CN104357783A - Titanium-aluminum alloy powder material for thermal spraying and preparation method thereof - Google Patents
Titanium-aluminum alloy powder material for thermal spraying and preparation method thereof Download PDFInfo
- Publication number
- CN104357783A CN104357783A CN201410557638.5A CN201410557638A CN104357783A CN 104357783 A CN104357783 A CN 104357783A CN 201410557638 A CN201410557638 A CN 201410557638A CN 104357783 A CN104357783 A CN 104357783A
- Authority
- CN
- China
- Prior art keywords
- phase
- tial
- alloy powder
- alloy
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 67
- 239000000463 material Substances 0.000 title claims abstract description 35
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 238000007751 thermal spraying Methods 0.000 title abstract description 12
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 64
- 239000000956 alloy Substances 0.000 claims abstract description 64
- 229910006281 γ-TiAl Inorganic materials 0.000 claims abstract description 47
- 238000002844 melting Methods 0.000 claims abstract description 13
- 230000008018 melting Effects 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 22
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 229910052786 argon Inorganic materials 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 10
- 230000006698 induction Effects 0.000 claims description 9
- 229910021325 alpha 2-Ti3Al Inorganic materials 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims 3
- 238000002791 soaking Methods 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000007499 fusion processing Methods 0.000 claims 1
- 239000007858 starting material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 11
- 238000009689 gas atomisation Methods 0.000 abstract description 7
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 229910052758 niobium Inorganic materials 0.000 abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 238000005275 alloying Methods 0.000 abstract 1
- 150000004767 nitrides Chemical class 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000003723 Smelting Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
热喷涂用钛铝合金粉体材料及其制备方法,可为不同热喷涂技术使用。粉体材料以γ-TiAl合金为基体,通过单独和复合添加Nb、Cr、V合金元素,采用真空自耗电弧熔炼炉制备钛铝合金母合金铸锭,并利用气雾化法实现含亚稳β相的γ-TiAl合金粉体材料制备,实现改善粉体材料物相组成的目的。新型γ-TiAl基合金粉体材料主要相成分为γ相、β相和α2相,粉体中无氧化相和氮化相,且球形度较好。
The titanium-aluminum alloy powder material for thermal spraying and its preparation method can be used in different thermal spraying techniques. The powder material is based on γ-TiAl alloy, by adding Nb, Cr, and V alloying elements individually and in combination, using a vacuum consumable arc melting furnace to prepare a titanium-aluminum alloy master alloy ingot, and using the gas atomization method to achieve The γ-TiAl alloy powder material with stable β phase is prepared to achieve the purpose of improving the phase composition of the powder material. The main phase components of the new γ-TiAl-based alloy powder material are γ phase, β phase and α 2 phase, there is no oxidation phase and nitride phase in the powder, and the sphericity is good.
Description
技术领域technical field
本发明涉及热喷涂用含亚稳β相钛铝基合金粉体材料及其制备方法。The invention relates to a titanium-aluminum base alloy powder material containing a metastable β phase for thermal spraying and a preparation method thereof.
背景技术Background technique
热喷涂是一种重要的表面工程技术,是提高材料表面性能的重要手段,通过热喷涂技术可以制备防腐、耐磨、隔热、导电、绝缘、密封等功能涂层,已广泛应用于航空航天、汽车工业、信息技术、光学工程等制造业和再制造行业。Thermal spraying is an important surface engineering technology and an important means to improve the surface properties of materials. Functional coatings such as anti-corrosion, wear-resistant, heat-insulating, conductive, insulating, and sealing can be prepared through thermal spraying technology, which has been widely used in aerospace , automotive industry, information technology, optical engineering and other manufacturing and remanufacturing industries.
钛铝二元系金属间化合物,密度界于纯钛和纯铝之间。其具有金属间化合物的一般特点,原子间不仅存在金属键,同时存在共价键,原子与原子间结合力增强,化学键趋于稳定。因此,钛铝金属间化物的耐腐蚀性能及耐摩擦性能均高于一般钛合金。其中,γ-TiAl金属间化合物作为一种新型轻质结构材料,因具有高比强度、高比刚度、耐蚀、耐磨、耐高温以及优异的抗氧化性能等优点,成为当代航空航天工业、民用工业等领域的优秀候选结构材料之一。Titanium-aluminum binary system intermetallic compound, the density is between pure titanium and pure aluminum. It has the general characteristics of intermetallic compounds. There are not only metal bonds between atoms, but also covalent bonds. The bonding force between atoms is enhanced and the chemical bonds tend to be stable. Therefore, the corrosion resistance and friction resistance of titanium-aluminum intermetallic compounds are higher than those of general titanium alloys. Among them, γ-TiAl intermetallic compound, as a new type of lightweight structural material, has become the contemporary aerospace industry, One of the excellent candidate structural materials in civil industry and other fields.
然而,γ-TiAl合金中共价键约占30~40%,金属键约占60~70%,因共价键所占比例较大导致了合金的脆性,致使单相的γ-TiAl合金在0.5%~1%的室温塑性拉伸应变中就具有断裂倾向,这种脆性主要与材料本身的结构有关。由于γ-TiAl合金塑性变形能力差、难于沉积成形,很难将其制备为涂层应用于材料的表面防护。However, covalent bonds in γ-TiAl alloy account for about 30-40%, and metal bonds account for about 60-70%. The large proportion of covalent bonds leads to the brittleness of the alloy, resulting in the single-phase γ-TiAl alloy at 0.5 %~1% room temperature plastic tensile strain has a fracture tendency, and this brittleness is mainly related to the structure of the material itself. Because γ-TiAl alloy has poor plastic deformation ability and is difficult to deposit and form, it is difficult to prepare it as a coating for surface protection of materials.
在γ-TiAl基合金中,通过添加β相稳定元素如Cr,V,Nb,Mo,W等或通过加工变形可以引入亚稳β相(或B2相)。含有亚稳β相的γ-TiAl基合金具有较良好的塑性。研究发现,γ-TiAl基合金中的β相(或B2)相是一种软质相,这种软质相在超塑性变形时往往包裹于γ相外围,或沿γ相界扩展,有助于增强界面间的抗脱粘能力和协调变形能力,可使γ-TiAl基合金的塑性得到了提高。然而,由于热喷涂用钛铝合金粉体材料开发滞后,制备的钛铝涂层普遍存在杂质含量高、涂层质量低的问题。目前研究表明,没有适合热喷涂用的高纯钛铝合金粉体材料。In γ-TiAl-based alloys, the metastable β phase (or B2 phase) can be introduced by adding β phase stabilizing elements such as Cr, V, Nb, Mo, W, etc. or by processing deformation. γ-TiAl-based alloys containing metastable β-phase have better plasticity. Studies have found that the β phase (or B2) phase in γ-TiAl-based alloys is a soft phase, which is often wrapped around the γ phase or expanded along the γ phase boundary during superplastic deformation, which helps The plasticity of the γ-TiAl-based alloy can be improved by enhancing the anti-debonding ability and coordinated deformation ability between the interfaces. However, due to the lag in the development of titanium-aluminum alloy powder materials for thermal spraying, the prepared titanium-aluminum coating generally has the problems of high impurity content and low coating quality. Current research shows that there is no high-purity titanium-aluminum alloy powder material suitable for thermal spraying.
发明内容Contents of the invention
本发明目的在于提供热喷涂用钛铝合金粉体材料及其制备方法,获得含亚稳β相(或B2相)可用于热喷涂沉积成形的γ-TiAl基粉体材料。The purpose of the present invention is to provide a titanium-aluminum alloy powder material for thermal spraying and a preparation method thereof to obtain a γ-TiAl-based powder material containing a metastable β phase (or B2 phase) that can be used for thermal spraying deposition.
本发明涉及的含亚稳β相(或B2相)γ-TiAl合金的粉体材料,其具有以下组成(原子比):The powder material containing metastable β phase (or B2 phase) γ-TiAl alloy involved in the present invention has the following composition (atomic ratio):
(1)Ti-45Al-7Nb-4V;(1) Ti-45Al-7Nb-4V;
(2)Ti-45Al-7Nb-4Cr;(2) Ti-45Al-7Nb-4Cr;
(3)Ti-45Al-7Nb-2V-2Cr。(3) Ti-45Al-7Nb-2V-2Cr.
本发明涉及的含β相(或B2相)γ-TiAl基合金的粉体材料,其具有以下物相组成之一:The powder material containing β-phase (or B2 phase) γ-TiAl-based alloy involved in the present invention has one of the following phase compositions:
(1)Ti-45Al-7Nb-4V合金粉体中γ-TiAl相含量为65wt.%~95wt.%、α2-Ti3Al相含量为0wt.%~30wt.%、β-Ti相含量为3wt.%~6wt.%;(1) The γ-TiAl phase content in the Ti-45Al-7Nb-4V alloy powder is 65wt.%~95wt.%, the α 2 -Ti 3 Al phase content is 0wt.%~30wt.%, the β-Ti phase content 3wt.%~6wt.%;
(2)Ti-45Al-7Nb-4Cr合金粉体中γ-TiAl相含量为80wt.%~95wt.%、α2-Ti3Al相含量为0wt.%~15wt.%、β-Ti相含量为4wt.%~7wt.%;(2) The γ-TiAl phase content in the Ti-45Al-7Nb-4Cr alloy powder is 80wt.%~95wt.%, the α 2 -Ti 3 Al phase content is 0wt.%~15wt.%, the β-Ti phase content 4wt.%~7wt.%;
(3)Ti-45Al-7Nb-2V-2Cr合金粉体中γ-TiAl相含量为90wt.%~95wt.%、α2-Ti3Al相含量为0wt.%~5wt.%、β-Ti相含量为5wt.%~10wt.%。(3) The content of γ-TiAl phase in Ti-45Al-7Nb-2V-2Cr alloy powder is 90wt.%~95wt.%, the content of α 2 -Ti 3 Al phase is 0wt.%~5wt.%, β-Ti The phase content is 5wt.%~10wt.%.
本发明涉及的热喷涂含亚稳β相(或B2相)γ-TiAl基合金粉体材料的制备步骤如下:The preparation steps of the thermal spraying containing metastable β phase (or B2 phase) γ-TiAl based alloy powder material involved in the present invention are as follows:
(1)采用真空自耗电弧熔炼炉制备γ-TiAl基合金母合金,具体步骤如下:(1) The γ-TiAl-based alloy master alloy is prepared in a vacuum consumable arc melting furnace, and the specific steps are as follows:
1)将纯度为99.9%以上的Ti棒、Al粒和中间合金AlNb、AlV、AlCr分别按原子比Ti-45Al-7Nb-4V、Ti-45Al-7Nb-4Cr和Ti-45Al-7Nb-2V-2Cr进行配比;1) Ti rods, Al grains, and master alloys AlNb, AlV, and AlCr with a purity of more than 99.9% were respectively divided into atomic ratios Ti-45Al-7Nb-4V, Ti-45Al-7Nb-4Cr, and Ti-45Al-7Nb-2V- 2Cr for proportioning;
2)将配好的原材料压制为自耗电极;2) Compress the prepared raw materials into consumable electrodes;
3)在真空自耗电弧熔炼炉中进行三次均匀化熔炼制备母合金,工艺参数为电流5~8kA、电压24~40V、先抽真空6×10-2Pa,熔炼过程通入氩气保护,每次熔炼保温时间10min。3) The master alloy is prepared by homogenizing three times in a vacuum consumable arc melting furnace. The process parameters are current 5-8kA, voltage 24-40V, vacuum 6×10 -2 Pa first, and argon protection during the melting process. , each smelting holding time is 10min.
(2)采用气雾化设备制备含亚稳β相γ-TiAl基合金粉体材料(2) Preparation of metastable β-phase γ-TiAl-based alloy powder materials using gas atomization equipment
1)将步骤一制备的γ-TiAl基母合金铸锭放入气雾化设备的感应炉中,抽真空至10-2Pa;1) Put the γ-TiAl-based master alloy ingot prepared in step 1 into the induction furnace of the gas atomization equipment, and evacuate to 10 -2 Pa;
2)利用感应线圈将γ-TiAl基母合金加热至熔化,加热功率40~50kw、保温时间20min;2) Heating the γ-TiAl-based master alloy to melting with an induction coil, with a heating power of 40-50kw and a holding time of 20 minutes;
3)使熔化后的γ-TiAl基母合金通过炉底小孔,形成4~6mm直径的金属液流,通过环形喷嘴通入高压氩气击碎金属液流形成分散粉末,氩气压力8~12MPa,最终得到含亚稳β相γ-TiAl基合金粉体材料。3) Let the melted γ-TiAl-based master alloy pass through the small hole in the bottom of the furnace to form a metal liquid flow with a diameter of 4 to 6 mm, and pass high-pressure argon gas through the annular nozzle to crush the metal liquid flow to form dispersed powder. 12MPa, the final γ-TiAl-based alloy powder material containing metastable β phase is obtained.
本发明进一步优化了γ-TiAl基合金粉体组织及性能,可制备组织均匀、球形度高、流动性好、氧氮含量低的γ-TiAl基合金粉体材料,同时可获得不同粒度分布的粉体材料,可用于不同热喷涂技术的沉积成形,拓展了钛铝合金的应用范围。The invention further optimizes the structure and performance of the γ-TiAl-based alloy powder, and can prepare γ-TiAl-based alloy powder materials with uniform structure, high sphericity, good fluidity, and low oxygen and nitrogen content, and can obtain different particle size distributions at the same time. The powder material can be used for deposition forming of different thermal spraying techniques, expanding the application range of titanium-aluminum alloy.
本发明有益的效果:以γ-TiAl合金为基体,通过单独和复合添加Nb、Cr、V合金元素,并采用气雾化法实现含亚稳β相的γ-TiAl合金粉体材料制备,实现改善粉体材料相组成、力学性能的目的。Beneficial effects of the present invention: take γ-TiAl alloy as the matrix, add Nb, Cr, V alloy elements individually and compositely, and adopt gas atomization method to realize the preparation of γ-TiAl alloy powder material containing metastable β phase, realize The purpose of improving the phase composition and mechanical properties of powder materials.
附图说明Description of drawings
图1是本发明工艺流程图。Fig. 1 is a process flow diagram of the present invention.
图2是实施例一的钛铝合金铸态组织SEM图。Fig. 2 is an SEM image of the as-cast structure of the titanium-aluminum alloy of Example 1.
图3是实施例一的钛铝合金粉体微观形貌图。Fig. 3 is a microscopic morphology diagram of the titanium-aluminum alloy powder in Example 1.
图4是实施例一的不同粒径钛铝合金粉体弹性模量图。Fig. 4 is a diagram of elastic modulus of titanium-aluminum alloy powders with different particle sizes in Example 1.
图5是实施例二的钛铝合金粉体金相组织图。Fig. 5 is a metallographic structure diagram of the titanium-aluminum alloy powder in Example 2.
图6是实施例二的钛铝合金粉体材料的XRD图。Fig. 6 is an XRD pattern of the titanium-aluminum alloy powder material in Example 2.
图7是实施例二的不同粒径钛铝合金粉体弹性模量图。Fig. 7 is a diagram of the elastic modulus of titanium-aluminum alloy powders with different particle sizes in Example 2.
图8是实施例三的钛铝合金粉体粒度分布图。Fig. 8 is a particle size distribution diagram of the titanium-aluminum alloy powder in Example 3.
图9是实施例三的不同粒径钛铝合金粉体弹性模量图。Fig. 9 is a diagram of elastic modulus of titanium-aluminum alloy powders with different particle sizes in Example 3.
具体实施方式Detailed ways
本发明通过以下措施来实现:The present invention is realized through the following measures:
实施例一:Embodiment one:
1)将纯度为99.9%以上的Ti棒、Al粒和中间合金AlNb、AlV按原子比Ti-45Al-7Nb-4V进行配比,将配好的原材料压制为自耗电极,在真空自耗电弧熔炼炉中进行三次均匀化熔炼制备Ti-45Al-7Nb-4V母合金铸锭,钛铝合金铸锭的微观组织如图2所示,β相在晶界处析出,如图中箭头所示。母合金熔炼工艺参数为:电流6kA、电压30V、先抽真空6×10-2Pa,熔炼过程通入氩气保护,每次熔炼保温时间10min。1) Proportion Ti rods, Al grains, and intermediate alloys AlNb and AlV with a purity of more than 99.9% according to the atomic ratio Ti-45Al-7Nb-4V, and press the prepared raw materials into self-consumable electrodes. The Ti-45Al-7Nb-4V master alloy ingot was prepared by three times of homogenized melting in an electric arc melting furnace. The microstructure of the titanium-aluminum alloy ingot is shown in Figure 2, and the β phase is precipitated at the grain boundary, as indicated by the arrow in the figure Show. The master alloy smelting process parameters are: current 6kA, voltage 30V, vacuum 6×10 -2 Pa first, argon protection in the smelting process, and holding time of 10 minutes for each smelting.
2)将步骤一制备的γ-TiAl基母合金铸锭放入气雾化设备的感应炉中,抽真空至10-2Pa;利用感应线圈将γ-TiAl基母合金加热至熔化,加热功率50kw、保温时间20min;使熔化后的γ-TiAl基母合金通过炉底小孔,形成5mm直径的金属液流,通过环形喷嘴通入高压氩气击碎金属液流形成分散粉末,氩气压力9MPa,最终得到含亚稳β相γ-TiAl基合金粉体材料。如图3所示为钛铝合金粉体的微观形貌图,从图中可以看出,钛铝合金粉体球形度较好,有利于提高粉体流动性,图4是不同粒径钛铝合金粉体弹性模量图,粉体弹性模量随粉体粒径增大而增大。2) Put the γ-TiAl-based master alloy ingot prepared in step 1 into the induction furnace of the gas atomization equipment, and evacuate to 10 -2 Pa; use the induction coil to heat the γ-TiAl-based master alloy until it melts, and the heating power 50kw, holding time 20min; let the melted γ-TiAl-based master alloy pass through the small hole in the bottom of the furnace to form a metal liquid flow with a diameter of 5mm, and pass high-pressure argon gas through the annular nozzle to crush the metal liquid flow to form dispersed powder. 9MPa, finally obtained the metastable β-phase γ-TiAl-based alloy powder material. Figure 3 shows the microscopic morphology of titanium-aluminum alloy powder. It can be seen from the figure that the titanium-aluminum alloy powder has better sphericity, which is conducive to improving the fluidity of the powder. Figure 4 shows titanium aluminum alloys with different particle sizes Alloy powder elastic modulus diagram, the powder elastic modulus increases with the particle size of the powder increases.
实施例二:Embodiment two:
1)将纯度为99.9%以上的Ti棒、Al粒和中间合金AlNb、AlCr按原子比Ti-45Al-7Nb-4Cr进行配比,将配好的原材料压制为自耗电极,在真空自耗电弧熔炼炉中进行三次均匀化熔炼制备Ti-45Al-7Nb-4Cr母合金铸锭,工艺参数为电流5kA、电压40V、先抽真空6×10-2Pa,熔炼过程通入氩气保护,每次熔炼保温时间10min。1) Proportion Ti rods, Al grains, and intermediate alloys AlNb and AlCr with a purity of more than 99.9% according to the atomic ratio Ti-45Al-7Nb-4Cr, and press the prepared raw materials into self-consumable electrodes. The ingots of Ti-45Al-7Nb-4Cr master alloy were prepared by homogenizing three times in an electric arc melting furnace. The process parameters were current 5kA, voltage 40V, vacuum 6×10 -2 Pa first, and argon protection during the melting process. The holding time for each smelting is 10min.
2)将步骤一制备的γ-TiAl基母合金铸锭放入气雾化设备的感应炉中,抽真空至10-2Pa;利用感应线圈将γ-TiAl基母合金加热至熔化,加热功率45kw、保温时间20min;使熔化后的γ-TiAl基母合金通过炉底小孔,形成6mm直径的金属液流,通过环形喷嘴通入高压氩气击碎金属液流形成分散粉末,氩气压力10MPa,最终得到含亚稳β相γ-TiAl基合金粉体材料。图5为钛铝合金粉体抛面的金相组织,由图中可以看出,粉体组织为细小的柱状晶。图6所示为不同粒径范围钛铝合金粉体XRD衍射图谱,由测试结果可以看出粉体主要由γ相、β相(B2相)和α2相组成,粉体中无氧化相和氮化相。图7是不同粒径钛铝合金粉体弹性模量图,粉体弹性模量随粉体粒径增大而增大。2) Put the γ-TiAl-based master alloy ingot prepared in step 1 into the induction furnace of the gas atomization equipment, and evacuate to 10 -2 Pa; use the induction coil to heat the γ-TiAl-based master alloy until it melts, and the heating power 45kw, holding time 20min; make the melted γ-TiAl-based master alloy pass through the small hole in the bottom of the furnace to form a metal liquid flow with a diameter of 6mm, and pass high-pressure argon gas through the annular nozzle to crush the metal liquid flow to form dispersed powder. 10MPa, the final γ-TiAl-based alloy powder material containing metastable β phase is obtained. Figure 5 shows the metallographic structure of the polished surface of the titanium-aluminum alloy powder. It can be seen from the figure that the powder structure is a fine columnar crystal. Figure 6 shows the XRD diffraction patterns of titanium-aluminum alloy powders in different particle size ranges. It can be seen from the test results that the powder is mainly composed of γ phase, β phase (B2 phase) and α 2 phase, and there is no oxidized phase and phase in the powder. nitrided phase. Figure 7 is a diagram of the elastic modulus of titanium-aluminum alloy powders with different particle sizes, and the elastic modulus of the powder increases with the particle size of the powder.
实施例三:Embodiment three:
1)将纯度为99.9%以上的Ti棒、Al粒和中间合金AlNb、AlCr、AlV按原子比Ti-45Al-7Nb-2V-2Cr进行配比,将配好的原材料压制为自耗电极,在真空自耗电弧熔炼炉中进行三次均匀化熔炼制备Ti-45Al-7Nb-2V-2Cr母合金铸锭,工艺参数为电流8kA、电压28V、先抽真空6×10-2Pa,熔炼过程通入氩气保护,每次熔炼保温时间10min。1) Proportion Ti rods, Al grains, and intermediate alloys AlNb, AlCr, and AlV with a purity of more than 99.9% according to the atomic ratio Ti-45Al-7Nb-2V-2Cr, and press the prepared raw materials into consumable electrodes, In a vacuum consumable arc melting furnace, the Ti-45Al-7Nb-2V-2Cr master alloy ingot was prepared by three times of homogenization melting. Argon protection was introduced, and the holding time for each smelting was 10 minutes.
2)将步骤一制备的γ-TiAl基母合金铸锭放入气雾化设备的感应炉中,抽真空至10-2Pa;利用感应线圈将γ-TiAl基母合金加热至熔化,加热功率40kw、保温时间20min;使熔化后的γ-TiAl基母合金通过炉底小孔,形成4mm直径的金属液流,通过环形喷嘴通入高压氩气击碎金属液流形成分散粉末,氩气压力8MPa,最终得到含亚稳β相γ-TiAl基合金粉体材料。图8所示为采用筛分法测得钛铝合金粉体的粒径分布范围。图9是不同粒径钛铝合金粉体弹性模量图,粉体弹性模量随粉体粒径增大而增大。2) Put the γ-TiAl-based master alloy ingot prepared in step 1 into the induction furnace of the gas atomization equipment, and evacuate to 10 -2 Pa; use the induction coil to heat the γ-TiAl-based master alloy until it melts, and the heating power 40kw, holding time 20min; let the melted γ-TiAl-based master alloy pass through the small hole in the bottom of the furnace to form a metal liquid flow with a diameter of 4mm, and pass high-pressure argon gas through the annular nozzle to crush the metal liquid flow to form dispersed powder. 8MPa, the final γ-TiAl-based alloy powder material containing metastable β phase is obtained. Figure 8 shows the particle size distribution range of titanium-aluminum alloy powder measured by sieving method. Figure 9 is a diagram of the elastic modulus of titanium-aluminum alloy powders with different particle sizes, and the elastic modulus of the powder increases with the increase of the particle size of the powder.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410557638.5A CN104357783B (en) | 2014-10-20 | 2014-10-20 | Titanium-aluminium alloy powder body material used for hot spraying and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410557638.5A CN104357783B (en) | 2014-10-20 | 2014-10-20 | Titanium-aluminium alloy powder body material used for hot spraying and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104357783A true CN104357783A (en) | 2015-02-18 |
CN104357783B CN104357783B (en) | 2016-07-06 |
Family
ID=52525088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410557638.5A Active CN104357783B (en) | 2014-10-20 | 2014-10-20 | Titanium-aluminium alloy powder body material used for hot spraying and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104357783B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106048497A (en) * | 2016-07-22 | 2016-10-26 | 中国人民解放军装甲兵工程学院 | Abrasion resisting coating with high gamma-TiAl phase content and preparing method of abrasion resisting coating |
CN106735280A (en) * | 2016-11-23 | 2017-05-31 | 西北有色金属研究院 | A kind of preparation method of spherical TiTa alloy powders |
CN111702181A (en) * | 2020-08-04 | 2020-09-25 | 盘星新型合金材料(常州)有限公司 | Preparation method of titanium-aluminum alloy powder, titanium-aluminum alloy powder and application |
CN113492213A (en) * | 2021-09-07 | 2021-10-12 | 西安欧中材料科技有限公司 | Preparation method and equipment of high-sphericity low-oxygen-content TiAl alloy powder |
CN113927038A (en) * | 2021-10-14 | 2022-01-14 | 广东省科学院新材料研究所 | TiAl alloy powder for 3D printing and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1033726A1 (en) * | 1998-09-22 | 2000-09-06 | The Furukawa Electric Co., Ltd. | Method for producing aluminum-stabilized super conductive wire |
CN102672150A (en) * | 2012-05-14 | 2012-09-19 | 北京科技大学 | Direct control method for titanium-aluminum-niobium alloy lamellar structure |
CN103572082A (en) * | 2013-11-18 | 2014-02-12 | 北京科技大学 | High Nb-TiAl alloy and preparation method thereof |
-
2014
- 2014-10-20 CN CN201410557638.5A patent/CN104357783B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1033726A1 (en) * | 1998-09-22 | 2000-09-06 | The Furukawa Electric Co., Ltd. | Method for producing aluminum-stabilized super conductive wire |
CN102672150A (en) * | 2012-05-14 | 2012-09-19 | 北京科技大学 | Direct control method for titanium-aluminum-niobium alloy lamellar structure |
CN103572082A (en) * | 2013-11-18 | 2014-02-12 | 北京科技大学 | High Nb-TiAl alloy and preparation method thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106048497A (en) * | 2016-07-22 | 2016-10-26 | 中国人民解放军装甲兵工程学院 | Abrasion resisting coating with high gamma-TiAl phase content and preparing method of abrasion resisting coating |
CN106735280A (en) * | 2016-11-23 | 2017-05-31 | 西北有色金属研究院 | A kind of preparation method of spherical TiTa alloy powders |
CN111702181A (en) * | 2020-08-04 | 2020-09-25 | 盘星新型合金材料(常州)有限公司 | Preparation method of titanium-aluminum alloy powder, titanium-aluminum alloy powder and application |
CN113492213A (en) * | 2021-09-07 | 2021-10-12 | 西安欧中材料科技有限公司 | Preparation method and equipment of high-sphericity low-oxygen-content TiAl alloy powder |
CN113927038A (en) * | 2021-10-14 | 2022-01-14 | 广东省科学院新材料研究所 | TiAl alloy powder for 3D printing and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104357783B (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104372230B (en) | High-strength high-toughness ultrafine-grained high-entropy alloy and preparation method thereof | |
Liu et al. | Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites | |
CN104928513B (en) | A kind of titanium alloy laser 3D printing improved method | |
CN112317752B (en) | TiZrNbTa high-entropy alloy for 3D printing and preparation method and application thereof | |
CN103752836B (en) | A kind of method preparing fine grain spherical niobium titanium base alloy powder | |
CN101522342B (en) | Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof | |
CN104357783B (en) | Titanium-aluminium alloy powder body material used for hot spraying and preparation method thereof | |
CN102181809B (en) | Large-size metallic glass composite material with tensile ductility and preparation method thereof | |
WO2016127716A1 (en) | Alloy material with high strength and ductility, and semi-solid state sintering preparation method therefor and uses thereof | |
CN107267842A (en) | A kind of high-melting-point high-entropy alloy and preparation method thereof | |
CN101172880A (en) | Titanium group high temperature amorphous solder of hard solder Si*N* ceramic and method for producing the same | |
CN106001566A (en) | High-strength high-entropy alloy NbMoTaWV and preparation method thereof | |
CN109207766A (en) | A kind of controllable high aluminium content Cu-Al of tissue2O3Nano-diffusion copper alloy preparation process | |
CN108546863A (en) | A kind of more pivot high temperature alloys and preparation method thereof | |
CN112024870A (en) | SMTGH3230 spherical powder for 3D printing and preparation method and application thereof | |
CN110744044A (en) | Spark plasma sintering preparation method of fine-grain Ti-48Al-2Cr-8Nb titanium-aluminum alloy | |
CN107043870B (en) | A kind of high Si content high-temperature titanium alloy and preparation method thereof | |
CN103436734A (en) | High-strength high-elasticity modulus titanium matrix composite containing rare earth elements | |
CN111118379B (en) | Co-bonded TiZrNbMoTa refractory high-entropy alloy and preparation method thereof | |
CN107034408B (en) | A kind of high-entropy alloy of the matched crystallite dimension bimodal distribution of high-strength tenacity and preparation method thereof | |
CN117568725B (en) | Metallic glass-diamond composite material and preparation method thereof | |
CN1255237C (en) | Method for bulk preparing intermetallic compound nanometer powder of titanium and aluminium | |
CN111992731A (en) | A method for preparing hard pure gold by powder metallurgy | |
CN103436736B (en) | Preparation method of high-strength high-elasticity modulus titanium matrix composite | |
CN106636985B (en) | A kind of metal glass composite material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |