CN104359492A - Error estimation algorithm for track plotting positioning system composed of inertial navigator and wheel speed meter - Google Patents
Error estimation algorithm for track plotting positioning system composed of inertial navigator and wheel speed meter Download PDFInfo
- Publication number
- CN104359492A CN104359492A CN201410613529.0A CN201410613529A CN104359492A CN 104359492 A CN104359492 A CN 104359492A CN 201410613529 A CN201410613529 A CN 201410613529A CN 104359492 A CN104359492 A CN 104359492A
- Authority
- CN
- China
- Prior art keywords
- error
- coordinates
- inertial navigation
- wheel
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明提供一种惯性导航和轮速计组成的航迹推算定位系统误差估算算法,通过将航迹推算坐标和GPS经纬度坐标转换到同一个局部坐标系中,以GPS坐标为标准值,航迹推算坐标为参照值,计算航迹推算坐标和GPS坐标之间的误差值,设定3个误差参数,每个误差参数设定一定数量级的误差范围,在该范围内隔段误差选取一个误差量,使用正交试验法筛选出部分典型的误差组合,找出误差最小的误差参数组合作为误差参数最优值,并代入惯导航向和轮速计的左右轮数据中进行修正。本发明通过简单的算法,估算惯导的系统误差,并一次性的给予修正,算法简单,速度快,计算一次便可修正,简化了惯性导航定位系统使用前的误差校准过程。
The present invention provides an error estimation algorithm for a dead reckoning positioning system composed of an inertial navigation and a wheel speedometer. By converting the dead reckoning coordinates and GPS latitude and longitude coordinates into the same local coordinate system, the GPS coordinates are used as standard values, and the track The estimated coordinates are reference values, calculate the error value between the dead reckoning coordinates and the GPS coordinates, set 3 error parameters, each error parameter sets a certain order of magnitude error range, and select an error amount for every segment error within this range , use the orthogonal test method to screen out some typical error combinations, find out the error parameter combination with the smallest error as the optimal value of the error parameter, and substitute it into the left and right wheel data of the inertial navigation and wheel speedometer for correction. The invention estimates the system error of the inertial navigation through a simple algorithm, and corrects it at one time. The algorithm is simple, the speed is fast, and the correction can be performed after one calculation, which simplifies the error calibration process before the use of the inertial navigation positioning system.
Description
技术领域technical field
本发明涉及惯性导航系统技术领域,尤其涉及一种惯性导航和轮速计组成的航迹推算定位系统误差估算算法。The invention relates to the technical field of inertial navigation systems, in particular to an error estimation algorithm for a dead reckoning positioning system composed of an inertial navigation and a wheel speedometer.
背景技术Background technique
惯性导航系统依靠机械设备和相应算法工作,能独立完成导航任务。此外惯导系统不受外界诸如天气,电磁辐射的环境因素的干扰,并且载体在小范围内的活动拥有非常高的可靠性,因此惯性导航系统广泛应用于军用和民用领域。The inertial navigation system relies on mechanical equipment and corresponding algorithms to work, and can independently complete navigation tasks. In addition, the inertial navigation system is not disturbed by external environmental factors such as weather and electromagnetic radiation, and the carrier's activities in a small range have very high reliability, so the inertial navigation system is widely used in military and civilian fields.
地面车辆的惯导系统在长时间的使用之后,惯导的安装有松动,会导致惯导有安装偏移角,并且惯导受外界影响如磁场时也会导致惯导初始方向角存在偏差,而车轮由于车胎气压的变化,车轮的半径相较于标准车轮半径也会出现偏差,从而导致轮速计在计算车辆移动距离时出现偏移误差。由于这类误差问题的存在,会导致惯导定位系统在进行航迹推算定位时,得到的坐标和运行轨迹出现较大的系统偏移误差。因此惯导系统在开始工作前,通常要进行初始校准以减小惯导初始安装偏差角、惯导初始误差、轮速计偏移误差等误差导致的定位误差。After the inertial navigation system of the ground vehicle is used for a long time, the installation of the inertial navigation is loose, which will cause the installation offset angle of the inertial navigation, and the inertial navigation is affected by the outside world, such as the magnetic field, which will also cause the initial orientation angle of the inertial navigation to deviate. Due to changes in tire pressure, the radius of the wheel will also deviate from the standard wheel radius, which will cause an offset error when the wheel speedometer calculates the moving distance of the vehicle. Due to the existence of this kind of error problem, it will lead to large system offset errors in the obtained coordinates and running track when the inertial navigation positioning system performs dead reckoning positioning. Therefore, before the inertial navigation system starts to work, an initial calibration is usually performed to reduce the positioning error caused by the initial installation deviation angle of the inertial navigation system, the initial error of the inertial navigation system, and the offset error of the wheel speedometer.
惯导的初始校准通常分为静基座分析和动态误差分析两种。静基座测试主要测量惯导和其他导航器件的系统误差,因需要使用大量精密仪器,虽然精度较高但是需要耗费很长的时间并且成本也非常高。惯导的动态分析主要在惯导系统开始工作前进行校准,减小安装偏差角、惯导初始未对准之类的问题导致惯导系统工作定位产生系统误差。而且动态误差测试在室外场地就能进行,不需要使用精密仪器,用GPS的坐标和航向角作为参考标准就行,不需要太长的时间,使用方便,成本也非常低。但动态误差修正方法主要注重误差的实时修正,算法复杂的同时,不能一次性的估计系统误差值并给予修正。The initial calibration of inertial navigation is usually divided into static base analysis and dynamic error analysis. The static base test mainly measures the system errors of inertial navigation and other navigation devices. Because a large number of precision instruments are required, although the accuracy is high, it takes a long time and the cost is very high. The dynamic analysis of the inertial navigation system is mainly calibrated before the inertial navigation system starts to work, so as to reduce the installation deviation angle and the initial misalignment of the inertial navigation system, which will cause systematic errors in the positioning of the inertial navigation system. Moreover, the dynamic error test can be carried out in the outdoor field without the use of precision instruments, just use the GPS coordinates and heading angle as the reference standard, it does not take too long, it is easy to use, and the cost is very low. However, the dynamic error correction method mainly focuses on the real-time correction of the error. While the algorithm is complex, it cannot estimate the system error value and correct it at one time.
发明内容Contents of the invention
本发明的目的是为了简化惯性导航定位系统使用前的误差校准过程,提供一种惯性导航和轮速计组成的航迹推算定位系统误差估算算法,算法简单,速度快,计算一次便可修正。The purpose of the present invention is to simplify the error calibration process before the use of the inertial navigation and positioning system, and provide an error estimation algorithm for the dead reckoning and positioning system composed of inertial navigation and wheel speedometer. The algorithm is simple and fast, and can be corrected after one calculation.
为解决上述技术问题,本发明采用如下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
一种惯性导航和轮速计组成的航迹推算定位系统误差估算算法,包括如下步骤:An error estimation algorithm for a dead reckoning positioning system composed of an inertial navigation and a wheel speedometer, comprising the following steps:
(1)试验车打开车载的惯导、轮速计和GPS行驶一段路程,分别记录惯导航向、轮速计和GPS经纬度坐标数据;(1) The test vehicle turns on the on-board inertial navigation, wheel speedometer and GPS to drive for a certain distance, and records the inertial navigation direction, wheel speedometer and GPS latitude and longitude coordinate data respectively;
(2)根据惯导航向数据和轮速计数据进行航迹推算,得出n时刻航迹推算坐标(xn,yn);(2) Perform dead reckoning according to inertial navigation data and wheel speedometer data, and obtain dead reckoning coordinates (x n , y n ) at time n;
(3)以试验车的起点为原点设置局部坐标系,将GPS经纬度坐标和步骤(2)中的航迹推算坐标转换为局部坐标系坐标,并以正北方向作为Y轴正方向,正东方向作为X轴正方向,两个坐标数据整合到同一坐标系中进行对比,以GPS经纬度坐标点为标准参量,航迹推算坐标点为包含误差的对比值,两坐标点之间的距离即为误差值;(3) Set the local coordinate system with the starting point of the test vehicle as the origin, convert the GPS latitude and longitude coordinates and the dead reckoning coordinates in step (2) into local coordinate system coordinates, and take the true north as the positive direction of the Y axis, and the true east As the positive direction of the X-axis, the two coordinate data are integrated into the same coordinate system for comparison. Taking the GPS latitude and longitude coordinate point as the standard parameter, the dead reckoning coordinate point is the comparison value including the error, and the distance between the two coordinate points is difference;
(4)设定惯导航向初始误差角、左轮速计初始误差和右轮速计初始误差3个偏差量为导致航迹推算得到的坐标出现误差的误差参数;(4) Set the initial error angle of the inertial navigation heading, the initial error of the left wheel speedometer and the initial error of the right wheel speedometer as the error parameters that cause errors in the coordinates obtained by dead reckoning;
(5)确定误差参数值最优值所在的范围:首先对误差参数组进行筛选,当误差参数值水平数为1或2时,通过作图的办法对误差参数组进行筛选,当误差参数值水平数大于等于3时,通过正交试验法对误差参数组进行筛选;然后将筛选出的误差参数组代入局部坐标系中的航迹推算坐标中计算误差大小来确定最优值的取值区间;(5) Determine the range of the optimal value of the error parameter value: first, the error parameter group is screened. When the error parameter value level is 1 or 2, the error parameter group is screened by the method of drawing. When the error parameter value When the number of levels is greater than or equal to 3, the error parameter group is screened by the orthogonal test method; then the screened error parameter group is substituted into the dead reckoning coordinates in the local coordinate system to calculate the error size to determine the value interval of the optimal value ;
(6)将筛选出的误差参数组代入局部坐标系中的航迹推算坐标中计算误差大小,根据计算比较误差最大值和均值能否满足精度要求,判断是否为误差参数组的最优解;(6) Substituting the selected error parameter group into the dead reckoning coordinates in the local coordinate system to calculate the size of the error, and whether the maximum value and mean value of the calculated comparison error can meet the accuracy requirements, and judge whether it is the optimal solution of the error parameter group;
(7)在计算得到误差参数组的最优解后,将最优解代入惯导航向和轮速计的左右轮数据中进行修正,使用修正后的惯导航向和轮速计数据进行航迹推算便可以得到修正后的惯导定位坐标。(7) After calculating the optimal solution of the error parameter group, the optimal solution is substituted into the left and right wheel data of the inertial navigation and wheel speedometer for correction, and the corrected inertial navigation and wheel speedometer data are used to track The corrected inertial navigation positioning coordinates can be obtained by extrapolation.
步骤(2)中,所述航迹推算的具体方法为:根据试验车的惯导航向和轮速计的车辆行驶距离数据,通过三角函数法计算车辆的位置坐标(xn,yn),如下式所示:In step (2), the specific method of dead reckoning is: according to the inertial navigation direction of the test vehicle and the vehicle travel distance data of the wheel speedometer, the position coordinates (x n , y n ) of the vehicle are calculated by the trigonometric function method, As shown in the following formula:
xn=xn-1+△Ls*cos(headingn-1) (i)x n =x n-1 +△Ls*cos(heading n-1 ) (i)
yn=yn-1+△Ls*sin(headingn-1)y n =y n-1 +△Ls*sin(heading n-1 )
其中△Ls为单位采样时间内试验车移动的距离,headingn-1为第n-1时刻试验车的瞬时惯导航向。Among them, △Ls is the moving distance of the test vehicle in unit sampling time, and heading n-1 is the instantaneous inertial navigation heading of the test vehicle at the n-1th moment.
所述单位采样时间内试验车移动的距离△Ls取左轮和右轮的行驶距离的平均值,如下式所示:The moving distance ΔLs of the test vehicle within the unit sampling time is the average value of the driving distance of the left wheel and the right wheel, as shown in the following formula:
其中Ls是轮速计记录的行驶距离平均值,LsL为左轮轮速计记录的行驶距离,LsR是右轮轮速计记录的行驶距离,单位采样时间内试验车移动的距离△Ls=Lsn-Lsn-1,其中Lsn为n时刻的左右轮速计记录的行驶距离的平均值。Where Ls is the average travel distance recorded by the wheel tachometer, Ls L is the travel distance recorded by the left wheel tachometer, Ls R is the travel distance recorded by the right wheel tachometer, and the distance traveled by the test vehicle per unit sampling time △Ls= Ls n -Ls n-1 , wherein Ls n is the average value of the driving distance recorded by the left and right wheel speedometers at time n.
步骤(3)中,GPS经纬度坐标转换成局部坐标系坐标的计算过程具体为:设n时刻GPS经纬度坐标转化为局部坐标系中的坐标(x’n,y’n),如下式所示:In step (3), the calculation process of converting GPS latitude and longitude coordinates into coordinates of the local coordinate system is specifically as follows: Let the GPS latitude and longitude coordinates be converted into coordinates (x' n , y' n ) in the local coordinate system at time n, as shown in the following formula:
x’n=x’n-1+R*rω,y’n=y’n-1+R*rφ (iii)x' n =x' n-1 +R*r ω ,y' n =y' n-1 +R*r φ (iii)
rω=△ω*π/360 rω =△ω*π/360
rφ=△φ*π/360r φ = △φ*π/360
其中R为地球半径,△ω和△φ为n时刻和n-1时刻之间的经度和纬度差值,rω和rφ为经度和纬度差值转化为弧度值。Among them, R is the radius of the earth, △ω and △φ are the longitude and latitude difference between n time and n-1 time, r ω and r φ are longitude and latitude difference converted into radian value.
步骤(5)中,误差参数误差范围设定为惯性导航官方标注误差的两倍,且正负方向都设定为误差的分布范围,在误差正负的分布范围内,设定同组等分的水平数,同时0也作为一组水平数,让各个不同组的水平数自由组合,构成全部误差参数组。In step (5), the error range of the error parameter is set to twice the official label error of the inertial navigation, and the positive and negative directions are set as the distribution range of the error. Within the positive and negative distribution range of the error, set the same group equal At the same time, 0 is also used as a set of level numbers, so that the level numbers of different groups can be freely combined to form all error parameter groups.
步骤(6)中,若对误差参数组有更大的精度需求,需要进一步精确计算最优解时,可以使用响应曲面法来拟合误差曲面,找到误差曲面上误差最小的点,其对应的误差参数即是误差参数的最优解。In step (6), if there is a greater precision requirement for the error parameter set and further accurate calculation of the optimal solution is required, the response surface method can be used to fit the error surface to find the point with the smallest error on the error surface, and the corresponding The error parameter is the optimal solution of the error parameter.
由以上技术方案可知,本发明通过将航迹推算坐标和GPS经纬度坐标转换到同一个局部坐标系中,以GPS坐标为标准值,航迹推算坐标为参照值,计算航迹推算坐标和GPS坐标之间的误差值,设定3个误差参数,假定航迹推算坐标和GPS坐标之间的误差主要由这3个误差参数产生,每个误差参数设定一定数量级的误差范围,在该范围内隔段误差选取一个误差量,在所有误差量的组合中,使用正交试验法设计,筛选出部分典型的误差组合,在这部分典型的误差组合中找出误差最小的误差参数组合作为误差参数最优值,并代入惯导航向和轮速计的左右轮数据中进行修正。As can be seen from the above technical solutions, the present invention converts dead reckoning coordinates and GPS latitude and longitude coordinates into the same local coordinate system, uses GPS coordinates as standard values, and dead reckoning coordinates as reference values to calculate dead reckoning coordinates and GPS coordinates The error value between, set 3 error parameters, assume that the error between the dead reckoning coordinates and the GPS coordinates is mainly generated by these 3 error parameters, each error parameter sets a certain order of magnitude of error range, within this range Select an error amount for the interval error, use the orthogonal test method to design some typical error combinations in all the error amount combinations, and find the error parameter combination with the smallest error in this part of the typical error combinations as the error parameter The optimal value is substituted into the left and right wheel data of the inertial navigation and wheel speedometer for correction.
本专利通过简单的算法,估算惯导的系统误差,并一次性的给予修正,算法简单,速度快,计算一次便可修正,简化了惯性导航定位系统使用前的误差校准过程。This patent uses a simple algorithm to estimate the system error of the inertial navigation system and correct it at one time. The algorithm is simple and fast, and can be corrected after one calculation, which simplifies the error calibration process before the use of the inertial navigation positioning system.
附图说明Description of drawings
图1为本发明惯性导航和轮速计组成的航迹推算定位系统误差估算算法的流程图;Fig. 1 is the flowchart of the error estimation algorithm of the dead reckoning positioning system composed of inertial navigation and wheel speedometer of the present invention;
图2为L9(34)正交试验表;Figure 2 is the L 9 (3 4 ) orthogonal test table;
图3为本发明实施例中实验车在局部坐标系中航迹推算出的坐标轨迹和GPS坐标轨迹,各坐标点的间距即为误差值。Fig. 3 is the coordinate trajectory and the GPS coordinate trajectory calculated by the track of the experimental vehicle in the local coordinate system in the embodiment of the present invention, and the distance between each coordinate point is the error value.
具体实施方式Detailed ways
下面结合附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
本发明的目的是简化惯性导航定位系统使用前的误差校准过程,在校准时让试验车打开车载的惯导、轮速计和GPS跑较长的一段路程,记录惯导航向和轮速计结合推算的车辆运行轨迹与GPS定位航向数据。设定左轮和右轮速计初始误差和惯导航向初始误差角为3个待修正的误差参数,使用响应曲面法计算最优的误差参数,使得惯导和轮速计推算得到的车辆运行轨迹坐标与GPS记录的车辆运行轨迹坐标之间的误差最小,将此最优误差参数代入航迹推算数据中修正误差。虽然存在修正效果受GPS精度影响的问题,但是只是粗略修正惯导系统误差时,这样的精度制约是可以接受的。The purpose of the present invention is to simplify the error calibration process before the use of the inertial navigation and positioning system. During the calibration, let the test vehicle turn on the vehicle-mounted inertial navigation, wheel speedometer and GPS to run a long distance, and record the combination of the inertial navigation direction and the wheel speedometer. Estimated vehicle trajectory and GPS positioning heading data. Set the initial error of the left and right wheel speedometers and the initial error angle of the inertial navigation heading as the three error parameters to be corrected, and use the response surface method to calculate the optimal error parameters, so that the vehicle trajectory calculated by the inertial navigation and wheel speedometers The error between the coordinates and the vehicle track coordinates recorded by GPS is the smallest, and this optimal error parameter is substituted into the dead reckoning data to correct the error. Although there is a problem that the correction effect is affected by the GPS accuracy, such accuracy constraints are acceptable when only roughly correcting the inertial navigation system error.
如图1所示,惯性导航定位系统误差估算算法的具体步骤为:As shown in Figure 1, the specific steps of the error estimation algorithm of the inertial navigation positioning system are as follows:
(1)试验车打开车载的惯导、轮速计和GPS行驶一段路程,分别记录惯导航向、轮速计和GPS经纬度坐标数据。(1) The test vehicle turns on the on-board inertial navigation, wheel speedometer and GPS to drive for a certain distance, and records the inertial navigation direction, wheel speedometer and GPS latitude and longitude coordinate data respectively.
(2)根据惯导航向数据和轮速计数据进行航迹推算,得出n时刻航迹推算坐标(xn,yn)。(2) Perform dead reckoning according to inertial navigation data and wheel speedometer data, and obtain dead reckoning coordinates (x n , y n ) at time n.
所述航迹推算的具体方法为:根据试验车的惯导航向和轮速计的车辆行驶距离数据,通过三角函数法计算车辆的位置坐标(xn,yn),如下式所示:The specific method of dead reckoning is: according to the inertial navigation direction of the test vehicle and the vehicle travel distance data of the wheel speedometer, the position coordinates (x n , y n ) of the vehicle are calculated by the trigonometric function method, as shown in the following formula:
xn=xn-1+△Ls*cos(headingn-1) (i)x n =x n-1 +△Ls*cos(heading n-1 ) (i)
yn=yn-1+△Ls*sin(headingn-1)y n =y n-1 +△Ls*sin(heading n-1 )
其中△Ls为单位采样时间内试验车移动的距离,headingn-1为第n-1时刻试验车的瞬时惯导航向。将惯导航向数据标记为heading,试验车行驶时的航向变化率△θ=headingn-headingn-1。Among them, △Ls is the moving distance of the test vehicle in unit sampling time, and heading n-1 is the instantaneous inertial navigation heading of the test vehicle at the n-1th moment. Mark the inertial navigation data as heading, and the heading change rate △θ=heading n -heading n-1 when the test vehicle is running.
使用惯导输出的方向值和轮速计进行航迹推算定位时,由于车辆转向时左右轮行驶的距离不同,同时转向时的轮胎抓地力和车辆惯性相互作用产生的侧倾力会使得车体侧倾,压缩车辆左右两边的悬挂,作用在车辆左右上的力不同会导致车轮内的气压不同、车轮的半径变化不同。由于轮速计的信号是车辆转过一周之后产生的脉冲信号,需要乘以车轮半径和圆弧值才能得到车轮行驶距离。因此,为了能使车辆行驶的距离能够更加接近真实值,取左轮和右轮的行驶距离的数据,计算其平均值。When using the direction value output by the inertial navigation and the wheel speedometer for dead reckoning positioning, due to the different driving distances of the left and right wheels when the vehicle turns, the rolling force generated by the interaction between the tire grip and the vehicle inertia will make the vehicle body Rolling, compressing the suspension on the left and right sides of the vehicle, the different forces acting on the left and right sides of the vehicle will result in different air pressure in the wheels and different changes in the radius of the wheels. Since the signal of the wheel speedometer is the pulse signal generated after the vehicle turns a circle, it needs to be multiplied by the wheel radius and arc value to get the wheel travel distance. Therefore, in order to make the distance traveled by the vehicle closer to the real value, the data of the distance traveled by the left wheel and the right wheel are taken and the average value is calculated.
所述单位采样时间内试验车移动的距离△Ls取左轮和右轮的行驶距离的平均值,如下式所示:The moving distance ΔLs of the test vehicle within the unit sampling time is the average value of the driving distance of the left wheel and the right wheel, as shown in the following formula:
其中Ls是轮速计记录的行驶距离平均值,LsL为左轮轮速计记录的行驶距离,LsR是右轮轮速计记录的行驶距离,单位采样时间内试验车移动的距离△Ls=Lsn-Lsn-1,其中Lsn为n时刻的左右轮速计记录的行驶距离的平均值。Where Ls is the average travel distance recorded by the wheel tachometer, Ls L is the travel distance recorded by the left wheel tachometer, Ls R is the travel distance recorded by the right wheel tachometer, and the distance traveled by the test vehicle per unit sampling time △Ls= Ls n -Ls n-1 , wherein Ls n is the average value of the driving distance recorded by the left and right wheel speedometers at time n.
为了方便车辆方向信息和坐标信息同步采集,及航迹推算时避免数据采集时间不同时产生的不必要的误差,优选地,惯导装置和GPS接受装置设定在同一初始时刻以同样的周期采集车辆航向、行驶距离和GPS经纬度坐标信息。In order to facilitate the synchronous collection of vehicle direction information and coordinate information, and to avoid unnecessary errors caused by different data collection times during dead reckoning, preferably, the inertial navigation device and the GPS receiving device are set to collect at the same initial moment and at the same cycle Vehicle heading, driving distance and GPS latitude and longitude coordinate information.
同时,为了同步处理对比GPS获得的经纬度坐标信息和轮速计、惯导航向组成的定位系统经过航迹推算得到的坐标信息,并将两者的坐标点之间的误差数值计算出来。可以将车辆坐标的GPS经纬数据和惯导轮速计组合系统推算得到的坐标转换到同一个局部坐标系中,以方便两者坐标的对比,具体方法如下步骤(3)。At the same time, in order to synchronize the longitude and latitude coordinate information obtained by comparing the GPS and the coordinate information obtained by the positioning system composed of wheel speedometer and inertial navigation through dead reckoning, and calculate the error value between the two coordinate points. The GPS latitude and longitude data of the vehicle coordinates and the coordinates calculated by the integrated system of the inertial wheel speedometer can be converted into the same local coordinate system to facilitate the comparison of the two coordinates. The specific method is as follows (3).
(3)以试验车的起点为原点设置局部坐标系,将GPS经纬度坐标和步骤(2)中的航迹推算坐标转换为局部坐标系坐标,并以正北方向作为Y轴正方向,正东方向作为X轴正方向,两个坐标数据整合到同一坐标系中进行对比,以GPS经纬度坐标点为标准参量,航迹推算坐标点为包含误差的对比值,两坐标点之间的距离即为误差值。(3) Set the local coordinate system with the starting point of the test vehicle as the origin, convert the GPS latitude and longitude coordinates and the dead reckoning coordinates in step (2) into local coordinate system coordinates, and take the true north as the positive direction of the Y axis, and the true east As the positive direction of the X-axis, the two coordinate data are integrated into the same coordinate system for comparison. Taking the GPS latitude and longitude coordinate point as the standard parameter, the dead reckoning coordinate point is the comparison value including the error, and the distance between the two coordinate points is difference.
因为实验是在小范围内进行,为了简化GPS经纬度坐标转换成局部坐标系坐标的计算过程,将地球假设作为球体来计算,地球半径取均值R=6371393m。GPS获得的数据中,n时刻的纬度为φn,n时刻的经度为ωn,n时刻和n-1时刻之间的纬度差值为△φ,经度差值为△ω,将纬度差值转化为弧度值rφ=△φ*π/360,将经度差值转化为弧度值rω=△ω*π/360。设n时刻GPS经纬度坐标转化为局部坐标系中的坐标(x’n,y’n),如下式所示:Because the experiment is carried out in a small area, in order to simplify the calculation process of converting GPS latitude and longitude coordinates into local coordinate system coordinates, the earth is assumed to be calculated as a sphere, and the average value of the earth's radius is R=6371393m. In the data obtained by GPS, the latitude at n time is φ n , the longitude at n time is ω n , the latitude difference between n time and n-1 time is △φ, the longitude difference is △ω, and the latitude difference It is transformed into radian value r φ =△φ*π/360, and the longitude difference is converted into radian value r ω =△ω*π/360. Let the GPS latitude and longitude coordinates at time n be transformed into coordinates (x' n , y' n ) in the local coordinate system, as shown in the following formula:
x’n=x’n-1+R*rω,y’n=y’n-1+R*rφ (iii)x' n =x' n-1 +R*r ω ,y' n =y' n-1 +R*r φ (iii)
rω=△ω*π/360 rω =△ω*π/360
rφ=△φ*π/360r φ = △φ*π/360
(4)设定惯导航向初始误差角、左轮速计初始误差和右轮速计初始误差3个偏差量为导致航迹推算得到的坐标出现误差的误差参数。(4) Set the three deviations, the initial error angle of the inertial navigation heading, the initial error of the left wheel speedometer, and the initial error of the right wheel speedometer, as the error parameters that cause errors in the coordinates obtained by dead reckoning.
以推算得到的坐标数据为待修正值,GPS接收器得到的经纬度坐标为参考标准值,假设左、右轮速与初始设定的标准值存在偏差,惯导的初始对准角与实际值存在偏差,设定这3个偏差量是导致航迹推算得到的坐标出现误差的主要原因,作为误差参数值,通过修正这3个偏差量来达到修正航迹推算误差的途径。Take the calculated coordinate data as the value to be corrected, and the latitude and longitude coordinates obtained by the GPS receiver as the reference standard value. Assume that there is a deviation between the left and right wheel speeds and the initial set standard value, and the initial alignment angle of the inertial navigation is different from the actual value. Deviation, setting these three deviations is the main cause of the error in the coordinates obtained by dead reckoning. As the error parameter value, the way to correct the dead reckoning error is achieved by correcting these three deviations.
(5)确定误差参数值最优值所在的范围。(5) Determine the range of the optimal value of the error parameter value.
确定误差参数值最优值所在的范围,需要对误差参数误差的范围进行设定,一般设定为惯性导航官方标注误差的两倍,且正负方向都设定为误差的分布范围,在误差正负的分布范围内,设定同组等分的水平数,同时0也作为一组水平数,让各个不同组的水平数自由组合,构成全部误差参数组。To determine the range of the optimal value of the error parameter value, it is necessary to set the range of the error parameter error, which is generally set to twice the official label error of the inertial navigation, and the positive and negative directions are set as the distribution range of the error. In the distribution range of positive and negative, set the level number of equal division of the same group, and at the same time, 0 is also used as a group of level numbers, so that the level numbers of different groups can be freely combined to form all error parameter groups.
通过误差参数组计算误差大小来确定最优值的取值区间,为了简化计算,需要对误差参数值的组数进行筛选。The value interval of the optimal value is determined by calculating the error size through the error parameter group. In order to simplify the calculation, it is necessary to filter the number of error parameter value groups.
筛选具有两种方法,当误差参数值水平数为1或2时,可以通过作图的办法对误差参数组进行筛选,当误差参数值水平数大于等于3时,则通过正交试验法对误差参数组进行筛选。There are two methods for screening. When the error parameter value level is 1 or 2, the error parameter group can be screened by drawing; when the error parameter value level is greater than or equal to 3, the error parameter group can be screened by orthogonal test method. parameter group to filter.
正交试验法使用已经做好了的表格、正交表来安排试验并进行数据分析。在正交试验设计中,因子可以是定量的,也可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。在三因子三水平的条件试验中,通常有两种试验进行方法。一种是取三因子所有水平之间的组合,三因子三水平就是试验27次,每个点代表一个参数组合,但是这种方法要测试的组合太多了,工作量非常大。第二种是简单对比法,变化一个因素而固定其他因素,知道选出所以最优因素,组成最优解组合,但是第二种方法的代表性很差,很大的范围内都没有选点,因此这种方法不全面,选出的组合也不一定是所以组合中最好的,其次,比较条件时只有单个数据的比较,不能剔除误差的干扰,会造成结论的不稳定。Orthogonal test method uses already prepared tables and orthogonal tables to arrange tests and conduct data analysis. In an orthogonal experimental design, factors can be quantitative or qualitative. The distances between the levels of quantitative factors can be equal or unequal. In the three-factor three-level conditional experiment, there are usually two methods for conducting the experiment. One is to take the combination of all levels of the three factors. The three factors and three levels are 27 trials, and each point represents a parameter combination. However, there are too many combinations to be tested in this method, and the workload is very heavy. The second is a simple comparison method, changing one factor while fixing other factors, knowing that all the optimal factors are selected to form an optimal solution combination, but the representativeness of the second method is very poor, and there are no points selected in a large range , so this method is not comprehensive, and the selected combination may not be the best among all the combinations. Secondly, when comparing conditions, only single data is compared, and the interference of errors cannot be eliminated, which will lead to unstable conclusions.
考虑兼顾这两种试验方法的优点,使用正交表从全面试验的点中选择具有典型性、代表性的点,选出的试验点必须在试验范围内分布很均匀,能反映全面情况才行。三因子三水平试验中,对应参数A有三个平面,对应参数B,C也各有3个平面。在9个平面上,试验点都应当一样多,即对每个因子的每个水平都要同等看待。同时,每个要求平面上的每行、每列上的点都一样多。Considering the advantages of these two test methods, use the orthogonal table to select typical and representative points from the comprehensive test points. The selected test points must be evenly distributed within the test range and can reflect the overall situation. . In the three-factor three-level test, there are three planes corresponding to parameter A, and three planes corresponding to parameters B and C respectively. On the 9 planes, the number of experimental points should be the same, that is, each level of each factor should be treated equally. At the same time, every row and every column on each plane requires the same number of points.
当因子数和水平数都不太大时,可通过作图的办法来选择分布均匀的试验点。因子数和水平数较多时,按照正交表来安排试验。正交表如图2所示,各列中的1、2、3都各出现3次,任何两列,例如第3、4列,所构成的有序数从上向下一共有9种,既没有重复也没有遗漏,其他任何两列所构成的有序数也是这9种各出现一次,满足了试验点分布的均匀性。When the number of factors and the number of levels are not too large, evenly distributed test points can be selected by means of graphing. When there are many factors and levels, the experiments are arranged according to the orthogonal table. The orthogonal table is shown in Figure 2. 1, 2, and 3 in each column appear three times. Any two columns, such as the 3rd and 4th columns, have a total of 9 types of ordered numbers from top to bottom. There is no repetition or omission, and the ordered numbers formed by any other two columns also appear once in each of these nine types, which satisfies the uniformity of the distribution of test points.
记录误差数据时,对比参考量为以GPS的坐标和航向为标准参量,惯导航向结合轮速计推算的运行坐标点为包含误差的对比值。误差值为每个采样时刻,将航迹推算得到的局部坐标系中的坐标点,和GPS定位得到的经纬度经过转换,得到在同一局部坐标系中的坐标点,他们之间的距离数值,即作为误差值。为了衡量误差的大小,判定误差是否为最小值,需要同时计算误差的最大值和平均值衡作为误差大小的衡量标准,具体采用的方法如下步骤(6)所述。When recording the error data, the comparison reference is to take the GPS coordinates and heading as the standard parameters, and the running coordinate points calculated by the inertial navigation direction combined with the wheel speed meter are the comparison values including the error. The error value is each sampling moment, the coordinate points in the local coordinate system obtained by dead reckoning, and the latitude and longitude obtained by GPS positioning are converted to obtain the coordinate points in the same local coordinate system, and the distance value between them, that is as an error value. In order to measure the size of the error and determine whether the error is a minimum value, it is necessary to simultaneously calculate the maximum value and the average value of the error as a measure of the error size. The specific method used is as described in step (6).
(6)将筛选出的误差参数组代入局部坐标系中的航迹推算坐标中计算误差大小,根据计算比较误差最大值和均值能否满足精度要求,判断是否为误差参数组的最优解。(6) Substitute the selected error parameter group into the dead reckoning coordinates in the local coordinate system to calculate the error size, and judge whether it is the optimal solution of the error parameter group according to the calculation and comparison of whether the maximum value and mean value of the error can meet the accuracy requirements.
使用正交试验法计算比较误差的最大值和均值,得到误差参数最优解的取值范围后,通过计算误差找出最小值,误差参数精度要求不高时,该误差最小的误差参数组便可以当做是最优解。如果对误差参数组有更大的精度需求,需要进一步精确计算最优解时,可以使用响应曲面法来拟合误差曲面,找到误差曲面上误差最小的点,其对应的误差参数即是误差参数的最优解。曲面响应法都是现有的算法,算法原理简单,所有计算可以通过软件自动完成。Use the orthogonal test method to calculate the maximum value and mean value of the comparison error, and after obtaining the value range of the optimal solution of the error parameter, find the minimum value by calculating the error. When the accuracy of the error parameter is not high, the error parameter group with the smallest error will be can be regarded as the optimal solution. If there is a greater accuracy requirement for the error parameter set and further accurate calculation of the optimal solution is required, the response surface method can be used to fit the error surface, and the point with the smallest error on the error surface can be found, and the corresponding error parameter is the error parameter the optimal solution of . The surface response method is an existing algorithm, the principle of the algorithm is simple, and all calculations can be automatically completed by software.
(7)在计算得到误差参数组的最优解后,将最优解代入惯导航向和轮速计的左右轮数据中进行修正,使用修正后的惯导航向和轮速计数据进行航迹推算便可以得到修正后的惯导定位坐标。(7) After calculating the optimal solution of the error parameter group, the optimal solution is substituted into the left and right wheel data of the inertial navigation and wheel speedometer for correction, and the corrected inertial navigation and wheel speedometer data are used to track The corrected inertial navigation positioning coordinates can be obtained by extrapolation.
对本发明的一种具体实施例说明如下:A kind of specific embodiment of the present invention is described as follows:
试验车设定车轮半径初始的标准误差为0,惯导的初始航向误差为0,左右轮的正负误差范围取-0.03m到0.03m之间,航向角的左右误差范围取-1度到1度。The initial standard error of the wheel radius of the test vehicle is set to 0, the initial heading error of the inertial navigation is 0, the positive and negative error range of the left and right wheels is between -0.03m and 0.03m, and the left and right error range of the heading angle is -1 degree to 1 degree.
设定好误差范围后,车轮误差每隔0.01m取值,惯导航向误差每隔0.25度取值。在所有的误差参数组合中,筛选典型的误差参数组合。使用正交试验设计法,选出(-0.03,-0.03,1),(0,0,0.25),(0.02,0.02,-1),(0,-0.03,0.25),(0.03,-0.03,-1),(0.03,0,0.25),(-0.03,0.03,-1)这几组误差组合,计算其误差值。After setting the error range, the wheel error is taken every 0.01m, and the inertial navigation error is taken every 0.25 degrees. Among all error parameter combinations, typical error parameter combinations are screened. Using the orthogonal experimental design method, select (-0.03,-0.03,1), (0,0,0.25), (0.02,0.02,-1), (0,-0.03,0.25), (0.03,-0.03 ,-1), (0.03,0,0.25), (-0.03,0.03,-1) these groups of error combinations, calculate the error value.
结果是误差参数为(-0.01,0.01,0.25)时,航迹推算与GPS坐标之间的误差最小。航迹推算和GPS坐标的估计如图3所示,这时的坐标距离误差最大值为21.76m,平均值为13.24m。The result is that when the error parameter is (-0.01, 0.01, 0.25), the error between dead reckoning and GPS coordinates is the smallest. The estimation of dead reckoning and GPS coordinates is shown in Figure 3. At this time, the maximum value of the coordinate distance error is 21.76m, and the average value is 13.24m.
如果误差平均值和最大值能满足精度要求,正交试验的结果就能作为修正值使用。如果需要更高的精度,则使用能进行曲面响应分析的软件进一步计算最优值来修正车辆的系统误差。If the average value and maximum value of the error can meet the accuracy requirements, the results of the orthogonal test can be used as correction values. If higher accuracy is required, use software capable of surface response analysis to further calculate the optimal value to correct the systematic error of the vehicle.
以上所述实施方式仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。The above-mentioned embodiments are only descriptions of the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Without departing from the design spirit of the present invention, those skilled in the art may make various modifications to the technical solutions of the present invention. and improvements, all should fall within the scope of protection determined by the claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410613529.0A CN104359492B (en) | 2014-11-03 | 2014-11-03 | Inertial navigation and the reckoning Positioning System Error estimating algorithm of wheel speed meter composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410613529.0A CN104359492B (en) | 2014-11-03 | 2014-11-03 | Inertial navigation and the reckoning Positioning System Error estimating algorithm of wheel speed meter composition |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104359492A true CN104359492A (en) | 2015-02-18 |
CN104359492B CN104359492B (en) | 2017-03-01 |
Family
ID=52526776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410613529.0A Expired - Fee Related CN104359492B (en) | 2014-11-03 | 2014-11-03 | Inertial navigation and the reckoning Positioning System Error estimating algorithm of wheel speed meter composition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104359492B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106443742A (en) * | 2016-08-31 | 2017-02-22 | 北京耘华科技有限公司 | Precision indicating method, apparatus and vehicle based on inertia integrated navigation |
CN107063305A (en) * | 2017-04-10 | 2017-08-18 | 江苏东方金钰智能机器人有限公司 | With inertial navigation, the method for the hanging trailing wheel odometer error of pressure sensor amendment descending |
CN107218939A (en) * | 2017-06-04 | 2017-09-29 | 吕文君 | A kind of mobile robot reckoning localization method based on Kinematic Decomposition |
CN107636490A (en) * | 2015-06-01 | 2018-01-26 | 大陆-特韦斯股份有限公司 | One positional information is transformed to the method for a local coordinate system |
CN107806886A (en) * | 2016-09-08 | 2018-03-16 | 千寻位置网络有限公司 | A kind of mobile terminal inertial navigation positioning correction method and its device |
CN108709553A (en) * | 2018-05-21 | 2018-10-26 | 千寻位置网络有限公司 | The method and apparatus that arbitrary point passes through rate pattern in the estimation tunnel of high in the clouds |
CN109443347A (en) * | 2017-07-31 | 2019-03-08 | 意法半导体股份有限公司 | System and corresponding method for land vehicle navigation |
CN109491364A (en) * | 2018-11-19 | 2019-03-19 | 长安大学 | A kind of drive robot system and control method for vehicle testing |
CN110299018A (en) * | 2019-07-29 | 2019-10-01 | 安徽文康科技有限公司 | A kind of vehicle positioning method applied to traffic monitoring |
CN111309001A (en) * | 2018-11-27 | 2020-06-19 | 安波福技术有限公司 | Dead reckoning guidance system and method with master direction-based coordinate correction |
CN112097758A (en) * | 2019-06-18 | 2020-12-18 | 阿里巴巴集团控股有限公司 | Positioning method and device, robot positioning method and robot |
CN112146683A (en) * | 2020-11-24 | 2020-12-29 | 蘑菇车联信息科技有限公司 | Inertial measurement unit calibration parameter adjusting method and device and electronic equipment |
CN112212887A (en) * | 2020-08-27 | 2021-01-12 | 武汉乐庭软件技术有限公司 | Automatic parking positioning parameter calibration method based on Ackerman steering model |
CN112781617A (en) * | 2020-12-28 | 2021-05-11 | 广州吉欧电子科技有限公司 | Error estimation method, integrated navigation processing system, and storage medium |
CN114379577A (en) * | 2020-10-16 | 2022-04-22 | 北京四维图新科技股份有限公司 | Method and device for generating driving track |
CN116990536A (en) * | 2023-09-26 | 2023-11-03 | 毫厘智能科技(江苏)有限公司 | Wheel speed error estimation method, device and readable medium |
WO2025000989A1 (en) * | 2023-06-30 | 2025-01-02 | 惠州市德赛西威汽车电子股份有限公司 | Vehicle path point determination method and apparatus, and vehicle and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1668938A (en) * | 2002-07-15 | 2005-09-14 | 汽车系统实验室公司 | Road Curvature Estimation and Vehicle Object State Estimation System |
CN1894126A (en) * | 2003-12-12 | 2007-01-10 | 西门子公司 | Method and arrangement for monitoring a measuring device located in a wheeled vehicle |
CN101413800A (en) * | 2008-01-18 | 2009-04-22 | 南京航空航天大学 | Navigating and steady aiming method of navigation / steady aiming integrated system |
US20100007550A1 (en) * | 2008-07-10 | 2010-01-14 | Toyota Jidosha Kabushiki Kaisha | Positioning apparatus for a mobile object |
CN102556075A (en) * | 2011-12-15 | 2012-07-11 | 东南大学 | Vehicle operating state estimation method based on improved extended Kalman filter |
CN103026176A (en) * | 2010-07-22 | 2013-04-03 | 高通股份有限公司 | Apparatus and methods for calibrating dynamic parameters of a vehicle navigation system |
DE102012224107A1 (en) * | 2012-12-20 | 2014-06-26 | Continental Teves Ag & Co. Ohg | Method for determining a reference position as starting position for an inertial navigation system |
CN104080680A (en) * | 2012-01-27 | 2014-10-01 | 丰田自动车株式会社 | Vehicle control device |
-
2014
- 2014-11-03 CN CN201410613529.0A patent/CN104359492B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1668938A (en) * | 2002-07-15 | 2005-09-14 | 汽车系统实验室公司 | Road Curvature Estimation and Vehicle Object State Estimation System |
CN1894126A (en) * | 2003-12-12 | 2007-01-10 | 西门子公司 | Method and arrangement for monitoring a measuring device located in a wheeled vehicle |
CN101413800A (en) * | 2008-01-18 | 2009-04-22 | 南京航空航天大学 | Navigating and steady aiming method of navigation / steady aiming integrated system |
US20100007550A1 (en) * | 2008-07-10 | 2010-01-14 | Toyota Jidosha Kabushiki Kaisha | Positioning apparatus for a mobile object |
CN103026176A (en) * | 2010-07-22 | 2013-04-03 | 高通股份有限公司 | Apparatus and methods for calibrating dynamic parameters of a vehicle navigation system |
CN102556075A (en) * | 2011-12-15 | 2012-07-11 | 东南大学 | Vehicle operating state estimation method based on improved extended Kalman filter |
CN104080680A (en) * | 2012-01-27 | 2014-10-01 | 丰田自动车株式会社 | Vehicle control device |
DE102012224107A1 (en) * | 2012-12-20 | 2014-06-26 | Continental Teves Ag & Co. Ohg | Method for determining a reference position as starting position for an inertial navigation system |
Non-Patent Citations (1)
Title |
---|
高航 等: "基于多传感器多路径规划自动泊车系统仿真及实车验证", 《自动化与仪器仪表》 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10732598B2 (en) | 2015-06-01 | 2020-08-04 | Continental Teves Ag & Co. Ohg | Method for the transformation of position information into a local coordinates system |
CN107636490A (en) * | 2015-06-01 | 2018-01-26 | 大陆-特韦斯股份有限公司 | One positional information is transformed to the method for a local coordinate system |
CN106443742A (en) * | 2016-08-31 | 2017-02-22 | 北京耘华科技有限公司 | Precision indicating method, apparatus and vehicle based on inertia integrated navigation |
CN107806886A (en) * | 2016-09-08 | 2018-03-16 | 千寻位置网络有限公司 | A kind of mobile terminal inertial navigation positioning correction method and its device |
CN107063305B (en) * | 2017-04-10 | 2020-03-27 | 江苏东方金钰智能机器人有限公司 | Method for correcting downhill suspended rear wheel odometer error by using inertial navigation and pressure sensors |
CN107063305A (en) * | 2017-04-10 | 2017-08-18 | 江苏东方金钰智能机器人有限公司 | With inertial navigation, the method for the hanging trailing wheel odometer error of pressure sensor amendment descending |
CN107218939A (en) * | 2017-06-04 | 2017-09-29 | 吕文君 | A kind of mobile robot reckoning localization method based on Kinematic Decomposition |
CN109443347A (en) * | 2017-07-31 | 2019-03-08 | 意法半导体股份有限公司 | System and corresponding method for land vehicle navigation |
CN108709553A (en) * | 2018-05-21 | 2018-10-26 | 千寻位置网络有限公司 | The method and apparatus that arbitrary point passes through rate pattern in the estimation tunnel of high in the clouds |
CN108709553B (en) * | 2018-05-21 | 2022-07-08 | 千寻位置网络有限公司 | Method and device for cloud estimation of passing speed model of any point in tunnel |
CN109491364A (en) * | 2018-11-19 | 2019-03-19 | 长安大学 | A kind of drive robot system and control method for vehicle testing |
CN109491364B (en) * | 2018-11-19 | 2022-04-01 | 长安大学 | Driving robot system for vehicle testing and control method |
CN111309001A (en) * | 2018-11-27 | 2020-06-19 | 安波福技术有限公司 | Dead reckoning guidance system and method with master direction-based coordinate correction |
CN112097758A (en) * | 2019-06-18 | 2020-12-18 | 阿里巴巴集团控股有限公司 | Positioning method and device, robot positioning method and robot |
CN110299018A (en) * | 2019-07-29 | 2019-10-01 | 安徽文康科技有限公司 | A kind of vehicle positioning method applied to traffic monitoring |
CN112212887A (en) * | 2020-08-27 | 2021-01-12 | 武汉乐庭软件技术有限公司 | Automatic parking positioning parameter calibration method based on Ackerman steering model |
CN112212887B (en) * | 2020-08-27 | 2022-07-05 | 武汉乐庭软件技术有限公司 | Automatic parking positioning parameter calibration method based on Ackerman steering model |
CN114379577A (en) * | 2020-10-16 | 2022-04-22 | 北京四维图新科技股份有限公司 | Method and device for generating driving track |
CN112146683B (en) * | 2020-11-24 | 2021-02-19 | 蘑菇车联信息科技有限公司 | Inertial measurement unit calibration parameter adjusting method and device and electronic equipment |
CN112146683A (en) * | 2020-11-24 | 2020-12-29 | 蘑菇车联信息科技有限公司 | Inertial measurement unit calibration parameter adjusting method and device and electronic equipment |
CN112781617A (en) * | 2020-12-28 | 2021-05-11 | 广州吉欧电子科技有限公司 | Error estimation method, integrated navigation processing system, and storage medium |
CN112781617B (en) * | 2020-12-28 | 2023-10-03 | 广州吉欧电子科技有限公司 | Error estimation method, integrated navigation processing system and storage medium |
WO2025000989A1 (en) * | 2023-06-30 | 2025-01-02 | 惠州市德赛西威汽车电子股份有限公司 | Vehicle path point determination method and apparatus, and vehicle and storage medium |
CN116990536A (en) * | 2023-09-26 | 2023-11-03 | 毫厘智能科技(江苏)有限公司 | Wheel speed error estimation method, device and readable medium |
CN116990536B (en) * | 2023-09-26 | 2023-12-15 | 毫厘智能科技(江苏)有限公司 | Wheel speed error estimation method, device and readable medium |
Also Published As
Publication number | Publication date |
---|---|
CN104359492B (en) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104359492B (en) | Inertial navigation and the reckoning Positioning System Error estimating algorithm of wheel speed meter composition | |
CN103162689B (en) | The assisted location method of auxiliary vehicle positioning system and vehicle | |
CN102508278B (en) | Adaptive filtering method based on observation noise covariance matrix estimation | |
CN106595715B (en) | Odometer Calibration Method and Device Based on Strapdown Inertial Navigation and Satellite Integrated Navigation System | |
CN104121905A (en) | Course angle obtaining method based on inertial sensor | |
CN109507706B (en) | GPS signal loss prediction positioning method | |
CN105021192A (en) | Realization method of combined navigation system based on zero-speed correction | |
CN102706367B (en) | Accuracy testing and calculating method of single-beam laser speedometer for combined navigation | |
CN104197958B (en) | Speedometer calibration method based on laser velocimeter dead reckoning system | |
CN103644911A (en) | Gyroscope assisted positioning method | |
CN205940567U (en) | On -vehicle combination navigational positioning system | |
CN109470276A (en) | Odometer calibration method and device based on zero-speed correction | |
CN106885573A (en) | Towards the motion capture system Real-time Determination of Attitude method of quadrotor | |
CN102207380B (en) | High-precision horizontal axis tilt error compensation method | |
CN103713300B (en) | A kind of method and its application of quasistatic Double-Star Positioning System | |
CN115615430B (en) | Positioning data correction method and system based on strapdown inertial navigation | |
CN104677359B (en) | A kind of method of dynamic carrier running orbit prediction | |
CN106153037A (en) | The indoor orientation method of a kind of robot, Apparatus and system | |
CN103454607B (en) | The bearing calibration of magnetic field sensor signal and the Vehicular navigation system based on the method | |
CN113932806B (en) | Adaptive integrated navigation method for high-speed aircraft inertial/geomagnetic matching search area | |
CN101739840A (en) | Poly GPS/INS and transportation image fusion and positioning method | |
CN106403999A (en) | GNSS-based real-time compensation method for inertial navigation accelerometer drifting | |
CN101696880A (en) | Dynamic real-time precise level measurement method of moving carrier | |
CN106968665B (en) | Method for measuring inclination of oil well by using inertial navigation system | |
CN112082548B (en) | A hybrid altitude measurement method of UAV inertial navigation and GPS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170301 |