
CN116586037B (en) * 2023-04-26 2024-11-12 浙江大学 A molded ultra-microporous metal-organic framework material and its preparation method and application in selectively adsorbing sulfur hexafluoride
CN116272954B (en) * 2023-05-19 2023-08-01 山东格瑞德环保科技有限公司 Catalyst based on MOFs metal framework oxide for VOCs treatment and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830918A (en) * 2010-04-30 2010-09-15 中山大学 Synthetic method of polynitrogen azole zinc/cadmium framework material
WO2013005160A1 (en) * 2011-07-06 2013-01-10 Basf Se Process for preparing porous metal-organic framework composed of zinc methylimidazolate
CN102962037A (en) * 2012-11-01 2013-03-13 中国科学院大连化学物理研究所 Metal-organic framework material for methane adsorption separation and preparation method thereof
CN102962036A (en) * 2012-10-30 2013-03-13 中国科学院大连化学物理研究所 Porous metal organic framework material based on transition metal cobalt and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830918A (en) * 2010-04-30 2010-09-15 中山大学 Synthetic method of polynitrogen azole zinc/cadmium framework material
WO2013005160A1 (en) * 2011-07-06 2013-01-10 Basf Se Process for preparing porous metal-organic framework composed of zinc methylimidazolate
CN102962036A (en) * 2012-10-30 2013-03-13 中国科学院大连化学物理研究所 Porous metal organic framework material based on transition metal cobalt and preparation method thereof
CN102962037A (en) * 2012-11-01 2013-03-13 中国科学院大连化学物理研究所 Metal-organic framework material for methane adsorption separation and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(ii) Imidazolates with Unusual Zeolitic Topologies;Xiao-Chun Huang,等;《Angewandte Chemie》;20061231;第118卷;全文 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12155075B2 (en) * 2017-08-29 2024-11-26 Uchicago Argonne, Llc Carbon dioxide reduction electro catalysts prepared for metal organic frameworks
US11883808B2 (en) 2017-08-30 2024-01-30 Uchicago Argonne, Llc Nanofiber electrocatalyst
US12269020B2 (en) 2017-08-30 2025-04-08 Uchicago Argonne, Llc Nanofiber electrocatalyst

Also Published As

Publication number Publication date
CN104370820A (en) 2015-02-25

Similar Documents

Publication Publication Date Title
CN104370820B (en) Preparation method and applications of porous metal organic skeleton material
CN110483787B (en) Zeolite imidazate framework material and preparation method thereof
CN104892518B (en) The preparation method and applications of porous nano metal organic framework materials
CN102962036B (en) Porous metal organic frameworks based on transition metals cobalt and preparation method thereof
Lee et al. Synthesis of metal-organic frameworks: A mini review
CN106807329B (en) Preparation, composite material and application of activated carbon fiber-metal organic framework composites
EP3197902B1 (en) Process for preparing a zirconium-based metal organic framework
CN106883419B (en) Rapid synthesis method and application of cobalt-based metal-organic framework material
CN103464107B (en) Preparation method of ZIFs/LDHs composite material
WO2018046930A1 (en) Process for the preparation of zirconium based mofs.
JP2006503946A (en) Process for producing polyalkylene carbonate
CN104368310A (en) Metal organic framework material reinforcing methane adsorption separation and preparation and application thereof
Shi et al. Eco-friendly co-catalyst-free cycloaddition of CO2 and aziridines activated by a porous MOF catalyst
CN103483360A (en) Preparation method for metal complex functionalized ZIF-8 (zinc 2-methylimidazolate) material
CN108147960B (en) A functionally modified aluminum metal organic framework material and preparation method thereof
CN106693896B (en) Heterocomposite structure adsorption material and its preparation and application
CN109999915A (en) One kind being used for CO2The porphyryl metal-organic framework materials and preparation method thereof of cyclisation catalysis reaction
Patra et al. Coordination polymers of flexible polycarboxylic acids with metal ions. V. polymeric frameworks of 5-(3, 5-dicarboxybenzyloxy)-3-pyridine carboxylic acid with Cd (ii), Cu (ii), Co (ii), Mn (ii) and Ni (ii) ions; synthesis, structure, and magnetic properties
JP2017160132A (en) Method for producing carbonate ester
CN102898448B (en) A kind of normal temperature water phase synthesis method of zeolitic imidazolate framework material
CN111690145B (en) A pyridine-type chiral Cu(II)-Salen ligand metal-organic framework crystal material and its preparation method and application
CN103193804A (en) Preparation method of metal-organic coordination polymer material
CN103570767B (en) Method for synthesizing micropore ZNI-type zeolite imidazole skeleton species by ionothermal process
CN105642354B (en) Water-soluble sulfonic acids porphyrin-dissaving polymer two-phase composite catalyst and its preparation and application
CN106669834A (en) Co(II)-based crystalline catalyst with layer pillaring structure and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170524