CN104348357B - Control circuit for reducing touch current of power converter and operation method thereof - Google Patents
Control circuit for reducing touch current of power converter and operation method thereof Download PDFInfo
- Publication number
- CN104348357B CN104348357B CN201310329077.9A CN201310329077A CN104348357B CN 104348357 B CN104348357 B CN 104348357B CN 201310329077 A CN201310329077 A CN 201310329077A CN 104348357 B CN104348357 B CN 104348357B
- Authority
- CN
- China
- Prior art keywords
- signal
- voltage
- power converter
- gate
- generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000004804 winding Methods 0.000 claims abstract description 37
- 239000003990 capacitor Substances 0.000 claims abstract description 18
- 238000001514 detection method Methods 0.000 claims description 13
- 238000011017 operating method Methods 0.000 claims 5
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/157—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种用以降低电源转换器的触碰电流的控制电路及其操作方法,尤指一种用以降低在电源转换器离开爆发模式时,由于输入电容上的电压快速下降所产生的触碰电流的控制电路及其操作方法。The present invention relates to a control circuit for reducing the touch current of a power converter and its operation method, especially a control circuit for reducing the voltage on the input capacitor due to the rapid drop of the voltage on the input capacitor when the power converter leaves the burst mode. A control circuit for the generated touch current and a method of operation thereof.
背景技术Background technique
在现有技术中,当功率因素校正(Power factor Correction,PFC)的电源转换器处于高输出电压和轻负载操作时,电源转换器会进入爆发模式(burst mode)。在电源转换器进入爆发模式后,电源转换器的功率开关会根据对应于爆发模式的栅极控制信号切换。此时,由于电源转换器的耗电很小,所以电源转换器的输入电容上的电压会停留在功率开关停止切换时的电压。当电源转换器离开爆发模式时,功率开关开始根据对应于准谐振模式(quasi resonant mode)的栅极控制信号切换。此时,如果输入电压小于输入电容上的电压,则电源转换器的桥式整流器中的二极管会不导通,导致输入电容提供电能给电源转换器的电感。如此,输入电容上的电压会下降。此时,因为电源转换器是操作在最高频率,所以输入电容上的电压会快速下降,导致触碰电流(touch current)超过安规规范。In the prior art, when a power factor correction (PFC) power converter operates at a high output voltage and a light load, the power converter enters a burst mode. After the power converter enters the burst mode, the power switch of the power converter is switched according to the gate control signal corresponding to the burst mode. At this time, since the power consumption of the power converter is very small, the voltage on the input capacitor of the power converter will stay at the voltage when the power switch stops switching. When the power converter leaves the burst mode, the power switch starts to switch according to the gate control signal corresponding to the quasi resonant mode. At this time, if the input voltage is less than the voltage on the input capacitor, the diode in the bridge rectifier of the power converter will not conduct, causing the input capacitor to provide power to the inductor of the power converter. Thus, the voltage across the input capacitor will drop. At this time, because the power converter is operating at the highest frequency, the voltage on the input capacitor will drop rapidly, causing the touch current to exceed safety regulations.
另外,现有技术只能调整电源转换器上的参数,以解决触碰电流较大的问题,所以现有技术只能部分解决触碰电流较大的问题。因此,电源转换器的设计者必须寻找一个新的解决方案,以取代现有技术。In addition, the prior art can only adjust the parameters of the power converter to solve the problem of high touch current, so the prior art can only partially solve the problem of high touch current. Therefore, designers of power converters must find a new solution to replace the existing technology.
发明内容Contents of the invention
本发明的一实施例公开一种用以降低电源转换器的触碰电流的控制电路,其中该电源转换器是一功率因素校正(Power factor Correction,PFC)的电源转换器。该控制电路包含一辅助接脚、一零交越信号产生器、一限频信号产生器和一栅极信号产生器。该辅助接脚是用以接收该电源转换器的一辅助绕组所产生的一电压;该零交越信号产生器是用以根据该辅助绕组所产生的电压与一第一参考电压,产生一零交越信号;该限频信号产生器是用以根据一栅极控制信号、一爆发模式信号和该辅助绕组所产生的电压,产生一限频信号,其中该限频信号是用以限制该栅极控制信号于一预定频率;该栅极信号产生器是用以根据该限频信号和该零交越信号,产生该栅极控制信号至该电源转换器的一功率开关。An embodiment of the invention discloses a control circuit for reducing touch current of a power converter, wherein the power converter is a power factor correction (PFC) power converter. The control circuit includes an auxiliary pin, a zero-crossing signal generator, a frequency-limiting signal generator and a gate signal generator. The auxiliary pin is used to receive a voltage generated by an auxiliary winding of the power converter; the zero-crossing signal generator is used to generate a zero according to the voltage generated by the auxiliary winding and a first reference voltage crossover signal; the frequency limiting signal generator is used to generate a frequency limiting signal according to a grid control signal, a burst mode signal and the voltage generated by the auxiliary winding, wherein the frequency limiting signal is used to limit the grid The gate control signal is at a predetermined frequency; the gate signal generator is used to generate the gate control signal to a power switch of the power converter according to the frequency-limiting signal and the zero-crossing signal.
本发明的另一实施例公开一种用以降低电源转换器的触碰电流的控制电路的操作方法。该方法包含接收该电源转换器的一辅助绕组所产生的电压;根据该辅助绕组所产生的电压与一第一参考电压,产生一零交越信号;接收有关于该电源转换器的输出电压的一回授电压;根据一栅极控制信号、一爆发模式参考电压、该零交越信号、该回授电压和该辅助绕组所产生的电压,产生该栅极控制信号至该电源转换器的一功率开关。Another embodiment of the present invention discloses an operation method of a control circuit for reducing touch current of a power converter. The method includes receiving a voltage generated by an auxiliary winding of the power converter; generating a zero-crossing signal according to the voltage generated by the auxiliary winding and a first reference voltage; receiving information about an output voltage of the power converter a feedback voltage; according to a gate control signal, a burst mode reference voltage, the zero-crossing signal, the feedback voltage and the voltage generated by the auxiliary winding, the grid control signal is generated to a side of the power converter power switch.
本发明公开一种用以降低电源转换器的触碰电流的控制电路及其操作方法。该控制电路及该操作方法是当一电源转换器离开一爆发模式时,利用一限频信号产生器根据一栅极控制信号和一辅助绕组所产生的电压,产生一限频信号以限制该栅极控制信号于一预定频率直到该限频信号产生器不产生该限频信号。当该限频信号产生器不产生该限频信号后,一栅极信号产生器即可根据一零交越信号,产生对应于一准谐振模式的该栅极控制信号至该电源转换器的一功率开关。如此,相较于现有技术,本发明可在该电源转换器离开该爆发模式时,减缓一输入电容上的电压下降,以降低一触碰电流。另外,由于本发明所提供的限频机制是在该电源转换器离开该爆发模式后才开始作用,所以本发明不会降低该电源转换器的功率因素值。The invention discloses a control circuit for reducing touch current of a power converter and an operation method thereof. In the control circuit and the operation method, when a power converter leaves a burst mode, a frequency limiting signal generator is used to generate a frequency limiting signal to limit the grid according to a grid control signal and a voltage generated by an auxiliary winding. The pole control signal is at a predetermined frequency until the frequency-limiting signal generator does not generate the frequency-limiting signal. When the frequency-limiting signal generator does not generate the frequency-limiting signal, a gate signal generator can generate the gate control signal corresponding to a quasi-resonant mode to a gate control signal of the power converter according to a zero-crossing signal power switch. In this way, compared with the prior art, the present invention can slow down the voltage drop on an input capacitor when the power converter leaves the burst mode, so as to reduce a touch current. In addition, since the frequency limiting mechanism provided by the present invention starts to function after the power converter leaves the burst mode, the present invention will not reduce the power factor value of the power converter.
附图说明Description of drawings
图1是本发明的一实施例说明一种用以降低电源转换器的触碰电流的控制电路的示意图。FIG. 1 is a schematic diagram illustrating a control circuit for reducing touch current of a power converter according to an embodiment of the present invention.
图2和图3是说明栅极信号产生器分别根据限频信号和零交越信号,以及零交越信号,产生预定频率的栅极控制信号与准谐振模式的栅极控制信号的示意图。2 and 3 are schematic diagrams illustrating that the gate signal generator generates a gate control signal of a predetermined frequency and a gate control signal of a quasi-resonant mode according to the frequency-limiting signal, the zero-crossing signal, and the zero-crossing signal, respectively.
图4是说明栅极控制信号的频率与补偿电压的关系示意图。FIG. 4 is a schematic diagram illustrating the relationship between the frequency of the gate control signal and the compensation voltage.
图5A和图5B是本发明的另一实施例说明一种用以降低电源转换器的触碰电流的控制电路的操作方法的流程图。5A and 5B are flowcharts illustrating an operation method of a control circuit for reducing touch current of a power converter according to another embodiment of the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
100 电源转换器100 power converter
102 电感102 inductance
104 功率开关104 power switch
106 桥式整流器106 bridge rectifier
108 电阻108 resistors
200 控制电路200 control circuit
202 辅助接脚202 Auxiliary pin
203 零交越信号产生器203 Zero Crossing Signal Generator
204 限频信号产生器204 frequency limit signal generator
206 栅极信号产生器206 gate signal generator
208 回授接脚208 Feedback pin
210 补偿电压产生单元210 compensation voltage generation unit
212 爆发模式信号产生模块212 burst mode signal generation module
216 栅极接脚216 Gate pins
218 电流接脚218 current pins
220 补偿接脚220 Compensation pin
2042 计数器2042 counter
2044 采样保持单元2044 sample and hold unit
2046 第二比较器2046 Second comparator
2048 限频单元2048 frequency limiting unit
2102 转导放大器2102 Transconductance Amplifier
2104 第一电阻2104 First Resistor
2106 第一电容2106 First Capacitor
2122 第一比较器2122 First Comparator
2124 信号产生单元2124 signal generation unit
AUX 辅助绕组AUX auxiliary winding
BS 爆发模式信号BS burst mode signal
CIN 输入电容CIN input capacitance
CS 栅极控制信号CS gate control signal
FCS 第一比较信号FCS first comparison signal
IS 电流IS current
I1 第一电流I1 first current
LS 限频信号LS limited frequency signal
SCS 第二比较信号SCS second comparison signal
V1 第一电压V1 first voltage
V2 第二电压V2 second voltage
VOUT 输出电压VOUT output voltage
VFB 回授电压VFB feedback voltage
VCOMP 补偿电压VCOMP compensation voltage
VA 电压VA voltage
VAC 电源VAC power
VD 侦测电压VD detection voltage
VREF1 第一参考电压VREF1 First reference voltage
VREF2 第二参考电压VREF2 Second reference voltage
VREF3 第三参考电压VREF3 Third reference voltage
VREFB 爆发模式参考电压VREFB Burst mode reference voltage
ZCS 零交越信号ZCS Zero Crossing Signal
500-530 步骤500-530 steps
具体实施方式detailed description
请参照图1,图1是本发明的一实施例说明一种应用于电源转换器100的控制电路200的示意图,其中电源转换器100是一功率因素校正(Power factor Correction,PFC)的电源转换器,且亦为一升压(boost)电源转换器。控制电路200包含一辅助接脚202、一零交越信号产生器203、一限频信号产生器204和一栅极信号产生器206,其中辅助接脚202是用以接收电源转换器100的一辅助绕组AUX所产生的一电压VA;零交越信号产生器203是用以根据辅助绕组AUX所产生的电压VA与一第一参考电压VREF1,产生一零交越信号ZCS,其中第一参考电压VREF1约为0.2V至0.3V。如图1所示,零交越信号产生器203是一迟滞比较器。但本发明并不受限于零交越信号产生器203是迟滞比较器。如图1所示,控制电路200另包含一回授接脚208、一补偿电压产生单元210、一爆发模式信号产生模块212、一栅极接脚216和一电流接脚218。另外,如图1所示,辅助绕组AUX和耦接于电源转换器100的电感102的感应方向相反。Please refer to FIG. 1. FIG. 1 is a schematic diagram illustrating a control circuit 200 applied to a power converter 100 according to an embodiment of the present invention, wherein the power converter 100 is a power factor correction (Power factor Correction, PFC) power converter. device, and is also a boost (boost) power converter. The control circuit 200 includes an auxiliary pin 202, a zero-crossing signal generator 203, a frequency-limiting signal generator 204 and a gate signal generator 206, wherein the auxiliary pin 202 is used to receive a power converter 100 A voltage VA generated by the auxiliary winding AUX; the zero-crossing signal generator 203 is used to generate a zero-crossing signal ZCS according to the voltage VA generated by the auxiliary winding AUX and a first reference voltage VREF1, wherein the first reference voltage VREF1 is approximately 0.2V to 0.3V. As shown in FIG. 1 , the zero-crossing signal generator 203 is a hysteresis comparator. But the present invention is not limited to the zero-crossing signal generator 203 being a hysteresis comparator. As shown in FIG. 1 , the control circuit 200 further includes a feedback pin 208 , a compensation voltage generating unit 210 , a burst mode signal generating module 212 , a gate pin 216 and a current pin 218 . In addition, as shown in FIG. 1 , the induction directions of the auxiliary winding AUX and the inductor 102 coupled to the power converter 100 are opposite.
如图1所示,回授接脚208是用以接收有关于电源转换器100的输出电压VOUT的一回授电压VFB,其中回授电压VFB和电源转换器100的负载有关,亦即回授电压VFB会随着电源转换器100的负载而改变。补偿电压产生单元210是用以根据回授电压VFB与一第二参考电压VREF2,产生一补偿电压VCOMP。补偿电压产生单元210包含一转导放大器2102、一第一电阻2104和一第一电容2106。转导放大器2102是用以根据回授电压VFB与第二参考电压VREF2,产生一第一电流I1。而第一电阻2104和第一电容2106是用以根据第一电流I1,产生补偿电压VCOMP。另外,如图1所示的补偿电压产生单元210仅是用以说明控制电路200,亦即本发明并不受限于图1所示的补偿电压产生单元210。另外,电源转换器100另包含一补偿接脚220,其耦接于补偿电压产生单元210的输出端。As shown in FIG. 1 , the feedback pin 208 is used to receive a feedback voltage VFB related to the output voltage VOUT of the power converter 100, wherein the feedback voltage VFB is related to the load of the power converter 100, that is, the feedback The voltage VFB will vary with the load of the power converter 100 . The compensation voltage generating unit 210 is used for generating a compensation voltage VCOMP according to the feedback voltage VFB and a second reference voltage VREF2. The compensation voltage generating unit 210 includes a transconductance amplifier 2102 , a first resistor 2104 and a first capacitor 2106 . The transconductance amplifier 2102 is used to generate a first current I1 according to the feedback voltage VFB and the second reference voltage VREF2 . The first resistor 2104 and the first capacitor 2106 are used to generate the compensation voltage VCOMP according to the first current I1. In addition, the compensation voltage generation unit 210 shown in FIG. 1 is only used to illustrate the control circuit 200 , that is, the present invention is not limited to the compensation voltage generation unit 210 shown in FIG. 1 . In addition, the power converter 100 further includes a compensation pin 220 coupled to the output end of the compensation voltage generating unit 210 .
如图1所示,爆发模式信号产生模块212包含一第一比较器2122和一信号产生单元2124。第一比较器2122是用以根据补偿电压VCOMP和一爆发模式参考电压VREFB,产生一第一比较信号FCS,亦即当补偿电压VCOMP小于爆发模式参考电压VREFB时,第一比较器2122产生第一比较信号FCS。当信号产生单元2124接收到第一比较信号FCS时,信号产生单元2124即可根据第一比较信号FCS,产生一爆发模式信号BS至栅极信号产生器206(亦即电源转换器100进入一爆发模式)。当栅极信号产生器206接收到爆发模式信号BS时,栅极信号产生器206即可根据爆发模式信号BS和零交越信号ZCS,产生对应于爆发模式的一栅极控制信号CS并通过栅极接脚216传送至电源转换器100的一功率开关104。功率开关104即可根据对应于爆发模式的栅极控制信号CS开启。As shown in FIG. 1 , the burst mode signal generating module 212 includes a first comparator 2122 and a signal generating unit 2124 . The first comparator 2122 is used to generate a first comparison signal FCS according to the compensation voltage VCOMP and a burst mode reference voltage VREFB, that is, when the compensation voltage VCOMP is smaller than the burst mode reference voltage VREFB, the first comparator 2122 generates a first Compare signal FCS. When the signal generation unit 2124 receives the first comparison signal FCS, the signal generation unit 2124 can generate a burst mode signal BS to the gate signal generator 206 according to the first comparison signal FCS (that is, the power converter 100 enters a burst mode). model). When the gate signal generator 206 receives the burst mode signal BS, the gate signal generator 206 can generate a gate control signal CS corresponding to the burst mode according to the burst mode signal BS and the zero-crossing signal ZCS and pass the gate The pole pin 216 is transmitted to a power switch 104 of the power converter 100 . The power switch 104 can be turned on according to the gate control signal CS corresponding to the burst mode.
如图1所示,限频信号产生器204包含一计数器2042、一采样保持单元2044、一第二比较器2046和一限频单元2048。计数器2042是用以接收栅极控制信号CS,其中当信号产生单元2124停止产生爆发模式信号BS(亦即电源转换器100离开爆发模式)时,计数器2042开始计数栅极控制信号CS,并根据栅极控制信号CS,产生一第一数字FN与一第二数字SN,其中第一数字FN小于第二数字SN。例如第一数字FN是1以及第二数字SN是3。但本发明并不受限于第一数字FN是1以及第二数字SN是3。采样保持单元2044是用以储存辅助绕组AUX所产生对应第一数字FN的第一电压V1,与辅助绕组AUX所产生对应第二数字SN的第二电压V2。第二比较器2046是用以当第二电压V2大于第一电压V1时,产生一第二比较信号SCS。因为辅助绕组AUX和电感102的感应方向相反,所以当第二电压V2大于第一电压V1时,电源转换器100的电感102是由电源转换器100的一输入电容CIN提供电能,亦即当第二电压V2大于第一电压V1时,电源转换器100的一桥式整流器106中的二极管会不导通,所以此时一电源VAC无法提供电能给电感102。限频单元2048是用以根据第二比较信号SCS,产生一限频信号LS至栅极信号产生器206。限频信号LS是用以限制栅极信号产生器206所产生的栅极控制信号CS于一预定频率(例如25KHz)其中预定频率是可调整的。如此,在电源转换器100离开爆发模式后,限频信号产生器204会先使栅极信号产生器206根据限频信号LS和零交越信号ZCS,产生预定频率的栅极控制信号CS至电源转换器100的功率开关104。功率开关104即可根据预定频率的栅极控制信号CS开启。另外,当限频单元2048根据第二比较信号SCS,产生限频信号LS至栅极信号产生器206后,计数器2042、采样保持单元2044、第二比较器2046和限频单元2048会重复执行上述动作直到采样保持单元2044所采样的第二电压V2小于采样保持单元2044所采样的第一电压V1。As shown in FIG. 1 , the frequency-limiting signal generator 204 includes a counter 2042 , a sample-and-hold unit 2044 , a second comparator 2046 and a frequency-limiting unit 2048 . The counter 2042 is used to receive the gate control signal CS, wherein when the signal generating unit 2124 stops generating the burst mode signal BS (that is, the power converter 100 leaves the burst mode), the counter 2042 starts counting the gate control signal CS, and according to the gate The pole control signal CS generates a first number FN and a second number SN, wherein the first number FN is smaller than the second number SN. For example, the first number FN is 1 and the second number SN is 3. But the present invention is not limited to the fact that the first number FN is 1 and the second number SN is 3. The sample and hold unit 2044 is used to store the first voltage V1 generated by the auxiliary winding AUX corresponding to the first number FN, and the second voltage V2 generated by the auxiliary winding AUX corresponding to the second number SN. The second comparator 2046 is used for generating a second comparison signal SCS when the second voltage V2 is greater than the first voltage V1. Because the induction directions of the auxiliary winding AUX and the inductor 102 are opposite, when the second voltage V2 is greater than the first voltage V1, the inductor 102 of the power converter 100 is powered by an input capacitor CIN of the power converter 100, that is, when the second voltage V2 is greater than the first voltage V1 When the second voltage V2 is greater than the first voltage V1 , the diode in the bridge rectifier 106 of the power converter 100 will not conduct, so the power VAC cannot provide power to the inductor 102 at this time. The frequency limiting unit 2048 is used for generating a frequency limiting signal LS to the gate signal generator 206 according to the second comparison signal SCS. The frequency limiting signal LS is used to limit the gate control signal CS generated by the gate signal generator 206 to a predetermined frequency (eg, 25 KHz), wherein the predetermined frequency is adjustable. In this way, after the power converter 100 leaves the burst mode, the frequency-limiting signal generator 204 first makes the gate signal generator 206 generate a gate control signal CS of a predetermined frequency to the power supply according to the frequency-limiting signal LS and the zero-crossing signal ZCS. The power switch 104 of the converter 100 . The power switch 104 can then be turned on according to the gate control signal CS of a predetermined frequency. In addition, after the frequency limiting unit 2048 generates the frequency limiting signal LS to the gate signal generator 206 according to the second comparison signal SCS, the counter 2042, the sample and hold unit 2044, the second comparator 2046 and the frequency limiting unit 2048 will repeat the above actions Until the second voltage V2 sampled by the sample and hold unit 2044 is smaller than the first voltage V1 sampled by the sample and hold unit 2044 .
如图1所示,当电源转换器100离开爆发模式且第二电压V2小于第一电压V1(亦即限频信号产生器204不产生限频信号LS,以及电源转换器100进入一准谐振模式)时,零交越信号产生器203是用以根据辅助绕组AUX所产生的电压VA与第一参考电压VREF1,产生零交越信号ZCS至栅极信号产生器206。此时,栅极信号产生器206是用以根据零交越信号ZCS,产生对应于准谐振模式的栅极控制信号CS至功率开关104。功率开关104即可根据对应于准谐振模式的栅极控制信号CS开启。As shown in FIG. 1, when the power converter 100 leaves the burst mode and the second voltage V2 is lower than the first voltage V1 (that is, the frequency limiting signal generator 204 does not generate the frequency limiting signal LS, and the power converter 100 enters a quasi-resonant mode ), the zero-crossing signal generator 203 is used to generate the zero-crossing signal ZCS to the gate signal generator 206 according to the voltage VA generated by the auxiliary winding AUX and the first reference voltage VREF1 . At this time, the gate signal generator 206 is used to generate the gate control signal CS corresponding to the quasi-resonant mode to the power switch 104 according to the zero-crossing signal ZCS. The power switch 104 can then be turned on according to the gate control signal CS corresponding to the quasi-resonant mode.
另外,如图1所示,电流接脚218是用以接收根据流经功率开关104的电流IS和一电阻108所决定的侦测电压VD。栅极信号产生器206另用以根据侦测电压VD和一第三参考电压VREF3,去能栅极控制信号CS,亦即当侦测电压VD大于第三参考电压VREF3时,栅极信号产生器206去能栅极控制信号CS以关闭功率开关104。In addition, as shown in FIG. 1 , the current pin 218 is used to receive the detection voltage VD determined according to the current IS flowing through the power switch 104 and a resistor 108 . The gate signal generator 206 is also used to disable the gate control signal CS according to the detection voltage VD and a third reference voltage VREF3, that is, when the detection voltage VD is greater than the third reference voltage VREF3, the gate signal generator 206 disables the gate control signal CS to turn off the power switch 104 .
请参照图2、图3和图4,图2和图3是说明栅极信号产生器206分别根据限频信号LS和零交越信号ZCS,以及零交越信号ZCS,产生预定频率的栅极控制信号CS与准谐振模式的栅极控制信号CS的示意图,和图4是说明栅极控制信号CS的频率与补偿电压VCOMP的关系示意图。如图2所示,在时间T1时,电源转换器100离开爆发模式,限频信号产生器204产生限频信号LS至栅极信号产生器206,以及栅极信号产生器206根据限频信号LS和零交越信号ZCS,产生预定频率的栅极控制信号CS。然后,在第3个栅极控制信号CS(时间T2)时,采样保持单元2044所采样的第二电压V2小于采样保持单元2044所采样的第一电压V1,所以第二比较器2046不产生第二比较信号SCS,导致限频单元2048不会产生限频信号LS至栅极信号产生器206。因此,在第4个栅极控制信号CS后,栅极信号产生器206是根据零交越信号ZCS,产生准谐振模式的栅极控制信号CS。如图3所示,在时间T1时,电源转换器100离开爆发模式,限频信号产生器204产生限频信号LS至栅极信号产生器206,以及栅极信号产生器206根据限频信号LS和零交越信号ZCS,产生预定频率的栅极控制信号CS。然后,在第3个栅极控制信号CS(时间T2)时,采样保持单元2044所采样的第二电压V2大于采样保持单元2044所采样的第一电压V1,所以第二比较器2046产生第二比较信号SCS,导致限频单元2048产生限频信号LS至栅极信号产生器206。因此,在第4个栅极控制信号CS后,栅极信号产生器206是根据限频信号LS和零交越信号ZCS,产生预定频率的栅极控制信号CS。当栅极信号产生器206根据限频信号LS和零交越信号ZCS,产生预定频率的栅极控制信号CS后,计数器2042、采样保持单元2044、第二比较器2046和限频单元2048会重复执行上述动作直到采样保持单元2044所采样的第二电压V2小于采样保持单元2044所采样的第一电压V1(例如时间T3)。因为在时间T3(第9个栅极控制信号CS)时,采样保持单元2044所采样的第二电压V2小于采样保持单元2044所采样的第一电压V1,所以第二比较器2046不产生第二比较信号SCS,导致限频单元2048不会产生限频信号LS至栅极信号产生器206。因此,在第9个栅极控制信号CS后,栅极信号产生器206是根据零交越信号ZCS,产生准谐振模式的栅极控制信号CS。Please refer to FIG. 2, FIG. 3 and FIG. 4. FIG. 2 and FIG. 3 illustrate that the gate signal generator 206 generates a grid with a predetermined frequency according to the frequency-limiting signal LS, the zero-crossing signal ZCS, and the zero-crossing signal ZCS, respectively. 4 is a schematic diagram illustrating the relationship between the frequency of the gate control signal CS and the compensation voltage VCOMP. As shown in FIG. 2, at time T1, the power converter 100 leaves the burst mode, the frequency-limiting signal generator 204 generates a frequency-limiting signal LS to the gate signal generator 206, and the gate signal generator 206 generates a frequency-limiting signal LS according to the frequency-limiting signal LS and the zero-crossing signal ZCS to generate a gate control signal CS of a predetermined frequency. Then, at the third gate control signal CS (time T2), the second voltage V2 sampled by the sample and hold unit 2044 is smaller than the first voltage V1 sampled by the sample and hold unit 2044, so the second comparator 2046 does not generate the first voltage V1 The second comparison signal SCS causes the frequency limiting unit 2048 not to generate the frequency limiting signal LS to the gate signal generator 206 . Therefore, after the fourth gate control signal CS, the gate signal generator 206 generates a quasi-resonant gate control signal CS according to the zero-crossing signal ZCS. As shown in FIG. 3 , at time T1, the power converter 100 leaves the burst mode, the frequency-limiting signal generator 204 generates a frequency-limiting signal LS to the gate signal generator 206, and the gate signal generator 206 generates a frequency-limiting signal LS according to the frequency-limiting signal LS and the zero-crossing signal ZCS to generate a gate control signal CS of a predetermined frequency. Then, at the third gate control signal CS (time T2), the second voltage V2 sampled by the sample and hold unit 2044 is greater than the first voltage V1 sampled by the sample and hold unit 2044, so the second comparator 2046 generates the second The comparison signal SCS causes the frequency limiting unit 2048 to generate a frequency limiting signal LS to the gate signal generator 206 . Therefore, after the fourth gate control signal CS, the gate signal generator 206 generates a gate control signal CS with a predetermined frequency according to the frequency-limiting signal LS and the zero-crossing signal ZCS. After the gate signal generator 206 generates the gate control signal CS of a predetermined frequency according to the frequency-limiting signal LS and the zero-crossing signal ZCS, the counter 2042, the sample-and-hold unit 2044, the second comparator 2046 and the frequency-limiting unit 2048 repeat The above actions are performed until the second voltage V2 sampled by the sample and hold unit 2044 is smaller than the first voltage V1 sampled by the sample and hold unit 2044 (for example, time T3). Because at time T3 (the ninth gate control signal CS), the second voltage V2 sampled by the sample and hold unit 2044 is smaller than the first voltage V1 sampled by the sample and hold unit 2044, so the second comparator 2046 does not generate the second voltage V1. The comparison signal SCS causes the frequency limiting unit 2048 not to generate the frequency limiting signal LS to the gate signal generator 206 . Therefore, after the ninth gate control signal CS, the gate signal generator 206 generates the gate control signal CS in quasi-resonant mode according to the zero-crossing signal ZCS.
如图4所示,当电源转换器100离开爆发模式后的一段时间,栅极控制信号CS的频率是预定频率。然后,栅极信号产生器206才会根据零交越信号ZCS,产生准谐振模式的栅极控制信号CS。As shown in FIG. 4 , when the power converter 100 leaves the burst mode for a period of time, the frequency of the gate control signal CS is a predetermined frequency. Then, the gate signal generator 206 generates the gate control signal CS in the quasi-resonant mode according to the zero-crossing signal ZCS.
请参照图1、图2、图3、图4、图5A和图5B,图5A和图5B是本发明的另一实施例说明一种用以降低电源转换器的触碰电流的控制电路的操作方法的流程图。图5A和图5B的操作方法是利用图1的电源转换器100和控制电路200说明,详细步骤如下:Please refer to Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5A and Fig. 5B, Fig. 5A and Fig. 5B are another embodiment of the present invention illustrating a control circuit for reducing the touch current of the power converter Flowchart of the method of operation. The operation method of FIG. 5A and FIG. 5B is illustrated by using the power converter 100 and the control circuit 200 of FIG. 1 , and the detailed steps are as follows:
步骤500:开始;Step 500: start;
步骤501:辅助接脚202接收电源转换器100的辅助绕组AUX所产生的一电压VA;Step 501: the auxiliary pin 202 receives a voltage VA generated by the auxiliary winding AUX of the power converter 100;
步骤502:零交越信号产生器203根据辅助绕组AUX所产生的电压VA与第一参考电压VREF1,产生一零交越信号ZCS;Step 502: The zero-crossing signal generator 203 generates a zero-crossing signal ZCS according to the voltage VA generated by the auxiliary winding AUX and the first reference voltage VREF1;
步骤504:回授接脚208接收有关于电源转换器100的输出电压VOUT的一回授电压VFB;Step 504: the feedback pin 208 receives a feedback voltage VFB related to the output voltage VOUT of the power converter 100;
步骤506:补偿电压产生单元210根据回授电压VFB与第二参考电压VREF2,产生一补偿电压VCOMP;Step 506: The compensation voltage generation unit 210 generates a compensation voltage VCOMP according to the feedback voltage VFB and the second reference voltage VREF2;
步骤508:补偿电压VCOMP是否大于爆发模式参考电压VREFB;如果是,进行步骤510;如果否,进行步骤526;Step 508: Whether the compensation voltage VCOMP is greater than the burst mode reference voltage VREFB; if yes, go to step 510; if not, go to step 526;
步骤510:爆发模式信号产生模块212停止产生一爆发模式信号BS;Step 510: the burst mode signal generating module 212 stops generating a burst mode signal BS;
步骤512:计数器2042计数一栅极控制信号CS,并根据栅极控制信号CS,产生一第一数字FN与一第二数字SN;Step 512: the counter 2042 counts a gate control signal CS, and generates a first digital FN and a second digital SN according to the gate control signal CS;
步骤514:采样保持单元2044储存辅助绕组AUX所产生对应第一数字FN的一第一电压V1,与辅助绕组AUX所产生对应第二数字SN的一第二电压V2;Step 514: the sample and hold unit 2044 stores a first voltage V1 corresponding to the first digital FN generated by the auxiliary winding AUX, and a second voltage V2 corresponding to the second digital SN generated by the auxiliary winding AUX;
步骤516:第二电压V2是否大于第一电压V1;如果是,进行步骤518;如果否,进行步骤524;Step 516: Whether the second voltage V2 is greater than the first voltage V1; if yes, go to step 518; if not, go to step 524;
步骤518:第二比较器2046产生一第二比较信号SCS;Step 518: the second comparator 2046 generates a second comparison signal SCS;
步骤520:限频单元2048根据第二比较信号SCS,产生一限频信号LS至栅极信号产生器206;Step 520: the frequency limiting unit 2048 generates a frequency limiting signal LS to the gate signal generator 206 according to the second comparison signal SCS;
步骤522:栅极信号产生器206根据限频信号LS和零交越信号ZCS,产生栅极控制信号CS;Step 522: the gate signal generator 206 generates a gate control signal CS according to the frequency-limiting signal LS and the zero-crossing signal ZCS;
步骤523:当流经功率开关104的电流IS和电阻108所决定的侦测电压VD大于第三参考电压VREF3时,栅极信号产生器206去能栅极控制信号CS,跳回步骤516;Step 523: When the current IS flowing through the power switch 104 and the detection voltage VD determined by the resistor 108 is greater than the third reference voltage VREF3, the gate signal generator 206 disables the gate control signal CS, and jumps back to step 516;
步骤524:栅极信号产生器206根据零交越信号ZCS,产生栅极控制信号CS;Step 524: the gate signal generator 206 generates a gate control signal CS according to the zero-crossing signal ZCS;
步骤525:当流经功率开关104的电流IS和电阻108所决定的侦测电压VD大于第三参考电压VREF3时,栅极信号产生器206去能栅极控制信号CS,跳回步骤508;Step 525: When the current IS flowing through the power switch 104 and the detection voltage VD determined by the resistor 108 is greater than the third reference voltage VREF3, the gate signal generator 206 disables the gate control signal CS, and jumps back to step 508;
步骤526:爆发模式信号产生模块212产生爆发模式信号BS;Step 526: the burst mode signal generating module 212 generates the burst mode signal BS;
步骤528:栅极信号产生器206根据爆发模式信号BS和零交越信号ZCS,产生栅极控制信号CS;Step 528: the gate signal generator 206 generates a gate control signal CS according to the burst mode signal BS and the zero-crossing signal ZCS;
步骤530:当流经功率开关104的电流IS和电阻108所决定的侦测电压VD大于第三参考电压VREF3时,栅极信号产生器206去能栅极控制信号CS,跳回步骤508。Step 530 : When the current IS flowing through the power switch 104 and the detection voltage VD determined by the resistor 108 is greater than the third reference voltage VREF3 , the gate signal generator 206 disables the gate control signal CS, and jumps back to step 508 .
在步骤501中,如图1所示,辅助接脚202接收辅助绕组AUX所产生的电压VA,其中辅助绕组AUX和耦接于电源转换器100的电感102的感应方向相反。在步骤504中,如图1所示,回授接脚208是用以接收有关于电源转换器100的输出电压VOUT的回授电压VFB,其中回授电压VFB和电源转换器100的负载有关,亦即回授电压VFB会随着电源转换器100的负载而改变。在步骤506中,如图1所示,补偿电压产生单元210内的转导放大器2102根据回授电压VFB与第二参考电压VREF2,产生一第一电流I1。而补偿电压产生单元210内的第一电阻2104和第一电容2106则是用以根据第一电流I1,产生补偿电压VCOMP。In step 501 , as shown in FIG. 1 , the auxiliary pin 202 receives the voltage VA generated by the auxiliary winding AUX, wherein the induction directions of the auxiliary winding AUX and the inductor 102 coupled to the power converter 100 are opposite. In step 504, as shown in FIG. 1 , the feedback pin 208 is used to receive the feedback voltage VFB related to the output voltage VOUT of the power converter 100 , wherein the feedback voltage VFB is related to the load of the power converter 100 , That is, the feedback voltage VFB will vary with the load of the power converter 100 . In step 506 , as shown in FIG. 1 , the transconductance amplifier 2102 in the compensation voltage generating unit 210 generates a first current I1 according to the feedback voltage VFB and the second reference voltage VREF2 . The first resistor 2104 and the first capacitor 2106 in the compensation voltage generating unit 210 are used to generate the compensation voltage VCOMP according to the first current I1.
在步骤526中,如图1所示,第一比较器2122是用以根据补偿电压VCOMP和爆发模式参考电压VREFB,产生一第一比较信号FCS,亦即当补偿电压VCOMP小于爆发模式参考电压VREFB时,第一比较器2122产生第一比较信号FCS。当信号产生单元2124接收到第一比较信号FCS时,信号产生单元2124即可根据第一比较信号FCS,产生爆发模式信号BS至栅极信号产生器206(亦即电源转换器100进入一爆发模式)。在步骤528中,当栅极信号产生器206接收到爆发模式信号BS时,栅极信号产生器206即可根据爆发模式信号BS和零交越信号ZCS,产生对应于爆发模式的栅极控制信号CS并通过栅极接脚216传送至电源转换器100的功率开关104。功率开关104即可根据对应于爆发模式的栅极控制信号CS开启。In step 526, as shown in FIG. 1, the first comparator 2122 is used to generate a first comparison signal FCS according to the compensation voltage VCOMP and the burst mode reference voltage VREFB, that is, when the compensation voltage VCOMP is smaller than the burst mode reference voltage VREFB , the first comparator 2122 generates a first comparison signal FCS. When the signal generation unit 2124 receives the first comparison signal FCS, the signal generation unit 2124 can generate a burst mode signal BS to the gate signal generator 206 according to the first comparison signal FCS (that is, the power converter 100 enters a burst mode ). In step 528, when the gate signal generator 206 receives the burst mode signal BS, the gate signal generator 206 can generate a gate control signal corresponding to the burst mode according to the burst mode signal BS and the zero-crossing signal ZCS CS is transmitted to the power switch 104 of the power converter 100 through the gate pin 216 . The power switch 104 can be turned on according to the gate control signal CS corresponding to the burst mode.
在步骤510中,如图1所示,当补偿电压VCOMP大于爆发模式参考电压VREFB时,第一比较器2122不产生第一比较信号FCS,导致信号产生单元2124停止产生爆发模式信号BS(亦即电源转换器100离开爆发模式)。在步骤512中,当信号产生单元2124停止产生爆发模式信号BS时,计数器2042开始计数栅极控制信号CS,并根据栅极控制信号CS,产生第一数字FN与第二数字SN,其中第一数字FN小于第二数字SN。例如第一数字FN是1以及第二数字SN是3。但本发明并不受限于第一数字FN是1以及第二数字SN是3。在步骤518中,第二比较器2046是用以当第二电压V2大于第一电压V1时,产生第二比较信号SCS。因为辅助绕组AUX和电感102的感应方向相反,所以当第二电压V2大于第一电压V1时,电源转换器100的电感102是由电源转换器100的一输入电容CIN提供电能,亦即当第二电压V2大于第一电压V1时,电源转换器100的一桥式整流器106中的二极管会不导通,所以此时电源VAC无法提供电能给电感102。在步骤520中,限频信号LS是用以限制栅极信号产生器206所产生的栅极控制信号CS于一预定频率(例如25KHz)其中预定频率是可调整的。如此,在步骤522中,在电源转换器100离开爆发模式后,限频信号产生器204会先使栅极信号产生器206根据限频信号LS和零交越信号ZCS,产生预定频率的栅极控制信号CS至电源转换器100的功率开关104。功率开关104即可根据预定频率的栅极控制信号CS开启。另外,当限频单元2048根据第二比较信号SCS,产生限频信号LS至栅极信号产生器206后,计数器2042、采样保持单元2044、第二比较器2046和限频单元2048会重复执行上述动作直到采样保持单元2044所采样的第二电压V2小于采样保持单元2044所采样的第一电压V1(如图2和图3所示)。In step 510, as shown in FIG. 1, when the compensation voltage VCOMP is greater than the burst mode reference voltage VREFB, the first comparator 2122 does not generate the first comparison signal FCS, causing the signal generation unit 2124 to stop generating the burst mode signal BS (that is, power converter 100 leaves burst mode). In step 512, when the signal generating unit 2124 stops generating the burst mode signal BS, the counter 2042 starts counting the gate control signal CS, and generates the first digital FN and the second digital SN according to the gate control signal CS, wherein the first The number FN is smaller than the second number SN. For example, the first number FN is 1 and the second number SN is 3. But the present invention is not limited to the fact that the first number FN is 1 and the second number SN is 3. In step 518, the second comparator 2046 is used to generate a second comparison signal SCS when the second voltage V2 is greater than the first voltage V1. Because the induction directions of the auxiliary winding AUX and the inductor 102 are opposite, when the second voltage V2 is greater than the first voltage V1, the inductor 102 of the power converter 100 is powered by an input capacitor CIN of the power converter 100, that is, when the second voltage V2 is greater than the first voltage V1 When the second voltage V2 is greater than the first voltage V1 , the diode in the bridge rectifier 106 of the power converter 100 will not conduct, so the power supply VAC cannot provide power to the inductor 102 at this time. In step 520 , the frequency limiting signal LS is used to limit the gate control signal CS generated by the gate signal generator 206 to a predetermined frequency (for example, 25 KHz), wherein the predetermined frequency is adjustable. In this way, in step 522, after the power converter 100 leaves the burst mode, the frequency-limiting signal generator 204 will first enable the gate signal generator 206 to generate a gate signal of a predetermined frequency according to the frequency-limiting signal LS and the zero-crossing signal ZCS. The control signal CS is sent to the power switch 104 of the power converter 100 . The power switch 104 can then be turned on according to the gate control signal CS of a predetermined frequency. In addition, after the frequency limiting unit 2048 generates the frequency limiting signal LS to the gate signal generator 206 according to the second comparison signal SCS, the counter 2042, the sample and hold unit 2044, the second comparator 2046 and the frequency limiting unit 2048 will repeat the above actions Until the second voltage V2 sampled by the sample and hold unit 2044 is smaller than the first voltage V1 sampled by the sample and hold unit 2044 (as shown in FIG. 2 and FIG. 3 ).
在步骤524中,如图1所示,当电源转换器100离开爆发模式且第二电压V2小于第一电压V1(亦即限频信号产生器204不产生限频信号LS,以及电源转换器100进入准谐振模式)时,栅极信号产生器206是用以根据零交越信号ZCS,产生对应于准谐振模式的栅极控制信号CS至功率开关104。功率开关104即可根据对应于准谐振模式的栅极控制信号CS开启。In step 524, as shown in FIG. 1, when the power converter 100 leaves the burst mode and the second voltage V2 is less than the first voltage V1 (that is, the frequency limiting signal generator 204 does not generate the frequency limiting signal LS, and the power converter 100 When entering the quasi-resonant mode), the gate signal generator 206 is used to generate a gate control signal CS corresponding to the quasi-resonant mode to the power switch 104 according to the zero-crossing signal ZCS. The power switch 104 can then be turned on according to the gate control signal CS corresponding to the quasi-resonant mode.
另外,在步骤523、步骤525和步骤530中,如图1所示,电流接脚218是用以接收根据流经功率开关104的电流IS和电阻108所决定的侦测电压VD。当侦测电压VD大于第三参考电压VREF3时,栅极信号产生器206去能栅极控制信号CS以关闭功率开关104。In addition, in step 523 , step 525 and step 530 , as shown in FIG. 1 , the current pin 218 is used to receive the detection voltage VD determined according to the current IS flowing through the power switch 104 and the resistor 108 . When the detection voltage VD is greater than the third reference voltage VREF3 , the gate signal generator 206 disables the gate control signal CS to turn off the power switch 104 .
因此,在步骤510至步骤523中,如图4所示,当电源转换器100离开爆发模式后的一段时间,栅极控制信号CS的频率是预定频率。然后,在步骤524中,栅极信号产生器206才会根据零交越信号ZCS,产生准谐振模式的栅极控制信号CS。Therefore, in steps 510 to 523 , as shown in FIG. 4 , when the power converter 100 leaves the burst mode for a period of time, the frequency of the gate control signal CS is a predetermined frequency. Then, in step 524 , the gate signal generator 206 generates the gate control signal CS in the quasi-resonant mode according to the zero-crossing signal ZCS.
综上所述,本发明所公开的用以降低电源转换器的触碰电流的控制电路及其操作方法是当电源转换器离开爆发模式时,利用限频信号产生器根据栅极控制信号和辅助绕组所产生的电压,产生限频信号以限制栅极控制信号于预定频率直到限频信号产生器不产生限频信号。当限频信号产生器不产生限频信号时,栅极信号产生器即可根据零交越信号,产生对应于准谐振模式的栅极控制信号至电源转换器的功率开关。如此,相较于现有技术,本发明可在电源转换器离开爆发模式时,减缓输入电容上的电压下降,以降低触碰电流。另外,由于本发明所公开的限频机制是在电源转换器离开爆发模式后才开始作用,所以本发明不会降低电源转换器的功率因素值。To sum up, the control circuit and its operation method for reducing the touch current of the power converter disclosed in the present invention are to use the frequency limiting signal generator according to the gate control signal and the auxiliary power converter when the power converter leaves the burst mode. The voltage generated by the winding generates a frequency-limiting signal to limit the gate control signal at a predetermined frequency until the frequency-limiting signal generator does not generate the frequency-limiting signal. When the frequency-limiting signal generator does not generate the frequency-limiting signal, the gate signal generator can generate a gate control signal corresponding to the quasi-resonant mode to the power switch of the power converter according to the zero-crossing signal. In this way, compared with the prior art, the present invention can slow down the voltage drop on the input capacitor when the power converter leaves the burst mode, so as to reduce the touch current. In addition, since the frequency limiting mechanism disclosed in the present invention starts to work after the power converter leaves the burst mode, the present invention will not reduce the power factor value of the power converter.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310329077.9A CN104348357B (en) | 2013-07-31 | 2013-07-31 | Control circuit for reducing touch current of power converter and operation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310329077.9A CN104348357B (en) | 2013-07-31 | 2013-07-31 | Control circuit for reducing touch current of power converter and operation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104348357A CN104348357A (en) | 2015-02-11 |
CN104348357B true CN104348357B (en) | 2018-02-09 |
Family
ID=52503354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310329077.9A Active CN104348357B (en) | 2013-07-31 | 2013-07-31 | Control circuit for reducing touch current of power converter and operation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104348357B (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5812383A (en) * | 1997-07-31 | 1998-09-22 | Philips Electronics North North America Corporation | Low power stand-by for switched-mode power supply circuit with burst mode operation |
JP5277952B2 (en) * | 2008-12-25 | 2013-08-28 | 富士電機株式会社 | Switching power supply circuit |
CN102195489B (en) * | 2009-09-01 | 2014-03-19 | 成都芯源系统有限公司 | Current peak compression method for switching circuit |
CN101645656B (en) * | 2009-09-01 | 2011-09-14 | 成都芯源系统有限公司 | Current peak value compression method and control circuit adopting same |
IT1397599B1 (en) * | 2009-12-21 | 2013-01-16 | St Microelectronics Srl | FLYBACK DUAL MODE CONVERTER AND METHOD OF MONITORING THE OPERATING MODE. |
CN202043321U (en) * | 2010-12-30 | 2011-11-16 | 奇瑞汽车股份有限公司 | LED (light-emitting diode) driving power source |
-
2013
- 2013-07-31 CN CN201310329077.9A patent/CN104348357B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104348357A (en) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103326564B (en) | Control circuit for reducing touch current of power converter and method of operation thereof | |
CN103187875B (en) | Switching power supply and its control circuit | |
TWI556545B (en) | Charge control circuit, flyback power conversion system and charging control method | |
US8625319B2 (en) | Bridgeless PFC circuit for critical continuous current mode and controlling method thereof | |
US20090230929A1 (en) | Bridgeless pfc circuit for crm and controlling method thereof | |
TWI439021B (en) | Switch control circuit and control method for bridgeless switching circuit, power converter and power control method | |
US9179514B2 (en) | Control circuit for reducing of total harmonic distortion (THD) in the power supply to an electric load | |
KR102116705B1 (en) | Converter and driving method thereof | |
TWI497889B (en) | Control circuit for reducing touch current of a power converter and operation method thereof | |
CN108933529B (en) | Power control device and power control system | |
US20110235371A1 (en) | Constant-current circuit capable of voltage compensation and zero-voltage switching | |
TWI499183B (en) | Power factor correction circuit of power converter | |
JP6272679B2 (en) | Power supply control circuit, power supply device and electronic device | |
CN103401425B (en) | Control circuits and digital power control circuits for power converters | |
CN107294390A (en) | Two-in-series circuit of reversed excitation | |
CN102769387B (en) | Controllers for Power Converters | |
TW202007059A (en) | Hybrid-mode boost power factor corrector | |
CN102208870B (en) | Method and apparatus for detecting continuous current mode operation of a magnetic device | |
CN105305833B (en) | Adjustable frequency-reducing circuit of adjustable power supply and method for adjusting switching frequency | |
CN110768533B (en) | Power controller and related control method | |
CN106953518A (en) | Multi-mode controller applied to power converter and operation method thereof | |
CN102857126A (en) | Control circuit of power converter | |
CN104980030A (en) | Isolated Power Supply Circuit With Programmable Function And Control Method Thereof | |
CN103259393A (en) | Control circuit of inverter | |
CN104348357B (en) | Control circuit for reducing touch current of power converter and operation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |