CN104333756A - HEVC (High Efficiency Video Coding) prediction mode fast selection method based on time domain correlation - Google Patents
HEVC (High Efficiency Video Coding) prediction mode fast selection method based on time domain correlation Download PDFInfo
- Publication number
- CN104333756A CN104333756A CN201410662687.5A CN201410662687A CN104333756A CN 104333756 A CN104333756 A CN 104333756A CN 201410662687 A CN201410662687 A CN 201410662687A CN 104333756 A CN104333756 A CN 104333756A
- Authority
- CN
- China
- Prior art keywords
- prediction mode
- motion
- coding unit
- time domain
- optimum prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本发明公开了一种基于时域相关性的HEVC预测模式快速选择方法,主要解决高效能视频编码标准HEVC帧间编码过程中预测模式选择计算复杂度高的问题。其实现步骤为:(1)将视频序列的运动强度分为运动缓慢、运动适中、运动快三种状态;(2)分别统计运动缓慢、运动适中这两种运动强度时编码单元的最佳预测模式与其时域相邻编码单元的最佳预测模式的概率关系;(3)根据概率关系,构建候选预测模式表;(4)根据候选预测模式表,对帧间编码单元进行编码,得到最佳预测模式。本发明在视频率失真性能近似不变的前提下,有效地降低了预测模式选择计算复杂度,提升了预测模式选择速度,减少了编码时间,可用于实时的视频压缩。
The invention discloses a method for quickly selecting an HEVC prediction mode based on time-domain correlation, which mainly solves the problem of high computational complexity of prediction mode selection in the high-efficiency video coding standard HEVC inter-frame coding process. The implementation steps are: (1) Divide the motion intensity of the video sequence into three states: slow motion, moderate motion, and fast motion; (2) Statistically calculate the best prediction of the coding unit under the two motion intensities of slow motion and moderate motion (3) According to the probability relationship, construct a candidate prediction mode table; (4) According to the candidate prediction mode table, encode the inter-frame coding unit to obtain the best predictive mode. On the premise that the video rate-distortion performance is approximately constant, the present invention effectively reduces the computational complexity of prediction mode selection, improves the speed of prediction mode selection, reduces encoding time, and can be used for real-time video compression.
Description
技术领域technical field
本发明属于视频处理领域,特别涉及高性能视频编码HEVC中帧间编码单元候选预测模式的生成,可用于HEVC帧间编码过程。The invention belongs to the field of video processing, in particular to the generation of candidate prediction modes of inter-frame coding units in high-performance video coding HEVC, which can be used in the HEVC inter-frame coding process.
背景技术Background technique
目前,基本上所有高质量多媒体视频应用,如数字视频、视频点播和DVD等,还在使用2003年制定的先进视频编码标准H.264/AVC。但是随着视频应用突飞猛进的发展,各种智能终端,如智能手机、平板电脑等已经成为大众娱乐的工具,对于超高清视频的需求也在不断增长,人们对于高质量、高分辨率的视频需求越来越高。为了满足视频应用不断增长的需求,新一代视频编码标准应运而生。视频编码联合小组JCT-VC在2010年开始制定新一代高效视频编码标准HEVC,并于2013年2月正式制定完成。HEVC旨在保证视频主观质量不变的情况下,压缩效率提高一倍,极大减小传输视频信号带宽。At present, basically all high-quality multimedia video applications, such as digital video, video on demand and DVD, are still using the advanced video coding standard H.264/AVC formulated in 2003. However, with the rapid development of video applications, various smart terminals, such as smartphones and tablet computers, have become tools for mass entertainment, and the demand for ultra-high-definition video is also growing. People's demand for high-quality, high-resolution video Higher and higher. In order to meet the ever-increasing demands of video applications, a new generation of video coding standards has emerged. In 2010, JCT-VC, a video coding joint group, began to develop a new generation of high-efficiency video coding standard HEVC, and officially completed it in February 2013. HEVC aims to double the compression efficiency while ensuring the subjective quality of the video remains unchanged, greatly reducing the bandwidth of the transmitted video signal.
HEVC编码框架仍然沿用H.26x系列标准的混合编码框架,使用经典的基于块的混合编码模型,联合运动补偿预测、变换编码和高效率的熵编码。与之前的视频编码标准相比,HEVC编码单元采用灵活的四叉树结构,大小从64×64到8×8,可以高效率地编码、预测和变换大尺寸图像块。HEVC标准的实验配置条件包括三种:全I帧配置、低时延配置和随机接入配置。随机接入配置时,采用分级B帧,共有4个时域分层。The HEVC coding framework still follows the hybrid coding framework of the H.26x series standard, using the classic block-based hybrid coding model, joint motion compensation prediction, transform coding and high-efficiency entropy coding. Compared with the previous video coding standards, the HEVC coding unit adopts a flexible quadtree structure, ranging in size from 64×64 to 8×8, which can efficiently encode, predict and transform large-size image blocks. The experimental configuration conditions of the HEVC standard include three types: full I-frame configuration, low-latency configuration, and random access configuration. During random access configuration, hierarchical B frames are used, and there are 4 time domain layers in total.
预测模式选择是HEVC的关键技术,其目的是对每一个帧间编码单元从多个候选预测模式中选择最佳预测模式,以取得最优的预测精度。HEVC采用率失真优化模型进行最佳预测模式的选择。Prediction mode selection is a key technology of HEVC, and its purpose is to select the best prediction mode from multiple candidate prediction modes for each inter coding unit to obtain the best prediction accuracy. HEVC uses a rate-distortion optimization model to select the best prediction mode.
HEVC标准中帧间编码单元的预测模式选择方法要先对SKIP,Inter 2N×2N,Inter 2N×N,Inter N×2N,Inter 2N×nU,Inter 2N×nD,Inter nL×2N,Inter nR×2N,Intra 2N×2N,Intra N×N这10种候选预测模式进行遍历,再将率失真代价最小的预测模式作为当前编码单元的最佳预测模式。这种最佳预测模式选择的过程使得HEVC编码复杂度急剧上升,给HEVC的实时应用带来极大困难。因此需要在保证编码性能基本不变的前提下,降低HEVC编码复杂度。The prediction mode selection method of the inter coding unit in the HEVC standard should first select SKIP, Inter 2N×2N, Inter 2N×N, Inter N×2N, Inter 2N×nU, Inter 2N×nD, Inter nL×2N, Inter nR× 2N, Intra 2N×2N, Intra N×N these 10 candidate prediction modes are traversed, and then the prediction mode with the smallest rate-distortion cost is taken as the best prediction mode of the current coding unit. The process of selecting the best prediction mode makes the complexity of HEVC coding rise sharply, which brings great difficulties to the real-time application of HEVC. Therefore, it is necessary to reduce HEVC coding complexity under the premise of ensuring that the coding performance is basically unchanged.
目前为止,已提出的HEVC预测模式快速选择方法有以下几种:So far, the HEVC prediction mode fast selection methods that have been proposed are as follows:
提案JCTVC-F045“Early termination of CU encoding to reduce HEVC complexity”,通过编码块标志CBF的取值对预测模式进行简化判决。该方法提出除了Inter N×N之外的其他帧间预测模式的编码块标志CBF=0时,剩下的预测模式的选择过程将被终止,不再进行计算,从而降低了编码复杂度。该方法称为编码块标志快速模式CFM方法。The proposal JCTVC-F045 "Early termination of CU encoding to reduce HEVC complexity" simplifies the judgment of the prediction mode by the value of the coding block flag CBF. This method proposes that when the coded block flag CBF=0 of other inter-frame prediction modes except Inter N×N, the selection process of the remaining prediction modes will be terminated and no calculation will be performed, thereby reducing the coding complexity. This method is called coded block flag fast mode CFM method.
提案JCTVC-G543“Early SKIP Detection for HEVC”提出,检测SKIP模式之前先搜索Inter 2N×2N模式,然后检测Inter 2N×2N模式的运动矢量差值DMV和编码块标志CBF,若DMV等于(0,0),并且CBF等于0,则当前编码单元的最佳预测模式就被设为SKIP模式,不再对其余的预测模式进行遍历,从而大大降低了编码复杂度。该方法称为早期SKIP检测ESD方法。The proposal JCTVC-G543 "Early SKIP Detection for HEVC" proposes to search for the Inter 2N×2N mode before detecting the SKIP mode, and then detect the motion vector difference DMV and the coding block flag CBF of the Inter 2N×2N mode. If the DMV is equal to (0, 0), and the CBF is equal to 0, then the best prediction mode of the current coding unit is set to SKIP mode, and the remaining prediction modes are no longer traversed, thereby greatly reducing the coding complexity. This method is called the early SKIP detection ESD method.
Jong-Hyeok Lee等人在论文“Novel Fast PU Decision Algorithm for the HEVC VideoStandard”中提出一种基于时空域和编码深度相关性的快速方法。该方法利用运动复杂度将编码单元划分为不同运动区域:若当前编码单元运动复杂度小于阈值Th1,则判断当前编码单元为缓慢运动区域,只对SKIP和Inter 2N×2N模式进行遍历;若当前编码单元运动复杂度大于阈值Th1且小于阈值Th2,则判断当前编码单元为适中运动区域,对SKIP、Inter 2N×2N、Inter 2N×N和Inter N×2N模式进行遍历,否则判断当前编码单元为快运动区域,对10种预测模式都进行遍历,这样就跳过了冗余的预测模式,有效降低了编码复杂度。In the paper "Novel Fast PU Decision Algorithm for the HEVC VideoStandard", Jong-Hyeok Lee et al. proposed a fast method based on temporal-spatial domain and encoding depth correlation. This method uses the motion complexity to divide the coding unit into different motion areas: if the motion complexity of the current coding unit is less than the threshold Th1, it is judged that the current coding unit is a slow motion area, and only the SKIP and Inter 2N×2N modes are traversed; if the current If the motion complexity of the coding unit is greater than the threshold Th1 and less than the threshold Th2, then it is judged that the current coding unit is a moderate motion area, and the SKIP, Inter 2N×2N, Inter 2N×N and Inter N×2N modes are traversed, otherwise the current coding unit is judged to be In the fast-moving area, all 10 prediction modes are traversed, thus skipping redundant prediction modes and effectively reducing the coding complexity.
以上方法均在一定程度上降低了HEVC的编码复杂度。但是,目前这些方法都没有对时域相关性进行详尽的分析,使得HEVC预测模式选择速度未能得到进一步提升。The above methods all reduce the coding complexity of HEVC to a certain extent. However, none of these methods have conducted a detailed analysis of temporal correlation, so that the speed of HEVC prediction mode selection has not been further improved.
发明内容Contents of the invention
本发明的目的在于针对上述已有技术的不足,提出一种基于时域相关性的HEVC预测模式快速选择方法,以在保证视频压缩性能基本不变的情况下,进一步降低编码复杂度,提升预测模式选择速度。The purpose of the present invention is to address the deficiencies of the above-mentioned existing technologies, and propose a method for quickly selecting HEVC prediction modes based on time-domain correlation, so as to further reduce coding complexity and improve prediction while ensuring that the video compression performance is basically unchanged. Mode selection speed.
实现本发明目的技术思想是:在预测模式选择过程中,根据时域相邻编码单元的最佳预测模式,给出当前编码单元的候选预测模式,跳过尽可能多的冗余预测模式,然后从候选预测模式中选择最佳预测模式,提高编码速度,其实现步骤包括如下:The technical idea of realizing the object of the present invention is: in the prediction mode selection process, according to the best prediction mode of the adjacent coding unit in the time domain, the candidate prediction mode of the current coding unit is given, and as many redundant prediction modes as possible are skipped, and then Select the best prediction mode from the candidate prediction modes to improve the encoding speed, and its implementation steps include the following:
(1)将视频序列的运动强度分为:运动缓慢、运动适中、运动快这三种状态;(1) The motion intensity of the video sequence is divided into three states: slow motion, moderate motion, and fast motion;
(2)确定编码单元的最佳预测模式与其时域相邻编码单元的最佳预测模式的相关性:(2) Determine the correlation between the best prediction mode of a CU and the best prediction modes of its neighboring CUs in the temporal domain:
2.1)输入视频序列和实验配置条件,从第2个非I帧开始,对每一个帧间编码单元,使用此编码单元的编号在参考帧中搜索与其相同位置的编码单元,得到时域相邻编码单元;2.1) Input the video sequence and the experimental configuration conditions, starting from the second non-I frame, for each inter-frame coding unit, use the number of this coding unit to search for the coding unit at the same position in the reference frame, and get the temporal adjacent coding unit;
2.2)判断实验配置条件的类别:2.2) Determine the category of experimental configuration conditions:
若实验配置条件为低时延,则对[20,26]、[27,31]、[32,36]、[37,41]这四种不同的量化参数范围,分别统计运动缓慢、运动适中这两种运动强度的编码单元的最佳预测模式与其时域相邻编码单元的最佳预测模式的概率关系;If the experimental configuration condition is low latency, for the four different quantization parameter ranges [20,26], [27,31], [32,36], [37,41], the statistics of slow motion and moderate motion The probability relationship between the best prediction mode of the coding unit of these two motion intensities and the best prediction mode of its neighboring coding units in the temporal domain;
若实验配置条件为随机接入,则在1、2、3、4这四个时域分层中,分别对[20,26]、[27,31]、[32,36]、[37,41]这四种不同的量化参数范围,统计运动缓慢、运动适中这两种运动强度的编码单元的最佳预测模式与其时域相邻编码单元的最佳预测模式的概率关系;If the experimental configuration condition is random access, in the four time domain layers of 1, 2, 3, and 4, [20,26], [27,31], [32,36], [37, 41] For these four different quantization parameter ranges, the probability relationship between the best prediction mode of the slow-moving coding unit and the moderate-moving coding unit and the best prediction mode of the adjacent coding unit in the time domain is counted;
(3)根据实验配置条件、量化参数范围、运动强度和时域分层这些情况下编码单元的最佳预测模式与其时域相邻编码单元最佳预测模式的概率关系,构建低时延配置候选预测模式表和随机接入配置候选预测模式表:(3) According to the probability relationship between the best prediction mode of the coding unit and the best prediction mode of the adjacent coding unit in the time domain under the conditions of experimental configuration conditions, quantization parameter range, motion intensity and temporal layering, construct low-latency configuration candidates Prediction mode table and random access configuration candidate prediction mode table:
3.1)分别选择时域相邻编码单元的最佳预测模式为SKIP,Inter 2N×2N,Inter 2N×N,InterN×2N,Inter 2N×nU,Inter 2N×nD,Inter nL×2N,Inter nR×2N,Intra 2N×2N,Intra N×N这10种预测模式中的每一种,计算当前编码单元的最佳预测模式为这10种预测模式的概率,并按概率从大到小排序;3.1) The best prediction modes for selecting adjacent coding units in time domain are SKIP, Inter 2N×2N, Inter 2N×N, InterN×2N, Inter 2N×nU, Inter 2N×nD, Inter nL×2N, Inter nR× For each of the 10 prediction modes 2N, Intra 2N×2N, and Intra N×N, calculate the probability that the best prediction mode of the current coding unit is these 10 prediction modes, and sort them in descending order of probability;
3.2)从概率最大的预测模式开始,选择概率之和不小于90%且数量最少的预测模式作为候选预测模式,并设定候选预测模式总数不超过5种,从而构建候选预测模式表;3.2) Starting from the prediction mode with the highest probability, select the prediction mode with the sum of the probability not less than 90% and the least number as the candidate prediction mode, and set the total number of candidate prediction modes to no more than 5, so as to construct the candidate prediction mode table;
(4)根据候选预测模式表,选取候选预测模式,并对帧间编码单元进行编码,得到最佳预测模式:(4) According to the candidate prediction mode table, select the candidate prediction mode, and encode the inter coding unit to obtain the best prediction mode:
4.1)输入视频序列和实验配置条件,采用HEVC标准的预测模式选择方法对I帧和第1个非I帧的编码单元进行编码,得到每个编码单元的最佳预测模式;4.1) Input the video sequence and experimental configuration conditions, and use the HEVC standard prediction mode selection method to encode the I frame and the first non-I frame coding unit to obtain the best prediction mode for each coding unit;
4.2)从第2个非I帧开始,对每一个帧间编码单元,判断其运动强度的类别:4.2) Starting from the second non-I frame, for each inter-frame coding unit, determine the category of its motion intensity:
若当前编码单元的运动强度为运动缓慢,执行步骤4.3);若当前编码单元的运动强度为运动适中,执行步骤4.4);否则,采用HEVC标准的预测模式选择方法对编码单元进行编码,得到最佳预测模式;If the motion intensity of the current coding unit is slow motion, perform step 4.3); if the motion intensity of the current coding unit is moderate motion, perform step 4.4); otherwise, use the HEVC standard prediction mode selection method to encode the coding unit to obtain the most best predictive model;
4.3)判断运动缓慢的实验配置条件类别:4.3) The category of experimental configuration conditions for judging slow movement:
若实验配置条件为低时延,则根据量化参数QP和时域相邻编码单元的最佳预测模式,在低时延配置下运动缓慢编码单元的候选预测模式表中选择相应的候选预测模式进行遍历,得到最佳预测模式;If the experimental configuration condition is low delay, according to the quantization parameter QP and the best prediction mode of the adjacent coding unit in the time domain, select the corresponding candidate prediction mode from the candidate prediction mode table of the slow moving coding unit under the low delay configuration. traverse to get the best prediction mode;
若实验配置条件为随机接入,则根据时域分层、量化参数QP和时域相邻编码单元的最佳预测模式,在随机接入配置下运动缓慢编码单元的候选预测模式表中选择相应的候选预测模式进行遍历,得到最佳预测模式;If the experimental configuration condition is random access, according to the time-domain layering, quantization parameter QP and the best prediction mode of the neighboring coding units in the time domain, select the corresponding The candidate prediction modes are traversed to get the best prediction mode;
4.4)判断运动适中的实验配置条件类别:4.4) The category of experimental configuration conditions for judging moderate movement:
若实验配置条件为低时延,则根据量化参数QP和时域相邻编码单元的最佳预测模式,在低时延配置下运动适中编码单元的候选预测模式表中选择相应的候选预测模式进行遍历,得到最佳预测模式;If the experimental configuration condition is low delay, according to the quantization parameter QP and the best prediction mode of the adjacent coding unit in the time domain, select the corresponding candidate prediction mode from the candidate prediction mode table of the moderately moving coding unit under the low delay configuration. traverse to get the best prediction mode;
若实验配置条件为随机接入,则根据时域分层、量化参数QP和时域相邻编码单元的最佳预测模式,在随机接入配置下运动适中编码单元的候选预测模式表中选择相应的候选预测模式进行遍历,得到最佳预测模式。If the experimental configuration condition is random access, according to the time-domain layering, quantization parameter QP and the best prediction mode of the adjacent coding units in the time domain, select the corresponding prediction mode from the candidate prediction mode table of the moderately moving coding unit under the random access configuration. The candidate prediction modes are traversed to get the best prediction mode.
本发明与现有方法相比具有如下优点:Compared with existing methods, the present invention has the following advantages:
(a)本发明由于根据时域相关性,跳过了冗余的预测模式,使得预测模式选择计算复杂度较小,减少了大量的编码时间;(a) The present invention skips the redundant prediction mode according to the time domain correlation, so that the calculation complexity of the prediction mode selection is small, and a large amount of coding time is reduced;
(b)本发明由于在选择候选预测模式时,根据不同运动强度进行选择,使得模式选择结果更加精确。(b) In the present invention, when selecting the candidate prediction mode, the selection is made according to different motion intensities, so that the mode selection result is more accurate.
附图说明Description of drawings
图1是本发明的实现流程图;Fig. 1 is the realization flowchart of the present invention;
图2是当前编码单元的周围编码单元集合位置示意图。Fig. 2 is a schematic diagram of the positions of surrounding coding unit sets of the current coding unit.
具体实施方式detailed description
下面将结合附图和实施例对本发明作进一步详细描述。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于下述实施例。The present invention will be further described in detail with reference to the accompanying drawings and embodiments. This embodiment is carried out on the premise of the technical solution of the present invention, and detailed implementation and specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
参照图1,本发明的实现步骤如下:With reference to Fig. 1, the realization steps of the present invention are as follows:
步骤一:对视频序列的运动强度进行分类。Step 1: Classify the motion intensity of the video sequence.
1a)对当前编码单元CU0建立运动矢量集合{mv1,mv2,mv3,mv4,mv5},1a) Establish a motion vector set {mv 1 , mv 2 , mv 3 , mv 4 , mv 5 } for the current coding unit CU 0 ,
其中mvi是当前编码单元CU0周围编码单元CUi的运动矢量,mvi=(xi,yi),i=1,...,5,xi和yi分别为运动矢量的横坐标和纵坐标;CU0周围编码单元集合包括其左边相邻编码单元CU1、上边相邻编码单元CU2、右上边相邻编码单元CU3、左上边相邻编码单元CU4和时域相邻编码单元CU5,如图2所示;Where mv i is the motion vector of the coding unit CU i around the current coding unit CU 0 , mv i = ( xi , y i ), i=1,...,5, xi and y i are respectively the transverse direction of the motion vector coordinates and ordinates; the set of coding units around CU 0 includes its left neighboring coding unit CU 1 , upper neighboring coding unit CU 2 , upper right neighboring coding unit CU 3 , upper left neighboring coding unit CU 4 and time domain phase Adjacent coding unit CU 5 , as shown in FIG. 2 ;
1b)计算运动矢量集合中每个运动矢量的长度l:1b) Calculate the length l of each motion vector in the motion vector set:
l(mvi)=|xi|+|yi|;l(mv i )=|x i |+|y i |;
1c)在步骤1b)得到的运动矢量长度集合中选择长度的最大值L:1c) select the maximum value L of length in the motion vector length collection that step 1b) obtains:
L=max{l(mv1),l(mv2),l(mv3),l(mv4),l(mv5)},L=max{l(mv 1 ), l(mv 2 ), l(mv 3 ), l(mv 4 ), l(mv 5 )},
1d)设置运动缓慢阈值L0和运动适中阈值L1:1d) Set slow motion threshold L0 and moderate motion threshold L1:
1d1)输入分辨率为416×240的视频序列和实验配置条件;1d1) Input video sequences with a resolution of 416×240 and experimental configuration conditions;
1d2)从第一个非I帧开始,判断实验配置条件的类别:1d2) Starting from the first non-I frame, judge the category of the experimental configuration condition:
若实验配置条件为低时延,则输出视频序列的运动矢量,根据运动矢量的大小和视频分辨率,并参照Zeng方法中运动缓慢状态的阈值T0和运动适中状态的阈值T1,设定阈值L0和L1;If the experimental configuration condition is low delay, then output the motion vector of the video sequence, according to the size of the motion vector and the video resolution, and refer to the threshold T0 of the slow motion state and the threshold T1 of the moderate motion state in the Zeng method, set the threshold L0 and L1;
若实验配置条件为随机接入,则输出视频序列不同时域分层的运动矢量,根据运动矢量的大小和视频分辨率,并参照Zeng方法中运动缓慢状态的阈值T0和运动适中状态的阈值T1,设定不同时域分层的阈值L0和L1;If the experimental configuration condition is random access, output the motion vectors of different time-domain layers of the video sequence, according to the size of the motion vector and video resolution, and refer to the threshold T0 of the slow motion state and the threshold T1 of the moderate motion state in the Zeng method , setting the thresholds L0 and L1 of different time domain layers;
所述的Zeng方法见Huanqiang Zeng,Canhui Cai等人的文章“A Novel Fast ModeDecision for the H.264/AVC Based on Local MacroblockMotion Activity”;For the Zeng method, see the article "A Novel Fast ModeDecision for the H.264/AVC Based on Local MacroblockMotion Activity" by Huanqiang Zeng, Canhui Cai et al.;
1d3)重复步骤1d1)和步骤1d2)分别得到分辨率为832×480、1280×720、1920×1080、2560×1600的视频序列的运动缓慢阈值L0和运动适中阈值L1,得到最终不同分辨率视频序列运动缓慢阈值L0和运动适中阈值L1的,如表1和表2:1d3) Repeat step 1d1) and step 1d2) to obtain the slow motion threshold L0 and moderate motion threshold L1 of video sequences with resolutions of 832×480, 1280×720, 1920×1080, and 2560×1600, respectively, to obtain the final videos with different resolutions Sequential slow movement threshold L0 and moderate movement threshold L1, as shown in Table 1 and Table 2:
表1 低时延配置运动缓慢状态阈值L0和运动适中状态阈值L1Table 1 Low latency configuration slow motion state threshold L0 and moderate motion state threshold L1
表2 随机接入配置运动缓慢状态阈值L0和运动适中状态阈值L1Table 2 Random access configuration slow state threshold L0 and moderate motion state threshold L1
1e)根据实验配置条件、视频分辨率和时域分层,从表1或表2中选择运动缓慢阈值L0和运动适中阈值L1,将步骤1c)中得到的长度最大值L,与阈值L0和阈值L1进行比较:1e) According to the experimental configuration conditions, video resolution and time domain layering, select the slow motion threshold L0 and the moderate motion threshold L1 from Table 1 or Table 2, and combine the maximum length L obtained in step 1c) with the threshold L0 and Threshold L1 for comparison:
若L<L0,则定义运动强度为运动缓慢;If L<L0, define the exercise intensity as slow exercise;
若L0≤L<L1,则定义运动强度为运动适中;If L0≤L<L1, the exercise intensity is defined as moderate exercise;
若L≥L1,则定义运动强度为运动快。If L≥L1, the exercise intensity is defined as fast exercise.
步骤二:确定编码单元的最佳预测模式与其时域相邻编码单元的最佳预测模式的相关性。Step 2: Determine the correlation between the best prediction mode of the CU and the best prediction modes of its neighboring CUs in time domain.
2a)输入视频序列BQSquare和实验配置条件,从第2个非I帧开始,对每一个帧间编码单元,使用此编码单元的编号在参考帧中搜索与其相同位置的编码单元,得到时域相邻编码单元;2a) Input the video sequence BQSquare and the experimental configuration conditions, starting from the second non-I frame, for each inter-frame coding unit, use the number of this coding unit to search for the coding unit at the same position in the reference frame, and get the temporal phase Adjacent coding unit;
2b)判断实验配置条件的类别:2b) Determine the category of experimental configuration conditions:
若实验配置条件为低时延,则测试视频序列BQSquare的前100帧,对[20,26]、[27,31]、[32,36]、[37,41]这四种不同的量化参数范围,分别统计运动缓慢、运动适中这两种运动强度的编码单元最佳预测模式与其时域相邻编码单元最佳预测模式的概率关系;If the experimental configuration condition is low latency, test the first 100 frames of the video sequence BQSquare, for the four different quantization parameters [20,26], [27,31], [32,36], [37,41] Range, respectively statistics the probability relationship between the best prediction mode of the coding unit with slow motion and moderate motion intensity and the best prediction mode of the adjacent coding unit in time domain;
若实验配置条件为随机接入,则测试视频序列BQSquare的前65帧,在1、2、3、4这四个时域分层中,分别对[20,26]、[27,31]、[32,36]、[37,41]这四种不同的量化参数范围,统计运动缓慢、运动适中这两种运动强度的编码单元的最佳预测模式与其时域相邻编码单元的最佳预测模式的概率关系;If the experimental configuration condition is random access, test the first 65 frames of the video sequence BQSquare, in the four time domain layers of 1, 2, 3, and 4, respectively [20,26], [27,31], [32,36], [37,41] these four different quantization parameter ranges, statistically the best prediction mode of the coding unit with slow motion and moderate motion intensity and the best prediction of the temporal adjacent coding unit the probability relationship of the pattern;
2c)重复步骤2a)和步骤2b)分别得到视频序列BasketballPass和Johnny的编码单元的最佳预测模式与其时域相邻编码单元的最佳预测模式的概率关系,对上述这三个视频序列的概率关系作平均,得到最终的低时延配置和随机接入配置下不同运动强度的编码单元与其时域相邻编码单元的最佳预测模式的概率关系,下面只给出低时延配置下量化参数范围为[20,26]时的概率关系,以及随机接入配置下时域分层为1且量化参数范围为[20,26]的概率关系,如表3至表6:2c) Repeat step 2a) and step 2b) respectively to obtain the probability relationship between the best prediction mode of the coding unit of the video sequence BasketballPass and Johnny and the best prediction mode of the adjacent coding unit in the time domain, and the probability of the above three video sequences The relationship is averaged to obtain the final low-latency configuration and random access configuration. The probability relationship between coding units with different motion intensities and the best prediction modes of adjacent coding units in the time domain is given below. Only the quantization parameters for low-latency configurations are given below. The probability relationship when the range is [20,26], and the probability relationship when the time domain layer is 1 and the quantization parameter range is [20,26] under the random access configuration, as shown in Table 3 to Table 6:
表3 低时延配置运动缓慢编码单元与时域相邻编码单元的最佳预测模式的概率关系Table 3 Probability relationship between low-latency configuration slow-moving coding units and the best prediction modes of neighboring coding units in time domain
表4 低时延配置运动适中编码单元与时域相邻编码单元的最佳预测模式的概率关系Table 4 Probability relationship between low-latency configuration moderate motion coding unit and the best prediction mode of adjacent coding units in time domain
表5 随机接入配置运动缓慢编码单元与时域相邻编码单元的最佳预测模式的概率关系Table 5 Probability relationship between random access configuration slow motion coding unit and the best prediction mode of adjacent coding units in time domain
表6 随机接入配置运动适中编码单元与时域相邻编码单元的最佳预测模式的概率关系Table 6 Probability relationship between the optimal prediction mode of the moderately moving coding unit and the adjacent coding unit in the time domain with random access configuration
上述表3-表6中,模式0代表SKIP,模式1代表Inter 2N×2N,模式2代表Inter 2N×N,模式3代表Inter N×2N,模式4代表Inter 2N×nU,模式5代表Inter 2N×nD,模式6代表InternL×2N,模式7代表Inter nR×2N,模式8代表Intra 2N×2N,模式9代表Intra N×N。In the above Table 3-Table 6, mode 0 represents SKIP, mode 1 represents Inter 2N×2N, mode 2 represents Inter 2N×N, mode 3 represents Inter N×2N, mode 4 represents Inter 2N×nU, and mode 5 represents Inter 2N ×nD, mode 6 represents InternL×2N, mode 7 represents Intra nR×2N, mode 8 represents Intra 2N×2N, and mode 9 represents Intra N×N.
步骤三:根据表3-表6,构建低时延配置候选预测模式表和随机接入配置候选预测模式表。Step 3: According to Table 3-Table 6, construct a low-latency configuration candidate prediction mode table and a random access configuration candidate prediction mode table.
3a)编码单元与其时域相邻编码单元的最佳预测模式包括:SKIP,Inter 2N×2N,Inter2N×N,Inter N×2N,Inter 2N×nU,Inter 2N×nD,Inter nL×2N,Inter nR×2N,Intra 2N×2N,IntraN×N这10种预测模式;选择时域相邻编码单元的最佳预测模式为SKIP模式,计算当前编码单元的最佳预测模式分别为上述10种预测模式的概率,并按概率从大到小排序;3a) The best prediction modes for a coding unit and its neighboring coding units in time domain include: SKIP, Inter 2N×2N, Inter2N×N, Inter N×2N, Inter 2N×nU, Inter 2N×nD, Inter nL×2N, Inter There are 10 prediction modes: nR×2N, Intra 2N×2N, and IntraN×N; select the best prediction mode of adjacent coding units in the time domain as SKIP mode, and calculate the best prediction modes of the current coding unit as the above 10 prediction modes Probability of , and sorted by probability from large to small;
3b)重复步骤3a)分别选择时域相邻编码单元的最佳预测模式为其他9种预测模式,计算当前编码单元的最佳预测模式为上述10种预测模式的概率,并按概率从大到小排序;3b) Repeat step 3a) to select the other 9 prediction modes for the best prediction mode of adjacent coding units in the time domain, and calculate the probability that the best prediction mode of the current coding unit is the above 10 prediction modes, and rank the probability from large to small sort;
3c)从概率最大的预测模式开始,选择概率之和不小于90%且数量最少的预测模式作为候选预测模式,并设定候选预测模式总数不超过5种,从而构建候选预测模式表,如表7-表10;3c) Starting from the prediction mode with the highest probability, select the prediction mode with the sum of the probability not less than 90% and the least number as the candidate prediction mode, and set the total number of candidate prediction modes to no more than 5, so as to construct the candidate prediction mode table, as shown in the table 7-Table 10;
表7 低时延配置运动缓慢编码单元候选预测模式表Table 7 Candidate prediction mode table of low-latency configuration and slow-moving coding unit
表8 低时延配置运动适中编码单元候选预测模式表Table 8 Low-latency configuration and moderate motion coding unit candidate prediction mode table
表9 随机接入配置运动缓慢编码单元候选预测模式表Table 9 Table of candidate prediction modes for random access configuration slow motion coding unit
表10 随机接入配置运动适中编码单元候选预测模式表Table 10 Random access configuration motion moderate coding unit candidate prediction mode table
步骤四:根据表7-表10,选取候选预测模式,对表11中每个视频序列的帧间编码单元进行编码,得到最佳预测模式。Step 4: According to Table 7-Table 10, select candidate prediction modes, encode the inter-coding units of each video sequence in Table 11, and obtain the best prediction mode.
4a)输入视频序列,采用HEVC标准的预测模式选择方法对I帧和第1个非I帧的编码单元进行编码,得到每个编码单元的最佳预测模式;4a) Input a video sequence, use the prediction mode selection method of the HEVC standard to encode the coding unit of the I frame and the first non-I frame, and obtain the best prediction mode of each coding unit;
4b)从第2个非I帧开始,对每一个帧间编码单元,判断其运动强度:4b) Starting from the second non-I frame, for each inter-frame coding unit, judge its motion strength:
若当前编码单元的运动强度为运动缓慢,执行步骤4c);若当前编码单元的运动强度为运动适中,执行步骤4d);否则,采用HEVC标准的预测模式选择方法对编码单元进行编码,得到最佳预测模式;If the motion intensity of the current coding unit is slow motion, perform step 4c); if the motion intensity of the current coding unit is moderate motion, perform step 4d); otherwise, use the HEVC standard prediction mode selection method to encode the coding unit to obtain the most best predictive model;
4c)判断运动缓慢的实验配置条件类别:4c) The category of experimental configuration conditions for judging slow movement:
若实验配置条件为低时延,则根据量化参数QP和时域相邻编码单元的最佳预测模式,在表7中选择相应的候选预测模式进行遍历,得到最佳预测模式;If the experimental configuration condition is low delay, then according to the quantization parameter QP and the best prediction mode of the adjacent coding unit in the time domain, select the corresponding candidate prediction mode in Table 7 for traversal, and obtain the best prediction mode;
若实验配置条件为随机接入,则根据时域分层、量化参数QP和时域相邻编码单元的最佳预测模式,在表9中选择相应的候选预测模式进行遍历,得到最佳预测模式;If the experimental configuration condition is random access, then according to the time domain layering, quantization parameter QP and the best prediction mode of the adjacent coding unit in the time domain, select the corresponding candidate prediction mode in Table 9 and traverse to obtain the best prediction mode ;
4d)判断运动适中的实验配置条件类别:4d) The category of experimental configuration conditions for judging moderate movement:
若实验配置条件为低时延,则根据量化参数QP和时域相邻编码单元的最佳预测模式,在表8中选择相应的候选预测模式进行遍历,得到最佳预测模式;If the experimental configuration condition is low delay, then according to the quantization parameter QP and the best prediction mode of the adjacent coding unit in the time domain, select the corresponding candidate prediction mode in Table 8 for traversal, and obtain the best prediction mode;
若实验配置条件为随机接入,则根据时域分层、量化参数QP和时域相邻编码单元的最佳预测模式,在表10中选择相应的候选预测模式进行遍历,得到最佳预测模式。If the experimental configuration condition is random access, according to the time-domain layering, quantization parameter QP and the best prediction mode of the adjacent coding unit in the time domain, select the corresponding candidate prediction mode in Table 10 and traverse to obtain the best prediction mode .
本发明的效果可通过以下仿真进一步说明:Effect of the present invention can be further illustrated by following simulation:
1.实验环境1. Experimental environment
使用VS2010编码环境,用参考软件HM16.0进行测试,实验配置条件为低时延配置和随机接入配置。Use the VS2010 coding environment and test with the reference software HM16.0. The experimental configuration conditions are low-latency configuration and random access configuration.
实验测试的视频序列详细信息如表11:The video sequence details of the experimental test are shown in Table 11:
表11 视频序列详细信息Table 11 Video sequence details
2.实验内容2. Experimental content
使用本发明方法、CFM快速方法、ESD快速方法和Lee快速方法分别对表11中的所有视频序列进行编码,记录编码时间和率失真性能估计量BD-PSNR。本发明与这三种快速方法的编码性能比较如表12-表14,其中表12是本发明方法与CFM快速方法编码性能的比较,表13是本发明方法与ESD快速方法编码性能的比较,表14是本发明方法与Lee快速方法编码性能的比较。All the video sequences in Table 11 are encoded using the method of the present invention, the fast method of CFM, the fast method of ESD and the fast method of Lee, and record the coding time and rate-distortion performance estimator BD-PSNR. The coding performance comparison of the present invention and these three fast methods is as table 12-table 14, and wherein table 12 is the comparison of the coding performance of the inventive method and the CFM fast method, and table 13 is the comparison of the coding performance of the inventive method and the ESD fast method, Table 14 is the comparison of the encoding performance of the method of the present invention and the Lee fast method.
其中,表12-表14中的表示本发明方法与现有快速选择方法相比时间变化量,“-”表示本发明方法比现有快速方法在时间方面提速了。BD-PSNR表示在给定的同等码率下,两种方法的亮度峰值信噪比PSNR-Y的差异,其单位是dB,“-”表示本发明方法比现有快速方法PSNR-Y降低了。Among them, in Table 12-Table 14 Indicates the amount of time change between the method of the present invention and the existing rapid selection method, and "-" indicates that the method of the present invention is faster than the existing rapid method in terms of time. BD-PSNR represents the difference between the luminance peak signal-to-noise ratio PSNR-Y of the two methods at the same given code rate, and its unit is dB. "-" indicates that the method of the present invention is lower than the existing fast method PSNR-Y .
表12 本发明方法与CFM快速方法比较Table 12 The method of the present invention compares with the fast method of CFM
由表12可见,本发明方法与CFM快速方法相比,低时延配置时在BD-PSNR平均降低0.07dB的情况下,编码时间平均提速了4.69%,随机接入配置时在BD-PSNR平均降低0.07dB的情况下,编码时间平均提速了8.43%。It can be seen from Table 12 that, compared with the CFM fast method, the method of the present invention has an average reduction of 0.07dB in BD-PSNR in low-latency configuration, and the average encoding time is increased by 4.69%. In the case of a 0.07dB reduction, the encoding time is increased by an average of 8.43%.
表13 本发明方法与ESD快速方法比较Table 13 The inventive method compares with ESD fast method
由表13可见,本发明方法与ESD快速方法相比,低时延配置时在BD-PSNR平均降低0.095dB的情况下,编码时间平均提速了13.81%,随机接入配置时在BD-PSNR平均降低0.10dB的情况下,编码时间平均提速了11.68%。It can be seen from Table 13 that, compared with the ESD fast method, the method of the present invention has an average reduction of 0.095dB in BD-PSNR in low-delay configuration, and the average encoding time is increased by 13.81%. In the case of a reduction of 0.10dB, the encoding time is increased by an average of 11.68%.
表14 本发明方法与Lee快速方法比较Table 14 The inventive method compares with Lee's fast method
由表14可见,本发明方法与Lee快速方法相比,随机接入配置时在BD-PSNR平均降低0.04dB的情况下,编码时间平均提速了4.22%。It can be seen from Table 14 that compared with the Lee fast method, the method of the present invention speeds up the encoding time by 4.22% on average when the BD-PSNR is reduced by 0.04dB on average in random access configuration.
综上,本发明利用时域相关性,跳过冗余的预测模式,在BD-PSNR基本相同的情况下,进一步提升了预测模式选择的速度。To sum up, the present invention utilizes time-domain correlation to skip redundant prediction modes, and further improves the speed of prediction mode selection under the condition that the BD-PSNR is basically the same.
上述描述为本发明的优选实例,显然本领域的研究人员可参考本发明的优选实例和附图对本发明做出各种修改和替换,这些修改和替换都应落入本发明的保护范围之内。The foregoing description is a preferred example of the present invention, obviously researchers in the field can make various modifications and replacements to the present invention with reference to the preferred examples of the present invention and accompanying drawings, and these modifications and replacements all should fall within the protection scope of the present invention .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410662687.5A CN104333756B (en) | 2014-11-19 | 2014-11-19 | HEVC predictive mode fast selecting methods based on relativity of time domain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410662687.5A CN104333756B (en) | 2014-11-19 | 2014-11-19 | HEVC predictive mode fast selecting methods based on relativity of time domain |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104333756A true CN104333756A (en) | 2015-02-04 |
CN104333756B CN104333756B (en) | 2017-10-24 |
Family
ID=52408395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410662687.5A Expired - Fee Related CN104333756B (en) | 2014-11-19 | 2014-11-19 | HEVC predictive mode fast selecting methods based on relativity of time domain |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104333756B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104902271A (en) * | 2015-05-15 | 2015-09-09 | 腾讯科技(北京)有限公司 | Prediction mode selection method and device |
CN106170089A (en) * | 2016-08-25 | 2016-11-30 | 上海交通大学 | Based on multiplex coding system and method H.265 |
CN106331699A (en) * | 2015-06-19 | 2017-01-11 | 华为技术有限公司 | Image coding method and image encoder |
CN107566846A (en) * | 2017-09-20 | 2018-01-09 | 北京维境视讯信息技术有限公司 | Video coding skip mode decision-making technique, device, equipment and storage medium |
CN108989801A (en) * | 2018-07-27 | 2018-12-11 | 福州大学至诚学院 | A kind of adaptive model selection fast method based on space-time characterisation |
CN112839224A (en) * | 2019-11-22 | 2021-05-25 | 腾讯科技(深圳)有限公司 | Prediction mode selection method and device, video coding equipment and storage medium |
CN113596456A (en) * | 2019-09-23 | 2021-11-02 | 杭州海康威视数字技术股份有限公司 | Encoding and decoding method, device and equipment |
US11363298B2 (en) | 2020-08-03 | 2022-06-14 | Wiston Corporation | Video processing apparatus and processing method of video stream |
US11880966B2 (en) | 2020-08-03 | 2024-01-23 | Wistron Corporation | Image quality assessment apparatus and image quality assessment method thereof |
CN118018740A (en) * | 2024-02-26 | 2024-05-10 | 重庆邮电大学 | A 360-degree video inter-frame mode decision method based on deep learning |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102984521A (en) * | 2012-12-12 | 2013-03-20 | 四川大学 | High-efficiency video coding inter-frame mode judging method based on temporal relativity |
US20130336384A1 (en) * | 2012-06-15 | 2013-12-19 | General Instrument Corporation | Method and apparatus for efficient slice header processing |
-
2014
- 2014-11-19 CN CN201410662687.5A patent/CN104333756B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130336384A1 (en) * | 2012-06-15 | 2013-12-19 | General Instrument Corporation | Method and apparatus for efficient slice header processing |
CN102984521A (en) * | 2012-12-12 | 2013-03-20 | 四川大学 | High-efficiency video coding inter-frame mode judging method based on temporal relativity |
Non-Patent Citations (3)
Title |
---|
LEE J H等: "Novel fast PU decision algorithm for the HEVC video standard", 《IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING》 * |
ZENG HUANQIANG等: "A Novel Fast Mode Decision for the H.264/AVC Based on Local Macroblock Motion Activity", 《IEEE INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS》 * |
许东旭等: "高效率视频编码帧内快速算法", 《计算机应用》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104902271B (en) * | 2015-05-15 | 2017-12-29 | 腾讯科技(北京)有限公司 | Predicting mode selecting method and device |
CN104902271A (en) * | 2015-05-15 | 2015-09-09 | 腾讯科技(北京)有限公司 | Prediction mode selection method and device |
CN106331699B (en) * | 2015-06-19 | 2019-04-26 | 华为技术有限公司 | Image encoding method and image encoder |
CN106331699A (en) * | 2015-06-19 | 2017-01-11 | 华为技术有限公司 | Image coding method and image encoder |
CN106170089A (en) * | 2016-08-25 | 2016-11-30 | 上海交通大学 | Based on multiplex coding system and method H.265 |
CN106170089B (en) * | 2016-08-25 | 2020-05-22 | 上海交通大学 | Multiplex Coding Method Based on H.265 |
CN107566846A (en) * | 2017-09-20 | 2018-01-09 | 北京维境视讯信息技术有限公司 | Video coding skip mode decision-making technique, device, equipment and storage medium |
CN107566846B (en) * | 2017-09-20 | 2020-04-14 | 北京字节跳动网络技术有限公司 | Video coding skipping mode decision method, device, equipment and storage medium |
CN108989801A (en) * | 2018-07-27 | 2018-12-11 | 福州大学至诚学院 | A kind of adaptive model selection fast method based on space-time characterisation |
CN108989801B (en) * | 2018-07-27 | 2021-10-08 | 福州大学至诚学院 | Space-time characteristic-based adaptive mode selection rapid method |
CN113596456A (en) * | 2019-09-23 | 2021-11-02 | 杭州海康威视数字技术股份有限公司 | Encoding and decoding method, device and equipment |
CN112839224A (en) * | 2019-11-22 | 2021-05-25 | 腾讯科技(深圳)有限公司 | Prediction mode selection method and device, video coding equipment and storage medium |
US11363298B2 (en) | 2020-08-03 | 2022-06-14 | Wiston Corporation | Video processing apparatus and processing method of video stream |
US11880966B2 (en) | 2020-08-03 | 2024-01-23 | Wistron Corporation | Image quality assessment apparatus and image quality assessment method thereof |
CN118018740A (en) * | 2024-02-26 | 2024-05-10 | 重庆邮电大学 | A 360-degree video inter-frame mode decision method based on deep learning |
CN118018740B (en) * | 2024-02-26 | 2024-10-11 | 重庆邮电大学 | A 360-degree video inter-frame mode decision method based on deep learning |
Also Published As
Publication number | Publication date |
---|---|
CN104333756B (en) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104333756B (en) | HEVC predictive mode fast selecting methods based on relativity of time domain | |
CN104394409B (en) | HEVC predictive mode fast selecting methods based on spatial correlation | |
CN106131547B (en) | The high-speed decision method of intra prediction mode in Video coding | |
CN102984521B (en) | High-efficiency video coding inter-frame mode judging method based on temporal relativity | |
CN102186070B (en) | Method for realizing rapid video coding by adopting hierarchical structure anticipation | |
CN103188496B (en) | Based on the method for coding quick movement estimation video of motion vector distribution prediction | |
CN104113754B (en) | Method for high-performance video interframe coding based on time domain relevance and transcoder thereof | |
CN103873861B (en) | Coding mode selection method for HEVC (high efficiency video coding) | |
CN103327325B (en) | The quick self-adapted system of selection of intra prediction mode based on HEVC standard | |
CN104320658B (en) | A kind of HEVC fast encoding methods | |
CN104639940B (en) | A kind of quick HEVC method for choosing frame inner forecast mode | |
CN106961606A (en) | The HEVC intra-frame encoding mode systems of selection of feature are divided based on texture | |
CN104796694A (en) | Intraframe video encoding optimization method based on video texture information | |
CN103384325A (en) | Quick inter-frame prediction mode selection method for AVS-M video coding | |
CN101783957A (en) | Method and device for predictive encoding of video | |
CN111263145A (en) | Multifunctional fast video coding method based on deep neural network | |
CN106454342A (en) | Interframe mode fast selecting method and system of video compressed coding | |
CN104168480B (en) | Intra-prediction code mode fast selecting method based on HEVC standard | |
CN105430391B (en) | The intraframe coding unit fast selecting method of logic-based recurrence classifier | |
CN107071496B (en) | A method for fast selection of H.265/HEVC inter-coding unit depth | |
CN108924558A (en) | A kind of predictive encoding of video method neural network based | |
CN108366256A (en) | A kind of HEVC intra prediction modes quickly select system and method | |
CN101304529A (en) | Method and device for selecting macroblock mode | |
CN102075757B (en) | Video foreground object coding method by taking boundary detection as motion estimation reference | |
CN104333754A (en) | SHVC (scalable high efficiency video coding) enhancement layer video coding method based on rapid prediction mode selection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171024 |