[go: up one dir, main page]

CN104369842B - Water surface auxiliary robot based on autonomous underwater vehicle and use method - Google Patents

Water surface auxiliary robot based on autonomous underwater vehicle and use method Download PDF

Info

Publication number
CN104369842B
CN104369842B CN201410393093.9A CN201410393093A CN104369842B CN 104369842 B CN104369842 B CN 104369842B CN 201410393093 A CN201410393093 A CN 201410393093A CN 104369842 B CN104369842 B CN 104369842B
Authority
CN
China
Prior art keywords
underwater vehicle
autonomous underwater
cable
energy supply
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410393093.9A
Other languages
Chinese (zh)
Other versions
CN104369842A (en
Inventor
唐建中
谢凯源
卢石松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI NANHUA LANLING ELECTRIC CO Ltd
Zhejiang University ZJU
Original Assignee
SHANGHAI NANHUA LANLING ELECTRIC CO Ltd
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI NANHUA LANLING ELECTRIC CO Ltd, Zhejiang University ZJU filed Critical SHANGHAI NANHUA LANLING ELECTRIC CO Ltd
Priority to CN201410393093.9A priority Critical patent/CN104369842B/en
Publication of CN104369842A publication Critical patent/CN104369842A/en
Application granted granted Critical
Publication of CN104369842B publication Critical patent/CN104369842B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种基于自主水下航行器的水面辅助机器人,包括水面辅助装置,水面辅助装置由随自主水下航行器同步移动的能源补给装置和无线信号中继装置构成;能源补给装置和无线信号中继装置均通过缆线与自主水下航行器相互连接。能源补给装置和无线信号中继装置均设置在船型结构机器人机身上;机器人机身内设置有控制系统、运动系统、缆线管理系统、追踪导航系统以及辅助系统;控制系统分别与无线信号中继装置等信号连接;并通过控制无线信号中继装置、能源补给装置、运动系统、缆线管理系统、追踪导航系统以及辅助系统实现水面辅助机器人与自主水下航行器保持在水平方向上的同步移动;能源补给装置分别与无线信号中继装置等电连接。

The invention discloses a water surface auxiliary robot based on an autonomous underwater vehicle, including a surface auxiliary device, the water surface auxiliary device is composed of an energy supply device and a wireless signal relay device that move synchronously with the autonomous underwater vehicle; the energy supply device and The wireless signal relay devices are all interconnected with the autonomous underwater vehicle through cables. Both the energy supply device and the wireless signal relay device are set on the ship-shaped robot body; the robot body is equipped with a control system, a motion system, a cable management system, a tracking navigation system and an auxiliary system; the control system is connected with the wireless signal center respectively. Relay devices and other signal connections; and through the control of wireless signal relay devices, energy supply devices, motion systems, cable management systems, tracking navigation systems and auxiliary systems, the surface auxiliary robot and autonomous underwater vehicles can be synchronized in the horizontal direction Mobile; the energy supply device is electrically connected with the wireless signal relay device and the like.

Description

基于自主水下航行器的水面辅助机器人及使用方法Autonomous underwater vehicle-based surface assistance robot and method of use

技术领域technical field

本发明涉及一种水面机器人,特别涉及一种为自主水下航行提供辅助工作的水面辅助机器人及使用的方法,即基于自主水下航行器的水面辅助机器人及使用方法。The present invention relates to a surface robot, in particular to a surface auxiliary robot for autonomous underwater navigation and a method for using it, that is, a surface auxiliary robot based on an autonomous underwater vehicle and a method for using it.

背景技术Background technique

随着人类对海洋探索的不断深入,深海技术得到了快速发展,水下航行器作为一种探索海洋的工具其应用变得越来越广泛。根据控制方式的不同,水下航行器可分为自主水下航行器和遥控水下航行器,遥控水下航行器是一种在基站的控制之下工作的水下航行器,通过电缆可进行高速通信,并且能输配电能,但受电缆的长度的限制,其工作范围有限;自主水下航行器在无人操控的情况下进行深海作业,其工作范围宽,并通过携带大容量蓄电池提高其续航能力,但对于长时间深海工作的自主水下航行器,会有通信慢、定位不连续、能量补充困难等问题。With the continuous deepening of human exploration of the ocean, deep-sea technology has developed rapidly, and underwater vehicles, as a tool for exploring the ocean, have become more and more widely used. According to different control methods, underwater vehicles can be divided into autonomous underwater vehicles and remote-controlled underwater vehicles. Remote-controlled underwater vehicles are underwater vehicles that work under the control of a base station. High-speed communication, and can transmit and distribute power, but limited by the length of the cable, its working range is limited; autonomous underwater vehicles carry out deep-sea operations without unmanned control, and their working range is wide, and by carrying large-capacity batteries to improve However, for autonomous underwater vehicles that work in the deep sea for a long time, there will be problems such as slow communication, discontinuous positioning, and difficulty in energy replenishment.

目前,自主水下航行器在深海作业时,通信方式采用较多的是水声通信,其传输速度慢,数据量小,基本不能完成大量数据的高速传输,如传输高清视频数据、高清图片数据。水面船舶可采用无线电、卫星、惯性导航系统(INS)等进行定位导航,而水下航行器在水底基本只能通过水声技术定位,或者浮出水面定位。若采用水声定位需要水下定位系统配合,并且只能作用于局部海域,当在大面积海域作业时,水声定位的实施难度大;若采用浮出水面定位将会极大的降低水下航行器的工作效率,而且定位不具有连续性。航行器的电能补充方式主要有:电磁隔离充电、通过电缆插头充电、打捞更换电池。电磁隔离充电能在海平面下通过电磁感应进行非接触式充电,这种充电方式方便,但充电时间长,损耗大;电缆插头充电,其充电速度较快,但是需要将电缆与航行器连接,其操作繁琐;打捞更换电池可直接安装满电电池,但需要打捞和拆装,并且对自主水下航行器的密封有不利影响。At present, when autonomous underwater vehicles operate in the deep sea, the communication method is mostly underwater acoustic communication, which has a slow transmission speed and a small amount of data, and basically cannot complete high-speed transmission of large amounts of data, such as high-definition video data, high-definition picture data. . Surface ships can use radio, satellite, inertial navigation system (INS), etc. for positioning and navigation, while underwater vehicles can basically only be positioned by underwater acoustic technology at the bottom, or surfaced for positioning. If the underwater acoustic positioning is adopted, the cooperation of the underwater positioning system is required, and it can only be used in local sea areas. When operating in a large area of sea area, the implementation of underwater acoustic positioning is very difficult; if the surface positioning is adopted, the underwater positioning will be greatly reduced. The efficiency of the aircraft, and the positioning is not continuous. The power supply methods of the aircraft mainly include: electromagnetic isolation charging, charging through cable plugs, and salvage to replace batteries. Electromagnetic isolation charging can carry out non-contact charging through electromagnetic induction under sea level. This charging method is convenient, but the charging time is long and the loss is large; cable plug charging has a fast charging speed, but it needs to connect the cable to the aircraft. Its operation is cumbersome; salvaging and replacing the battery can directly install a fully charged battery, but salvage and disassembly are required, and it has an adverse effect on the sealing of the autonomous underwater vehicle.

发明内容Contents of the invention

本发明要解决的技术问题是提供一种结构简单的自主水下航行工作的水面辅助机器人。The technical problem to be solved by the present invention is to provide a water surface auxiliary robot with simple structure for autonomous underwater navigation.

为了解决上述技术问题,本发明提供一种基于自主水下航行器的水面辅助机器人,包括设置在自主水下航行器上的水面辅助机装置;所述水面辅助装置包括随自主水下航行器同步移动的能源补给装置和无线信号中继装置;所述能源补给装置和无线信号中继装置均通过缆线与自主水下航行器相互连接。In order to solve the above-mentioned technical problems, the present invention provides a surface auxiliary robot based on an autonomous underwater vehicle, including a surface auxiliary machine device arranged on the autonomous underwater vehicle; A mobile energy supply device and a wireless signal relay device; both the energy supply device and the wireless signal relay device are connected to the autonomous underwater vehicle through cables.

作为对本发明所述的基于自主水下航行器的水面辅助机器人的改进:所述能源补给装置和无线信号中继装置均设置在船型结构机器人机身上;所述机器人机身内设置有控制系统、运动系统、缆线管理系统、追踪导航系统以及辅助系统;所述控制系统分别与无线信号中继装置、能源补给装置、运动系统、缆线管理系统、追踪导航系统、辅助系统以及自主水下航行器信号连接;并通过控制无线信号中继装置、能源补给装置、运动系统、缆线管理系统、追踪导航系统以及辅助系统实现水面辅助机器人与自主水下航行器保持在水平方向上的同步移动;所述能源补给装置分别与无线信号中继装置、控制系统、运动系统、缆线管理系统、追踪导航系统、辅助系统以及自主水下航行器电连接。As an improvement to the surface auxiliary robot based on the autonomous underwater vehicle described in the present invention: the energy supply device and the wireless signal relay device are all arranged on the ship-shaped structure robot body; the robot body is provided with a control system , a motion system, a cable management system, a tracking and navigation system, and an auxiliary system; Vehicle signal connection; and by controlling the wireless signal relay device, energy supply device, motion system, cable management system, tracking navigation system and auxiliary system to realize the synchronous movement of the surface auxiliary robot and the autonomous underwater vehicle in the horizontal direction The energy supply device is electrically connected with the wireless signal relay device, control system, motion system, cable management system, tracking and navigation system, auxiliary system and autonomous underwater vehicle.

作为对本发明所述的基于自主水下航行器的水面辅助机器人的进一步改进:所述无线信号中继装置包括无线电模块、卫星定位导航模块以及光缆通信模块;所述光缆通信模块通过缆线与自主水下航行器信号连接;所述能源补给装置通过缆线与自主水下航行器电连接;所述控制系统与无线电模块、卫星定位导航模块以及光缆通信模块信号连接;所述能源补给装置与控制系统、无线电模块、卫星定位导航模块以及光缆通信模块电连接。As a further improvement to the surface auxiliary robot based on the autonomous underwater vehicle described in the present invention: the wireless signal relay device includes a radio module, a satellite positioning navigation module and an optical cable communication module; the optical cable communication module communicates with the autonomous vehicle through a cable The underwater vehicle signal connection; the energy supply device is electrically connected to the autonomous underwater vehicle through a cable; the control system is connected to the radio module, the satellite positioning navigation module and the optical cable communication module; the energy supply device is connected to the control system The system, the radio module, the satellite positioning navigation module and the optical cable communication module are electrically connected.

作为对本发明所述的基于自主水下航行器的水面辅助机器人的进一步改进:所述缆线管理系统包括缆线收放器、缆线状态监测器;所述的缆线收放器为通过电机带动的收放线装置,所述缆线均匀地缠绕在收放线装置的卷筒上;所述的缆线状态监测器与缆线之间信号连接,实现缆线传输状态的监测;所述缆线收放器和缆线状态监测器均与控制系统信号连接;所述缆线内集成光纤线、电缆线和监测线;所述缆线收放器和缆线状态监测器均与能源补给装置电连接。As a further improvement to the surface auxiliary robot based on the autonomous underwater vehicle described in the present invention: the cable management system includes a cable retractor and a cable status monitor; Driven by the take-up and pay-off device, the cable is evenly wound on the reel of the take-up and pay-off device; the signal connection between the cable state monitor and the cable realizes the monitoring of the cable transmission state; Both the cable retractor and the cable state monitor are connected to the control system signal; the optical fiber wire, cable and monitoring line are integrated in the cable; the cable retractor and the cable state monitor are connected to the energy supply The device is electrically connected.

作为对本发明所述的基于自主水下航行器的水面辅助机器人的进一步改进:所述运动系统包括推进器、运动控制器;所述推进器包括分别设置在机器人机身左、右两侧的左推进器和右推进器;所述运动控制器分别与控制系统、左推进器和右推进器信号连接;所述运动控制器、左推进器和右推进器均与能源补给装置电连接。As a further improvement to the surface auxiliary robot based on the autonomous underwater vehicle described in the present invention: the motion system includes propellers and motion controllers; The propeller and the right propeller; the motion controller is respectively connected with the control system, the left propeller and the right propeller for signals; the motion controller, the left propeller and the right propeller are all electrically connected with the energy supply device.

作为对本发明所述的基于自主水下航行器的水面辅助机器人的进一步改进:所述追踪导航系统包括惯性导航系统、水声定位通信模块和多普勒测速仪;所述惯性导航系统、水声定位通信模块和多普勒测速仪均与控制系统信号连接,所述自主水下航行器上的惯性导航系统通过缆线与控制系统信号连接;As a further improvement to the surface auxiliary robot based on the autonomous underwater vehicle described in the present invention: the tracking navigation system includes an inertial navigation system, a hydroacoustic positioning communication module and a Doppler velocimeter; Both the positioning communication module and the Doppler speedometer are connected to the control system signal, and the inertial navigation system on the autonomous underwater vehicle is connected to the control system signal through a cable;

所述水声定位通信模块和多普勒测速仪均与能源补给装置电连接,所述惯性导航系统通过缆线与能源补给装置电连接。Both the underwater acoustic positioning communication module and the Doppler speedometer are electrically connected to the energy supply device, and the inertial navigation system is electrically connected to the energy supply device through cables.

作为对本发明所述的基于自主水下航行器的水面辅助机器人的进一步改进:所述辅助系统包括均与控制系统信号连接的自诊断系统和天气监测器;所述自诊断系统和天气监测器均与能源补给装置电连接。As a further improvement to the surface auxiliary robot based on the autonomous underwater vehicle described in the present invention: the auxiliary system includes a self-diagnosis system and a weather monitor that are all connected with the control system signal; the self-diagnosis system and the weather monitor are all It is electrically connected with the energy supply device.

作为对本发明所述的基于自主水下航行器的水面辅助机器人的进一步改进:所述能源补给装置为主电池组、备用电池组、太阳能发电模块、变压稳压器以及电池管理控制器构成的能源补给装置。As a further improvement to the surface auxiliary robot based on the autonomous underwater vehicle described in the present invention: the energy supply device is composed of a main battery pack, a backup battery pack, a solar power generation module, a voltage transformer and a battery management controller Energy supply device.

作为对本发明所述的基于自主水下航行器的水面辅助机器人的进一步改进:所述控制系统包括控制主板和控制线路;所述控制主板控制各个模块的工作,所述控制主板上集成了嵌入式计算机、集线器和摄像头。As a further improvement to the surface auxiliary robot based on the autonomous underwater vehicle described in the present invention: the control system includes a control board and a control circuit; the control board controls the work of each module, and the control board integrates embedded Computers, hubs and cameras.

一种自主水下航行器的水面辅助方法:基于水面辅助机器人完成;所述水面辅助机器人通过能源补给装置获取电能,并将电能通过缆线传输到自主水下航行器,作为自主水下航行器的可用能源;所述水面辅助机器人通过无线信号中继装置实现无线信号的收发,并通过缆线传输到自主水下航行器,实现自主水下航行器通过实时的无线信号交互完成与水面基站的实时信号传递;所述水面辅助机器人通过控制系统主动控制水面辅助机器人的行动轨迹,并保持水面辅助机器人与自主水下航行器运动轨迹在水平方向上一致。A water surface assistance method for an autonomous underwater vehicle: it is completed based on a surface auxiliary robot; the surface auxiliary robot obtains electric energy through an energy supply device, and transmits the electric energy to the autonomous underwater vehicle through a cable, as an autonomous underwater vehicle available energy; the surface auxiliary robot realizes the transmission and reception of wireless signals through a wireless signal relay device, and transmits them to the autonomous underwater vehicle through a cable, so that the autonomous underwater vehicle completes the communication with the surface base station through real-time wireless signal interaction Real-time signal transmission; the surface auxiliary robot actively controls the action trajectory of the surface auxiliary robot through the control system, and keeps the movement trajectory of the surface auxiliary robot and the autonomous underwater vehicle consistent in the horizontal direction.

作为对本发明所述的一种自主水下航行器的水面辅助方法的改进:所述控制系统通过追踪导航系统以及辅助系统获取当前的航行环境以及自主水下航行器的相对位置;所述控制系统根据当前的航行环境以及自主水下航行器的相对位置,经缆线管理系统进行缆线的长度调节;通过能源补给装置给无线信号中继装置、控制系统、运动系统、缆线管理系统、追踪导航系统、辅助系统以及自主水下航行器提供能源;所述能源补给装置通过更换主电池组或备用电池组太阳能发电模块吸收太阳能后发电等形式来完成能源补给。As an improvement to the water surface assistance method of an autonomous underwater vehicle described in the present invention: the control system obtains the current navigation environment and the relative position of the autonomous underwater vehicle through a tracking navigation system and an auxiliary system; the control system According to the current navigation environment and the relative position of the autonomous underwater vehicle, the length of the cable is adjusted through the cable management system; through the energy supply device, the wireless signal relay device, control system, motion system, cable management system, and tracking The navigation system, the auxiliary system and the autonomous underwater vehicle provide energy; the energy supply device completes the energy supply by replacing the main battery pack or the spare battery pack solar power generation module to absorb solar energy and generate electricity.

本发明的基于自主水下航行器的水面辅助机器人在实现过程中,一方面,自主水下航行器的惯性导航系统确定自主水下航行器的航向信息;水面辅助机器人则通过多普勒测速仪辅助惯性导航系统确定水面辅助机器人的航向信息;再通过声呐通信器水声定位系统和声呐通信器配合使用确定自主水下航行器与水面辅助机器人的相对位置,补偿惯性导航系统的测量误差;再通过天气监测器监测海面的实时天气状况;通过自诊断系统的传感器监测水面辅助机器人的运行状态;通过缆线状态监测器对缆线内集成的光纤线、电缆线和监测线的实时运行状态进行检测;另外一方面,在获取上述的机器人状态结果的同时,进行水面辅助机器人的运行状态控制:如通过缆线收放器经电机控制收放线装置进行缆线的收放;通过运动控制器控制左推进器和右推进器的电机转动,并通过左推进器和右推进器的电机转动实现水面辅助机器人的行程控制;由卫星定位导航模块确定水面辅助机器人位置信息,再由无线电模块实现水面辅助机器人与外部操作系统之间的信号传递;外部操作系统的控制信号经无线电模块的接收后,再通过电缆传输到自主水下航行器。In the realization process of the surface auxiliary robot based on the autonomous underwater vehicle of the present invention, on the one hand, the inertial navigation system of the autonomous underwater vehicle determines the heading information of the autonomous underwater vehicle; The auxiliary inertial navigation system determines the course information of the surface auxiliary robot; then the relative position of the autonomous underwater vehicle and the surface auxiliary robot is determined through the cooperation of the sonar communicator underwater acoustic positioning system and the sonar communicator, and the measurement error of the inertial navigation system is compensated; Monitor the real-time weather conditions on the sea surface through the weather monitor; monitor the running status of the surface auxiliary robot through the sensors of the self-diagnosis system; monitor the real-time running status of the integrated optical fiber, cable and monitoring line in the cable through the cable status monitor detection; on the other hand, while obtaining the above-mentioned robot state results, the running state control of the surface auxiliary robot is carried out: for example, the cable is retracted and retracted through the motor-controlled retracting and discharging device through the cable retractor; through the motion controller Control the motor rotation of the left propeller and the right propeller, and realize the stroke control of the surface auxiliary robot through the rotation of the motor of the left propeller and the right propeller; the position information of the surface auxiliary robot is determined by the satellite positioning and navigation module, and then the water surface is realized by the radio module. The signal transmission between the auxiliary robot and the external operating system; the control signal of the external operating system is received by the radio module, and then transmitted to the autonomous underwater vehicle through the cable.

自主水下航行器输出的信号首先通过信号输送稳定的缆线输出到水面辅助机器人,再由水面辅助机器人将该信号通过无线电模块将信号以无线传输的方式传输到水面基站;这种方式解决了自主水下航行器远程航行的时候的信息收发送问题。而该水面辅助机器人上才用的能源补给装置为太阳能系统,通过将太阳能转换为电能进行自身能源的提供,也进行自主水下航行器的自主能源补给,增加自主水下航行器的续航能力;而水面辅助机器人通过定位系统和运动系统实现了在水平方向上与自主水下航行器轨迹的同步运行。The signal output by the autonomous underwater vehicle is first output to the surface auxiliary robot through a signal transmission stable cable, and then the surface auxiliary robot transmits the signal to the surface base station in a wireless transmission manner through the radio module; this method solves the problem of The information receiving and sending problem when the autonomous underwater vehicle sails long-distance. The energy supply device used on the surface auxiliary robot is a solar system, which provides its own energy by converting solar energy into electric energy, and also performs autonomous energy supply for autonomous underwater vehicles, increasing the endurance of autonomous underwater vehicles; The surface auxiliary robot realizes the synchronous operation with the trajectory of the autonomous underwater vehicle in the horizontal direction through the positioning system and the motion system.

附图说明Description of drawings

下面结合附图对本发明的具体实施方式作进一步详细说明。The specific implementation manners of the present invention will be described in further detail below in conjunction with the accompanying drawings.

图1是本发明的外形俯视示意图;Fig. 1 is a top view schematic diagram of the present invention;

图2是本发明的外形仰视示意图;Fig. 2 is a schematic bottom view of the appearance of the present invention;

图3是本发明的外形主视结构示意图;Fig. 3 is a schematic diagram of the front view structure of the appearance of the present invention;

图4是本发明的外形俯视结构示意图;Fig. 4 is a schematic diagram of the top view structure of the present invention;

图5是本发明的外形左视结构示意图;Fig. 5 is a schematic left-view structure diagram of the present invention;

图6是本发明的无线信号中继装置示意图;6 is a schematic diagram of a wireless signal relay device of the present invention;

图7是本发明的缆线收放器结构示意图;Fig. 7 is a schematic structural view of the cable retractor of the present invention;

图8是本发明的缆线截面结构示意图;Fig. 8 is a schematic diagram of a cross-sectional structure of a cable of the present invention;

图9是本发明的能源补给装置组成示意图;Fig. 9 is a schematic diagram of the composition of the energy supply device of the present invention;

图10是本发明的内部系统示意图;Fig. 10 is a schematic diagram of the internal system of the present invention;

图11是本发明与自主水下航行器协同工作示意图。Fig. 11 is a schematic diagram of cooperation between the present invention and an autonomous underwater vehicle.

具体实施方式detailed description

实施例1、图1~图11给出了一种基于自主水下航行器的水面辅助机器人及使用的方法。该使用的方法克服现有技术中的自主水下航行器续航能力差、通讯能力弱等不足。Embodiment 1, Figures 1 to 11 present a surface assistance robot based on an autonomous underwater vehicle and a method for using it. The method used overcomes the disadvantages of poor endurance and weak communication capabilities of the autonomous underwater vehicle in the prior art.

该基于自主水下航行器的水面辅助机器人采用船型结构的机器人机身100,通过这种船型的结构使得机器人在水面获得足够的浮力,使得机器人可以静止的停留在水面。在机器人机身100上的相应位置设置有控制系统720、运动系统20、无线信号中继装置30、缆线管理系统40、能源补给装置50、追踪导航系统60以及辅助系统70。The surface auxiliary robot based on the autonomous underwater vehicle adopts a robot body 100 with a ship-shaped structure, and the ship-shaped structure enables the robot to obtain sufficient buoyancy on the water surface, so that the robot can stay still on the water surface. Corresponding positions on the robot body 100 are provided with a control system 720 , a motion system 20 , a wireless signal relay device 30 , a cable management system 40 , an energy supply device 50 , a tracking navigation system 60 and an auxiliary system 70 .

控制系统720包括控制主板和控制线路;控制主板控制运动系统20、无线信号中继装置30、缆线管理系统40、能源补给装置50、追踪导航系统60以及辅助系统70内各个模块的工作,控制主板上集成了嵌入式计算机722、集线器723和摄像头。The control system 720 includes a control board and a control circuit; the control board controls the movement system 20, the wireless signal relay device 30, the cable management system 40, the energy supply device 50, the tracking navigation system 60 and the work of each module in the auxiliary system 70, and controls An embedded computer 722, a hub 723 and a camera are integrated on the motherboard.

运动系统20包括推进器200和运动控制器210;推进器200包括电机驱动的左推进器201和右推进器202,如图2所示;左推进器201和右推进器202分别设置在机器人机身100下侧面的左边和右边;在本发明的机器人通过机器人机身100悬浮在水面上的时候,可以确保左推进器201和右推进器202全部在水面以下。运动控制器210与控制系统720之间信号连接(嵌入式计算机722通过集线器723经控制线路与运动控制器210之间信号连接),通过控制系统720的嵌入式计算机722实施控制指令的发布,并由运动控制器210按照预定的实行标准控制左推进器201和右推进器202进行控制指令的实行。左推进器201和右推进器202主要有如下的运行模式:当左推进器201和右推进器202同时正转且产生的推力相同时,机器人完成直线前进运动;左推进器201和右推进器202同时正转并存在速度差时,机器人前进并带有转向运动,左推进器201的正推力大于右推进器202的正推力时机器人向右转向,左推进器201的正推力小于右推进器202的正推力时机器人向左转向;当左推进器201和右推进器202同时反转且产生的推力相同时,机器人完成后退运动;通过差分控制推进器还可完成旋转运动。Motion system 20 comprises propeller 200 and motion controller 210; Propeller 200 comprises motor-driven left propeller 201 and right propeller 202, as shown in Figure 2; Left propeller 201 and right propeller 202 are arranged on robot machine respectively. The left side and the right side of the lower side of the body 100; when the robot of the present invention was suspended on the water surface by the robot fuselage 100, it can be ensured that the left propeller 201 and the right propeller 202 are all below the water surface. Signal connection between motion controller 210 and control system 720 (embedded computer 722 is through hub 723 through control circuit and signal connection between motion controller 210), implements the issuing of control instructions by the embedded computer 722 of control system 720, and The motion controller 210 controls the left thruster 201 and the right thruster 202 to execute the control instruction according to a predetermined execution standard. The left propeller 201 and the right propeller 202 mainly have the following operating modes: when the left propeller 201 and the right propeller 202 rotate forward and generate the same thrust at the same time, the robot completes the straight forward motion; the left propeller 201 and the right propeller 202 forward rotation at the same time and there is a speed difference, the robot advances and has turning motion, when the positive thrust of the left propeller 201 is greater than the positive thrust of the right propeller 202, the robot turns to the right, and the positive thrust of the left propeller 201 is smaller than the right propeller 202 positive thrust, the robot turns to the left; when the left propeller 201 and the right propeller 202 reverse simultaneously and generate the same thrust, the robot completes the backward motion; the propeller can also complete the rotary motion by differential control.

无线信号中继装置30主要是为解决自主水下航行器在水底工作通信定位困难的问题。无线信号中继装置30包括无线电模块300、卫星定位导航模块310、光缆通信模块320,如图6所示。无线电模块300包括垂直天线Ⅰ301、垂直天线Ⅱ303和水平天线302;垂直天线Ⅰ301、垂直天线Ⅱ303和水平天线302组合使用,用于收发电磁波。垂直天线Ⅰ301、垂直天线Ⅱ303和水平天线302均通过信号处理后经集线器723与嵌入式计算机722信号连接,并通过无线电模块300(垂直天线Ⅰ301、垂直天线Ⅱ303和水平天线302)与控制系统720(嵌入式计算机722)之间的相互协作,完成通信以及船舶无线电定位功能。卫星定位导航模块310可利用GPS或者北斗系统进行定位,并通过卫星与基站通信;卫星定位导航模块310通过控制线路经集线器723与嵌入式计算机722信号连接,由嵌入式计算机722信号获取定位信息后,就可以通过嵌入式计算机722经左推进器201和右推进器202进行机器人的运动控制。光缆通信模块320通过控制线路经集线器723与嵌入式计算机722信号连接,嵌入式计算机722通过光缆通信模块320经缆线420(光纤)与自主水下航行器实现数据信息的收发。The wireless signal relay device 30 is mainly to solve the problem of difficult communication and positioning of the autonomous underwater vehicle working under water. The wireless signal relay device 30 includes a radio module 300, a satellite positioning and navigation module 310, and an optical cable communication module 320, as shown in FIG. 6 . The radio module 300 includes a vertical antenna I 301 , a vertical antenna II 303 and a horizontal antenna 302 ; the vertical antenna I 301 , the vertical antenna II 303 and the horizontal antenna 302 are used in combination to send and receive electromagnetic waves. The vertical antenna I 301, the vertical antenna II 303 and the horizontal antenna 302 are all signal-processed and connected to the embedded computer 722 via the hub 723, and are connected to the control system 720 ( Embedded computers 722) cooperate with each other to complete communication and ship radio positioning functions. Satellite positioning and navigation module 310 can utilize GPS or Beidou system to carry out positioning, and communicate with base station through satellite; , the motion control of the robot can be carried out through the embedded computer 722 via the left thruster 201 and the right thruster 202 . The optical cable communication module 320 is signal-connected with the embedded computer 722 through the hub 723 through the control circuit, and the embedded computer 722 realizes the sending and receiving of data information with the autonomous underwater vehicle through the optical cable communication module 320 via the cable 420 (optical fiber).

缆线管理系统40包括缆线收放器400、缆线状态监测器410和缆线420;通过基于缆线管理系统40实现的缆线管理方案,并根据此方案保证缆线420在不影响自主水下航行器正常工作的前提下尽可能的短,这种将缆线420束缚在自主水下航行器和水面辅助机器人之间最短距离的方式可以减少自主水下航行器和水面辅助机器人的运行阻力。缆线管理系统40通过自主水下航行器的深度数据以及与水面辅助机器人的相对位置来管理缆线。缆线收放器400由外壳401、伺服电机402、主卷筒403、引线卡404以及副卷筒405组成,如图7所示。伺服电机402安装在主卷筒403的转轴上且同轴,伺服电机402无变速直接驱动主卷筒403转动;引线卡404和副卷筒405协同工作使缆线均匀布置在主卷筒403上;伺服电机402通过控制线路经集线器723与嵌入式计算机722信号连接,在嵌入式计算机722获取自主水下航行器的深度数据以及与水面辅助机器人的相对位置后,确定释放缆线420的长度。缆线420集成了光纤线421、电缆线422、监测线423、填充线424、防护外层425,图8是缆线的截面图;防护外层425内设置监测线423,监测线423内设置光纤线421和电缆线422,光纤线421和电缆线422与监测线423之间的空间内填充填充线424。缆线状态检测器410通过检测线423判断缆线420的防护外层425是否有破损以及破损程度;缆线状态检测器410通过控制线路经集线器723与嵌入式计算机722信号连接,缆线状态检测器410对缆线420的检测结果发送到嵌入式计算机722,由嵌入式计算机722根据内置的程序对缆线420的检测结果进行进一步的操作;而缆线状态检测器410在获取缆线420收放的拉力数据后,就可以将该缆线420收放的拉力数据传输到嵌入式计算机722,并由嵌入式计算机722通过伺服电机402来实现微调节缆线420的收放线速度。The cable management system 40 includes a cable retractor 400, a cable status monitor 410 and a cable 420; through a cable management solution based on the cable management system 40, and according to this solution, it is ensured that the cable 420 does not affect the autonomy. The underwater vehicle should be as short as possible under the premise of normal operation. This method of binding the cable 420 to the shortest distance between the autonomous underwater vehicle and the surface assistance robot can reduce the operation of the autonomous underwater vehicle and the surface assistance robot. resistance. The cable management system 40 manages the cable through the autonomous underwater vehicle's depth data and relative position to the surface assistance robot. The cable retractor 400 is composed of a housing 401 , a servo motor 402 , a main reel 403 , a lead card 404 and a sub-reel 405 , as shown in FIG. 7 . The servo motor 402 is installed on the rotating shaft of the main drum 403 and is coaxial. The servo motor 402 directly drives the main drum 403 to rotate without variable speed; the lead card 404 and the auxiliary drum 405 work together to make the cables evenly arranged on the main drum 403 The servo motor 402 is connected to the embedded computer 722 through the control circuit through the hub 723. After the embedded computer 722 obtains the depth data of the autonomous underwater vehicle and the relative position with the surface auxiliary robot, the length of the release cable 420 is determined. The cable 420 integrates an optical fiber line 421, a cable line 422, a monitoring line 423, a filling line 424, and a protective outer layer 425. Fig. 8 is a cross-sectional view of the cable; The optical fiber line 421 and the cable line 422 , and the space between the optical fiber line 421 , the cable line 422 and the monitoring line 423 is filled with a filling line 424 . The cable state detector 410 judges whether the protective outer layer 425 of the cable 420 is damaged and the degree of damage through the detection line 423; The detector 410 sends the detection result of the cable 420 to the embedded computer 722, and the embedded computer 722 performs further operations on the detection result of the cable 420 according to the built-in program; After releasing the tension data, the tension data of the retractable cable 420 can be transmitted to the embedded computer 722, and the embedded computer 722 can realize fine adjustment of the retractable and retractable speed of the cable 420 through the servo motor 402.

能源补给装置50为水面辅助机器人工作提供电能,为自主水下航行器输送电能。能源补给装置50包括主电池组511、备用电池组512、太阳能发电模块500、变压稳压器520以及电池管理控制器530,如图9所示。主电池组511和备用电池组512置于水面辅助机器人机身100的内部;太阳能发电模块500主要由太阳能光伏板Ⅰ501、太阳能光伏板Ⅱ502、太阳能光伏板Ⅲ503、太阳能光伏板Ⅳ504、太阳能光伏板Ⅴ505和太阳能控制器506组成,通过太阳光发电;太阳能发电模块500产生的电能通过太阳能控制器506直接输送到主电池组511,太阳能发电模块500所产生的电能基本能满足自主水下航行器和水面辅助机器人作业的供电要求;变压稳压器520能够进行电压逆变,提升输送电压以减少电能损失;电池管理控制器530管理电能输配与控制,电池管理控制器530控制线路经集线器723与嵌入式计算机722信号连接,通过嵌入式计算机722经过辅助系统70的天气监测器710获取的天气状况优化电能的使用。The energy supply device 50 provides electric energy for the surface auxiliary robot to work, and transmits electric energy for the autonomous underwater vehicle. The energy supply device 50 includes a main battery pack 511 , a backup battery pack 512 , a solar power generation module 500 , a variable voltage regulator 520 and a battery management controller 530 , as shown in FIG. 9 . The main battery pack 511 and the spare battery pack 512 are placed inside the body 100 of the surface auxiliary robot; the solar power generation module 500 is mainly composed of solar photovoltaic panels I 501, solar photovoltaic panels II 502, solar photovoltaic panels III 503, solar photovoltaic panels IV 504, and solar photovoltaic panels V 505 It is composed of solar controller 506 and generates electricity through sunlight; the electric energy generated by solar power generation module 500 is directly sent to the main battery pack 511 through solar controller 506, and the electric energy generated by solar power generation module 500 can basically meet the needs of autonomous underwater vehicles and water surfaces. The power supply requirements for assisting robot operations; the voltage transformer 520 can perform voltage inversion, increase the transmission voltage to reduce power loss; the battery management controller 530 manages power transmission and control, and the battery management controller 530 controls the circuit through the hub 723 and The embedded computer 722 is signal connected, and the weather conditions obtained by the embedded computer 722 through the weather monitor 710 of the auxiliary system 70 optimize the use of electric energy.

追踪导航系统60由水声定位通信模块600、多普勒测速仪610和惯性导航系统620组成。水声定位通信模块600包括水声探头Ⅰ601、水声探头Ⅱ602、水声探头Ⅲ603以及信号收发处理器604;水声探头Ⅲ603可发射接收携带信息的声波,水声通信可作为水面辅助机器人和自主水下航行器的辅助通信。信号收发处理器604分别与水声探头Ⅰ601、水声探头Ⅱ602、水声探头Ⅲ603以及嵌入式计算机722信号连接;嵌入式计算机722通过信号收发处理器604经水声探头Ⅰ601、水声探头Ⅱ602、水声探头Ⅲ603发出通讯信号;The tracking and navigation system 60 is composed of an underwater acoustic positioning communication module 600 , a Doppler velocimeter 610 and an inertial navigation system 620 . The underwater acoustic positioning communication module 600 includes underwater acoustic probe I 601, underwater acoustic probe II 602, underwater acoustic probe III 603 and signal transceiver processor 604; Auxiliary communications for underwater vehicles. The signal transceiver processor 604 is respectively connected with the signals of the underwater acoustic probe I 601, the underwater acoustic probe II 602, the underwater acoustic probe III 603 and the embedded computer 722; The underwater acoustic probe Ⅲ603 sends out a communication signal;

确定水面辅助机器人与自主水下航行器的相对位置的方式一:通过水声探头Ⅰ601、水声探头Ⅱ602、水声探头Ⅲ603接收到的自主水下航行器发出的声波的时间差来计算两者的相对位置;The first way to determine the relative position of the surface auxiliary robot and the autonomous underwater vehicle is to calculate the time difference of the sound waves emitted by the autonomous underwater vehicle received by the underwater acoustic probe I601, II602 and III603. relative position;

确定水面辅助机器人与自主水下航行器的相对位置的方式二:水面辅助机器人通过惯性导航系统620和多普勒测速仪610进行定位,定位数据与水下航行器的定位数据进行匹配计算。因存在累计误差,此方式作为辅助定位。The second method of determining the relative position of the surface-assisted robot and the autonomous underwater vehicle: the surface-assisted robot performs positioning through the inertial navigation system 620 and the Doppler velocimeter 610, and the positioning data is matched with the positioning data of the underwater vehicle for calculation. Due to the cumulative error, this method is used as an auxiliary positioning.

辅助系统70包括自诊断系统700以及天气监测器710。自诊断系统700集成了温度传感器、湿度传感器、霍尔传感器以及采集卡;可获取水面辅助机器人的工作状态参数,温度传感器、湿度传感器以及霍尔传感器通过采集卡由控制线路经集线器723与嵌入式计算机722信号连接,嵌入式计算机722通过温度传感器、湿度传感器以及霍尔传感器获取的数据进行机器人的运行状态判断,并根据参数变化值作出故障判断。天气监测器710包括了气象监测仪Ⅰ711、气象监测仪Ⅱ712以及微计算机713;气象监测仪Ⅰ711、气象监测仪Ⅱ712均与微计算机713信号连接,微计算机713通过气象监测仪Ⅰ711、气象监测仪Ⅱ712获取当前的天气数据,而微计算机713通过控制线路经集线器723与嵌入式计算机722信号连接,嵌入式计算机722通过微计算机713获取的数据进行机器人运行状态的调整(如供电等)。Assistance systems 70 include a self-diagnostic system 700 and a weather monitor 710 . The self-diagnosis system 700 integrates a temperature sensor, a humidity sensor, a Hall sensor and an acquisition card; it can obtain the working state parameters of the surface auxiliary robot, and the temperature sensor, the humidity sensor and the Hall sensor are controlled by the acquisition card through the control circuit via the hub 723 and the embedded The computer 722 is connected to the signal, and the embedded computer 722 judges the running state of the robot through the data obtained by the temperature sensor, the humidity sensor and the Hall sensor, and makes a fault judgment according to the parameter change value. The weather monitor 710 includes a weather monitor I 711, a weather monitor II 712 and a microcomputer 713; the weather monitor I 711 and the weather monitor II 712 are connected to the microcomputer 713 signal, and the microcomputer 713 passes through the weather monitor I 711 and the weather monitor II 712 Obtain current weather data, and microcomputer 713 is connected with embedded computer 722 signal through hub 723 by control circuit, and embedded computer 722 carries out the adjustment (as power supply etc.) of robot operation state by the data that microcomputer 713 obtains.

控制系统720的控制主板721集成了嵌入式计算机722、集线器723、主摄像头724以及底部摄像头725,主摄像头724安装在透光玻璃701下方;底部摄像头725的光学镜头集成和多普勒测速仪探头611一起安装。底部摄像头725和主摄像头724均通过控制线路经集线器723与嵌入式计算机722信号连接;嵌入式计算机722经底部摄像头725和主摄像头724头采集的图像进行运动辅助控制,同时管理控制整个水面机器人的运行。图10是各系统组合结构的示意图。The control board 721 of the control system 720 integrates an embedded computer 722, a hub 723, a main camera 724 and a bottom camera 725, and the main camera 724 is installed under the light-transmitting glass 701; the optical lens of the bottom camera 725 is integrated with a Doppler speedometer probe 611 installed together. The bottom camera 725 and the main camera 724 are all connected to the embedded computer 722 through the control line through the hub 723; run. Fig. 10 is a schematic diagram of the combined structure of each system.

图11是水面辅助机器人与自主水下航行器正常工作时的示意图,包括:海底1000、自主水下航行器2000、缆线3000、海平面4000、水面辅助机器人5000。Fig. 11 is a schematic diagram of a surface auxiliary robot and an autonomous underwater vehicle in normal operation, including: a seabed 1000, an autonomous underwater vehicle 2000, a cable 3000, a sea level 4000, and a surface auxiliary robot 5000.

最后,还需要注意的是,以上列举的仅是本发明的一个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。Finally, it should also be noted that what is listed above is only a specific embodiment of the present invention. Obviously, the present invention is not limited to the above embodiments, and many variations are possible. All deformations that can be directly derived or associated by those skilled in the art from the content disclosed in the present invention should be considered as the protection scope of the present invention.

Claims (10)

1.基于自主水下航行器的水面辅助机器人,包括设置在自主水下航行器上的水面辅助机装置;其特征是:所述水面辅助机装置包括随自主水下航行器同步移动的能源补给装置和无线信号中继装置;1. A water surface auxiliary robot based on an autonomous underwater vehicle, including a surface auxiliary machine device arranged on the autonomous underwater vehicle; it is characterized in that: the water surface auxiliary machine device includes an energy supply that moves synchronously with the autonomous underwater vehicle devices and wireless signal relay devices; 所述能源补给装置和无线信号中继装置均通过缆线与自主水下航行器相互连接;Both the energy supply device and the wireless signal relay device are connected to each other with the autonomous underwater vehicle through cables; 所述能源补给装置和无线信号中继装置均设置在船型结构机器人机身上;Both the energy supply device and the wireless signal relay device are arranged on the ship-shaped structure robot body; 所述机器人机身内设置有控制系统、运动系统、缆线管理系统、追踪导航系统以及辅助系统;The body of the robot is provided with a control system, a motion system, a cable management system, a tracking navigation system and an auxiliary system; 所述控制系统分别与无线信号中继装置、能源补给装置、运动系统、缆线管理系统、追踪导航系统、辅助系统以及自主水下航行器信号连接;并通过控制无线信号中继装置、能源补给装置、运动系统、缆线管理系统、追踪导航系统以及辅助系统实现水面辅助机器人与自主水下航行器保持在水平方向上的同步移动;The control system is respectively connected with the wireless signal relay device, the energy supply device, the motion system, the cable management system, the tracking navigation system, the auxiliary system and the autonomous underwater vehicle signal; and through the control of the wireless signal relay device, the energy supply The device, the motion system, the cable management system, the tracking navigation system and the auxiliary system realize the synchronous movement of the surface assisting robot and the autonomous underwater vehicle in the horizontal direction; 所述能源补给装置分别与无线信号中继装置、控制系统、运动系统、缆线管理系统、追踪导航系统、辅助系统以及自主水下航行器电连接。The energy supply device is respectively electrically connected with the wireless signal relay device, the control system, the motion system, the cable management system, the tracking and navigation system, the auxiliary system and the autonomous underwater vehicle. 2.根据权利要求1所述的基于自主水下航行器的水面辅助机器人,其特征是:所述无线信号中继装置包括无线电模块、卫星定位导航模块以及光缆通信模块;2. The surface auxiliary robot based on the autonomous underwater vehicle according to claim 1, wherein the wireless signal relay device includes a radio module, a satellite positioning and navigation module and an optical cable communication module; 所述光缆通信模块通过缆线与自主水下航行器信号连接;The optical cable communication module is signal-connected to the autonomous underwater vehicle through a cable; 所述能源补给装置通过缆线与自主水下航行器电连接;The energy supply device is electrically connected to the autonomous underwater vehicle through a cable; 所述控制系统与无线电模块、卫星定位导航模块以及光缆通信模块信号连接;The control system is signal-connected with the radio module, the satellite positioning navigation module and the optical cable communication module; 所述能源补给装置与控制系统、无线电模块、卫星定位导航模块以及光缆通信模块电连接。The energy supply device is electrically connected with the control system, the radio module, the satellite positioning and navigation module and the optical cable communication module. 3.根据权利要求2所述的基于自主水下航行器的水面辅助机器人,其特征是:所述缆线管理系统包括缆线收放器、缆线状态监测器;3. The surface auxiliary robot based on autonomous underwater vehicle according to claim 2, wherein the cable management system includes a cable retractor and a cable status monitor; 所述的缆线收放器为通过电机带动的收放线装置,所述缆线均匀地缠绕在收放线装置的卷筒上;The cable take-up and release device is a take-up and take-off device driven by a motor, and the cable is evenly wound on the reel of the take-up and take-off device; 所述的缆线状态监测器与缆线之间信号连接,实现缆线传输状态的监测;The signal connection between the cable state monitor and the cable realizes the monitoring of the cable transmission state; 所述缆线收放器和缆线状态监测器均与控制系统信号连接;Both the cable retractor and the cable state monitor are connected to the control system signal; 所述缆线内集成光纤线、电缆线和监测线;Optical fiber wires, cable wires and monitoring wires are integrated in the cables; 所述缆线收放器和缆线状态监测器均与能源补给装置电连接。Both the cable retractor and the cable state monitor are electrically connected to the energy supply device. 4.根据权利要求3所述的基于自主水下航行器的水面辅助机器人,其特征是:所述运动系统包括推进器、运动控制器;4. The water surface auxiliary robot based on the autonomous underwater vehicle according to claim 3, wherein the motion system includes a propeller and a motion controller; 所述推进器包括分别设置在机器人机身左、右两侧的左推进器和右推进器;The propeller includes a left propeller and a right propeller respectively arranged on the left and right sides of the robot fuselage; 所述运动控制器分别与控制系统、左推进器和右推进器信号连接;The motion controller is respectively connected with the control system, the left propeller and the right propeller for signals; 所述运动控制器、左推进器和右推进器均与能源补给装置电连接。The motion controller, the left thruster and the right thruster are all electrically connected with the energy supply device. 5.根据权利要求4所述的基于自主水下航行器的水面辅助机器人,其特征是:所述追踪导航系统包括惯性导航系统、水声定位通信模块和多普勒测速仪;5. The surface auxiliary robot based on the autonomous underwater vehicle according to claim 4, wherein the tracking navigation system includes an inertial navigation system, an underwater acoustic positioning communication module and a Doppler velocimeter; 所述惯性导航系统、水声定位通信模块和多普勒测速仪均与控制系统信号连接,所述自主水下航行器上的惯性导航系统通过缆线与控制系统信号连接;The inertial navigation system, the underwater acoustic positioning communication module and the Doppler velocimeter are all connected to the control system signal, and the inertial navigation system on the autonomous underwater vehicle is connected to the control system signal through a cable; 所述水声定位通信模块和多普勒测速仪均与能源补给装置电连接,所述惯性导航系统通过缆线与能源补给装置电连接。Both the underwater acoustic positioning communication module and the Doppler speedometer are electrically connected to the energy supply device, and the inertial navigation system is electrically connected to the energy supply device through cables. 6.根据权利要求5所述的基于自主水下航行器的水面辅助机器人,其特征是:所述辅助系统包括均与控制系统信号连接的自诊断系统和天气监测器;6. The surface auxiliary robot based on the autonomous underwater vehicle according to claim 5, characterized in that: the auxiliary system includes a self-diagnostic system and a weather monitor that are all connected with the control system signal; 所述自诊断系统和天气监测器均与能源补给装置电连接。Both the self-diagnosis system and the weather monitor are electrically connected to the energy supply device. 7.根据权利要求6所述的基于自主水下航行器的水面辅助机器人,其特征是:所述能源补给装置为主电池组、备用电池组、太阳能发电模块、变压稳压器以及电池管理控制器构成的能源补给装置。7. The water surface auxiliary robot based on autonomous underwater vehicle according to claim 6, characterized in that: said energy supply device is a main battery pack, a backup battery pack, a solar power generation module, a voltage transformer regulator and a battery management An energy supply device composed of a controller. 8.根据权利要求7所述的基于自主水下航行器的水面辅助机器人,其特征是:所述控制系统包括控制主板和控制线路;8. The surface auxiliary robot based on the autonomous underwater vehicle according to claim 7, wherein the control system includes a control board and a control circuit; 所述控制主板控制各个模块的工作,所述控制主板上集成了嵌入式计算机、集线器和摄像头。The control main board controls the work of each module, and an embedded computer, a hub and a camera are integrated on the control main board. 9.一种自主水下航行器的水面辅助方法,其特征是:基于水面辅助机器人完成;9. A water surface assistance method for an autonomous underwater vehicle, characterized in that: it is completed based on a water surface assistance robot; 所述水面辅助机器人通过能源补给装置获取电能,并将电能通过缆线传输到自主水下航行器,作为自主水下航行器的可用能源;The surface auxiliary robot obtains electrical energy through an energy supply device, and transmits the electrical energy to the autonomous underwater vehicle through a cable, as an available energy source for the autonomous underwater vehicle; 所述水面辅助机器人通过无线信号中继装置实现无线信号的收发,并通过缆线传输到自主水下航行器,实现自主水下航行器通过实时的无线信号交互完成与水面基站的实时信号传递;The surface auxiliary robot realizes the transmission and reception of wireless signals through the wireless signal relay device, and transmits them to the autonomous underwater vehicle through cables, so that the autonomous underwater vehicle completes the real-time signal transmission with the surface base station through real-time wireless signal interaction; 所述水面辅助机器人通过控制系统主动控制水面辅助机器人的行动轨迹,并保持水面辅助机器人与自主水下航行器运动轨迹在水平方向上一致。The surface assisting robot actively controls the action trajectory of the surface assisting robot through the control system, and keeps the movement trajectory of the surface assisting robot and the autonomous underwater vehicle consistent in the horizontal direction. 10.根据权利要求9所述的一种自主水下航行器的水面辅助方法,其特征是:所述控制系统通过追踪导航系统以及辅助系统获取当前的航行环境以及自主水下航行器的相对位置;10. The surface assistance method of an autonomous underwater vehicle according to claim 9, wherein the control system obtains the current navigation environment and the relative position of the autonomous underwater vehicle through a tracking navigation system and an auxiliary system ; 所述控制系统根据当前的航行环境以及自主水下航行器的相对位置,经缆线管理系统进行缆线的长度调节;The control system adjusts the length of the cable through the cable management system according to the current navigation environment and the relative position of the autonomous underwater vehicle; 通过能源补给装置给无线信号中继装置、控制系统、运动系统、缆线管理系统、追踪导航系统、辅助系统以及自主水下航行器提供能源;Provide energy to wireless signal relay devices, control systems, motion systems, cable management systems, tracking and navigation systems, auxiliary systems and autonomous underwater vehicles through energy supply devices; 所述能源补给装置通过更换主电池组或备用电池组、太阳能发电模块吸收太阳能后发电形式来完成能源补给。The energy supply device completes the energy supply by replacing the main battery pack or the spare battery pack, and generating electricity after the solar power generation module absorbs solar energy.
CN201410393093.9A 2014-08-12 2014-08-12 Water surface auxiliary robot based on autonomous underwater vehicle and use method Active CN104369842B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410393093.9A CN104369842B (en) 2014-08-12 2014-08-12 Water surface auxiliary robot based on autonomous underwater vehicle and use method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410393093.9A CN104369842B (en) 2014-08-12 2014-08-12 Water surface auxiliary robot based on autonomous underwater vehicle and use method

Publications (2)

Publication Number Publication Date
CN104369842A CN104369842A (en) 2015-02-25
CN104369842B true CN104369842B (en) 2017-04-12

Family

ID=52549108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410393093.9A Active CN104369842B (en) 2014-08-12 2014-08-12 Water surface auxiliary robot based on autonomous underwater vehicle and use method

Country Status (1)

Country Link
CN (1) CN104369842B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787273A (en) * 2015-05-12 2015-07-22 徐鹏飞 Seabed berth type deepwater oil and gas pipeline inspection system
CN104932518A (en) * 2015-05-15 2015-09-23 厦门大学 Underwater robot sea search system
NO341429B1 (en) 2016-04-27 2017-11-13 Rolls Royce Marine As Unmanned surface vessel for remotely operated underwater vehicle operations
CN106114782B (en) * 2016-08-22 2018-09-18 中科探海(苏州)海洋科技有限责任公司 A kind of Multi-purpose underwater robot
JP6965506B2 (en) * 2016-10-06 2021-11-10 富士フイルムビジネスイノベーション株式会社 Underwater mobile and underwater communication systems
CN106887895A (en) * 2017-04-17 2017-06-23 武建国 A kind of wave-energy power generation formula underwater robot
CN107380381A (en) * 2017-07-29 2017-11-24 深圳市丝路蓝创意展示有限公司 A kind of floatable diving system
CN109428320A (en) * 2017-09-04 2019-03-05 中国科学院微电子研究所 Motor control protection system
CN107992089A (en) * 2018-01-19 2018-05-04 美钻能源科技(上海)有限公司 A kind of intelligent automation ocean culture system (OCS) and its method
CN108287018B (en) * 2018-01-25 2021-08-10 国家海洋技术中心 Marine environment noise measuring device based on wave glider
CN108282220B (en) * 2018-02-05 2021-06-04 深圳纽兰德科技有限公司 Submersible communication system and communication method
CN108516068A (en) * 2018-06-15 2018-09-11 深圳纳瓦科技有限公司 A kind of signal transferring device and underwater robot
CN108891564B (en) * 2018-08-01 2020-08-04 西安誉博机器人系统技术有限公司 Radiation-resistant underwater operation robot
CN108909972A (en) * 2018-08-01 2018-11-30 广州奕航科技有限公司 A kind of control system of hull bottom perphyton intelligence cleaner
CN109444867B (en) * 2018-10-29 2020-11-24 南京海脉科技有限责任公司 Underwater positioning and communication system and method
CN109253398B (en) * 2018-11-01 2019-09-03 燕山大学 A Dynamic Monitoring Method for Underwater Oil Pipeline Considering Transient Steady-state Performance
CN109743096A (en) * 2018-12-24 2019-05-10 哈尔滨工程大学 A UUV Radio Communication Method Based on UAV
CN109572945A (en) * 2019-01-18 2019-04-05 上海交通大学 A kind of transfer and its communicating control method for wave aerodone
CN110347168A (en) * 2019-07-10 2019-10-18 哈尔滨工程大学 A kind of method of real-time tracing underwater robot, system and unmanned relaying equipment
CN110888376B (en) * 2019-12-18 2025-02-11 山东省科学院海洋仪器仪表研究所 A self-propelled underwater vehicle simulation device and motion control method thereof
CN111011318A (en) * 2019-12-31 2020-04-17 深圳潜行创新科技有限公司 A visual fish finder, fish finder system and fish finder method capable of precise positioning
CN111152893A (en) * 2020-02-12 2020-05-15 成都清妙创意设计有限公司 Multifunctional intelligent boat
CN111404235B (en) * 2020-04-22 2021-11-26 上海空间电源研究所 Deep and open sea energy relay system for energy supply of unmanned underwater vehicle
CN111976925A (en) * 2020-08-31 2020-11-24 江西科技学院 Underwater robot
CN112260768B (en) * 2020-10-23 2021-11-09 军事科学院系统工程研究院网络信息研究所 Electro-optical hybrid underwater communication method based on optical fiber zooming
CN112614412A (en) * 2020-11-19 2021-04-06 天津大学 Simulation modeling method combining ocean metamorphic environment and underwater positioning navigation
CN113120152B (en) * 2021-04-20 2021-11-26 中山大学 Flat type underwater vehicle
CN113895580B (en) * 2021-11-17 2022-11-15 国网智能科技股份有限公司 Communication positioning device and method for cableless autonomous underwater robot
CN114664071B (en) * 2022-03-18 2023-03-28 青岛理工大学 Underwater vehicle remote control system and method based on magnetic sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947051A (en) * 1997-06-04 1999-09-07 Geiger; Michael B. Underwater self-propelled surface adhering robotically operated vehicle
CN203094420U (en) * 2012-12-24 2013-07-31 西安理工大学 Underwater robot
CN103796912A (en) * 2011-05-17 2014-05-14 艾尼股份公司 Autonomous underwater system for 4D environmental monitoring
CN103785923A (en) * 2014-02-24 2014-05-14 哈尔滨工程大学 Local dry-method underwater welding robot based on ROV
CN203601547U (en) * 2013-08-07 2014-05-21 天津昊野科技有限公司 Underwater robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947051A (en) * 1997-06-04 1999-09-07 Geiger; Michael B. Underwater self-propelled surface adhering robotically operated vehicle
CN103796912A (en) * 2011-05-17 2014-05-14 艾尼股份公司 Autonomous underwater system for 4D environmental monitoring
CN203094420U (en) * 2012-12-24 2013-07-31 西安理工大学 Underwater robot
CN203601547U (en) * 2013-08-07 2014-05-21 天津昊野科技有限公司 Underwater robot
CN103785923A (en) * 2014-02-24 2014-05-14 哈尔滨工程大学 Local dry-method underwater welding robot based on ROV

Also Published As

Publication number Publication date
CN104369842A (en) 2015-02-25

Similar Documents

Publication Publication Date Title
CN104369842B (en) Water surface auxiliary robot based on autonomous underwater vehicle and use method
CN106564573B (en) Profiling observation and underwater docking system based on photovoltaic generation
CN103910053B (en) Unmanned observation control ship and unmanned observation control system
CN102862667B (en) Mixed type underwater navigation detector
US11926414B2 (en) Underwater and aerial vehicle
CN105292398B (en) An Unmanned Shipborne UAV Hybrid System
CN105329418B (en) A kind of unmanned boat-carrying underwater robot hybrid system
CN106218840B (en) A kind of dish-shaped submarine navigation device based on eddying motion
CN206178469U (en) Unmanned ship control system
CN108045530A (en) A kind of submarine cable detection underwater robot and operational method
CN205971770U (en) Underwater bionic robot fish
CN102126544B (en) Underwater self-propulsion omnibearing sensor
CN108321598B (en) Autonomous aircraft under a kind of modular water
CN203593143U (en) Wind-solar complementary type unmanned ocean monitoring boat
CN107226186A (en) AUV multifunctional comprehensives service platform and formation progress control method
CN106737703A (en) Rescue robot under water and its rescue mode based on wireless telecommunications
CN109606188B (en) Charging ship, unmanned ship cooperative charging system and cooperative charging method
CN203780780U (en) Solar underwater robot
CN111452939A (en) Autonomous line-inspection underwater helicopter for diversion tunnel detection
CN112758286A (en) Wireless charging underwater resident intelligent robot system and method for cluster operation
CN101854390A (en) Mobile underwater observation network simulation platform
CN114212220A (en) Underwater detection device and control method thereof
CN203864985U (en) Unmanned measurement and control ship and unmanned measurement and control system
CN107878669A (en) The wisdom water surface monitors trimaran
CN211731772U (en) Split towing cable type water surface-underwater unmanned aircraft

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant