CN104333291B - Motor drive control device and control method - Google Patents
Motor drive control device and control method Download PDFInfo
- Publication number
- CN104333291B CN104333291B CN201310309245.8A CN201310309245A CN104333291B CN 104333291 B CN104333291 B CN 104333291B CN 201310309245 A CN201310309245 A CN 201310309245A CN 104333291 B CN104333291 B CN 104333291B
- Authority
- CN
- China
- Prior art keywords
- bus
- voltage
- bus voltage
- control
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种控制装置及方法,更具体地,本发明涉及一种用于电机驱动的控制装置及控制方法。The present invention relates to a control device and method, more specifically, the present invention relates to a control device and a control method for motor driving.
背景技术Background technique
图1示意性地显示了在混合动力/纯电动车中的功率级。如图1所示,功率级主要包括:电机1;逆变器2,其在一侧输出交流电压以驱动电机1;变压器4,用于输出总线电压Vbus到逆变器2,其中,变压器4由输出电压为Vdc的直流电源5供电,通常是提升Vdc电压。具体地,逆变器2的另一侧则是直流总线3,直流总线3为逆变器2提供直流总线电压Vbus。该直流总线电压Vbus由变压器4控制,其中变压器4能够在升压模式下将Vdc电压提升为Vbus。如果需要的话,多组逆变器和电机共用同一直流总线3,以执行更复杂的任务,例如在两台电机1、1’的情况下,一台电机1在电动模式下运行,而另一台电机1’则在发电模式下运行。Figure 1 schematically shows the power stages in a hybrid/electric vehicle. As shown in Figure 1, the power stage mainly includes: a motor 1; an inverter 2, which outputs an AC voltage on one side to drive the motor 1; a transformer 4, which is used to output the bus voltage Vbus to the inverter 2, wherein the transformer 4 The power is supplied by a direct current power supply 5 whose output voltage is Vdc, usually by boosting the Vdc voltage. Specifically, the other side of the inverter 2 is the DC bus 3 , and the DC bus 3 provides the inverter 2 with a DC bus voltage Vbus. The DC bus voltage Vbus is controlled by a transformer 4, wherein the transformer 4 can boost the Vdc voltage to Vbus in boost mode. If desired, multiple sets of inverters and motors share the same DC bus 3 to perform more complex tasks, such as in the case of two motors 1, 1', one motor 1 operating in motoring mode while the other The electric machine 1' runs in the power generation mode.
变压器4在上述功率级中具有重要作用:Transformer 4 plays an important role in the above power stages:
1)直流总线电压Vbus对系统损耗及效率有重要影响,总线电压高,对于电机来说,其在弱磁区需要的电流会小,因此导线上的损耗会小,但是磁场会大,因此铁芯中的损耗会多。对于变压器和逆变器中的功率开关元件来说,因为电机电流小了,所以导通损耗会小,但是因为总线电压高了,所以开关损耗会大。当总线电压低时,情况正好相反。因此,对于特定组合的电机速度和扭矩,存在使系统最优的直流总线电压Vbus。当电机的转速或者转矩变化时,直流总线电压也要跟随变化,这就是系统最优路径。这里的“系统最优”,可以是系统的效率最高(等同损耗最低),或者某个元件(比如电机)的效率最高,又或者是系统的温升最低,又或者是某个元件的温升最低,又或者是系统在某种工况下的温升最低,又或者是某个元件在某种工况下的温升最低。变压器4控制总线电压Vbus,以确保逆变器2、2’和电机1、1’具有足够的电压以输出需要的扭矩,同时优选的是将Vbus控制在使系统最优的最佳点。1) The DC bus voltage Vbus has an important impact on system loss and efficiency. The bus voltage is high. For the motor, the current required in the weak magnetic field will be small, so the loss on the wire will be small, but the magnetic field will be large, so the iron core The loss in will be more. For the power switching elements in transformers and inverters, the conduction loss will be small because the motor current is small, but the switching loss will be large because the bus voltage is high. The opposite is true when the bus voltage is low. Therefore, for a particular combination of motor speed and torque, there exists a DC bus voltage Vbus that optimizes the system. When the speed or torque of the motor changes, the DC bus voltage also changes accordingly, which is the optimal path of the system. The "optimal system" here can be the highest efficiency of the system (equivalent to the lowest loss), or the highest efficiency of a certain component (such as a motor), or the lowest temperature rise of the system, or the temperature rise of a certain component The lowest, or the lowest temperature rise of the system under a certain working condition, or the lowest temperature rise of a certain component under a certain working condition. The transformer 4 controls the bus voltage Vbus to ensure that the inverters 2, 2' and motors 1, 1' have sufficient voltage to output the required torque, while preferably controlling Vbus at the sweet spot that optimizes the system.
2)同时,上述控制还需要考虑直流电源电压Vdc。在真实系统中,Vdc一直在变化,而非始终保持不变。例如,当使用电池作为直流电源时,其具有内部电阻,这使得在高负载情况下直流电源电压Vdc下降,而在充电模式下直流电源电压Vdc则上升。进一步地,直流电源电压Vdc会随电池的充电状态而变化。变化的直流电源电压Vdc又显著影响变压器4对总线电压Vbus的控制。当电源电压Vdc足够高时,则不必提升电源电压Vdc。即,变压器4以非升压模式工作,让电源电压Vdc直接通过变换器4。但在电源电压Vdc不够高的时候,变压器4需要以升压模式工作,以提升电源电压Vdc,当然当变压器4以升压模式工作时,会产生一定的功率损耗。2) At the same time, the above control also needs to consider the DC power supply voltage Vdc. In a real system, Vdc is changing all the time, not constant all the time. For example, when a battery is used as a DC power source, it has an internal resistance, which causes the DC power supply voltage Vdc to drop under high load conditions, and to increase the DC power supply voltage Vdc in charging mode. Further, the DC power supply voltage Vdc will vary with the state of charge of the battery. The changing DC supply voltage Vdc in turn significantly affects the control of the bus voltage Vbus by the transformer 4 . When the power supply voltage Vdc is high enough, it is not necessary to raise the power supply voltage Vdc. That is, the transformer 4 operates in a non-boost mode, allowing the power supply voltage Vdc to pass directly through the converter 4 . But when the power supply voltage Vdc is not high enough, the transformer 4 needs to work in boost mode to increase the power supply voltage Vdc. Of course, when the transformer 4 works in the boost mode, certain power loss will be generated.
另一问题在于总线电压Vbus控制和电机控制之间的关系。电机控制器需要根据实际的总线电压Vbus,来选择合适的控制电流Id和Iq,实现电机在当前转速下输出需要的转矩。不正确的选择Id和Iq,会使得电机需要的电压高于总线能够提供的电压,最后导致电机失控。当随功率级系统最佳路径变化地控制Vbus时,电机控制也根据Vbus控制相应地变化。因此如何协调上述控制是问题所在。Another problem is the relationship between bus voltage Vbus control and motor control. The motor controller needs to select the appropriate control current Id and Iq according to the actual bus voltage Vbus, so that the motor can output the required torque at the current speed. Improper selection of Id and Iq will make the voltage required by the motor higher than the voltage that the bus can provide, and finally cause the motor to run out of control. When Vbus is controlled as the power stage system optimal path varies, motor control also varies accordingly according to Vbus control. So how to coordinate the above controls is the problem.
US 7164253 B2公开了一种电动机控制装置,认识到总线电压Vbus控制对于系统效率的重要影响,并根据电机速度和转矩输出对总线电压Vbus进行调节。通过比较电源电压Vdc和总线电压Vbus来考虑电源电压Vdc,并选择较大者作为总线电压指令。但是上述方法未将功率级作为一个整体考虑,未考虑到电机的最佳运行(最佳运行比如:温升最低、损耗最小等),因此不能够确保功率级以最佳点运行。US 7164253 B2 discloses a motor control device, which recognizes the important influence of the control of the bus voltage Vbus on the system efficiency, and adjusts the bus voltage Vbus according to the motor speed and torque output. The power supply voltage Vdc is considered by comparing the power supply voltage Vdc and the bus voltage Vbus, and the larger one is selected as the bus voltage command. However, the above method does not consider the power stage as a whole, and does not take into account the optimal operation of the motor (such as: the lowest temperature rise, the smallest loss, etc.), so it cannot ensure that the power stage operates at the optimum point.
US 7852029 B2虽然认识到总线电压Vbus控制的重要性,并利用预定表来调节和实现最佳的总线电压Vbus控制,但其未考虑直流电源电压Vdc的影响。Although US 7852029 B2 recognizes the importance of bus voltage Vbus control and uses a predetermined table to adjust and realize optimal bus voltage Vbus control, it does not consider the influence of DC power supply voltage Vdc.
US 8324856 B2利用预定表来确定最佳Vbus设置。该表分为升压区域和非升压区域,上述区域由升压选择线划分。但并未说明Vdc变化对上述表格制订的影响。另一方面,通过检查基于升压后电压的最大转矩曲线是否越过升压选择线,实时地考虑电源电压Vdc变化。如果越过升压选择线,则表示下降的电源电压Vdc会阻止电机输出需要的转矩,因此需要执行从非升压区域到升压区域。但上述方案过于复杂。US 8324856 B2 utilizes a predetermined table to determine the optimum Vbus setting. The table is divided into boosted and non-boosted regions, which are demarcated by the boost select line. However, it does not explain the impact of Vdc changes on the formulation of the above table. On the other hand, by checking whether the maximum torque curve based on the boosted voltage crosses the boost selection line, the power supply voltage Vdc variation is considered in real time. If the boost selection line is crossed, it means that the falling power supply voltage Vdc will prevent the motor from outputting the required torque, so it needs to be executed from the non-boost region to the boost region. But the above scheme is too complicated.
发明内容Contents of the invention
本发明的目的在于提供一种简单高效的电机驱动控制装置和控制方法,即提供一种1)根据电机速度和转矩由变压器将总线电压调节至最佳点,从而系统以最优状态运行;2)实时地比较变化的直流电压与需要的总线电压,以确定是否执行升压或不升压,可以减小或消除变化的直流电压的影响;3)通过简单的步骤来确保升压与非升压之间的平稳转变;4)电机控制与总线电压控制完全协调这些目的的电机驱动控制装置和控制方法。The purpose of the present invention is to provide a simple and efficient motor drive control device and control method, that is, to provide a kind of 1) according to the speed and torque of the motor, the bus voltage is adjusted to the optimal point by the transformer, so that the system runs in an optimal state; 2) Compare the changing DC voltage with the required bus voltage in real time to determine whether to perform a boost or not, which can reduce or eliminate the influence of the changing DC voltage; Smooth transitions between boosts; 4) motor control and bus voltage control fully coordinating motor drive control devices and control methods for these purposes.
上述目的可以通过以下控制装置和方法来实现。The above object can be achieved by the following control device and method.
根据本发一种电机驱动控制装置,该电机驱动控制装置包括:变压器,所述变压器能够在升压模式中将直流电源电压升压成总线电压,也能够在非升压模式中将直流电源电压传输到总线;逆变器,所述逆变器用于驱动电机;控制单元,所述控制单元能够控制所述变压器是否进入所述升压模式。According to a motor drive control device of the present invention, the motor drive control device includes: a transformer, the transformer can boost the DC power supply voltage to a bus voltage in the boost mode, and can also boost the DC power supply voltage to a bus voltage in the non-boost mode. transmission to the bus; an inverter, the inverter is used to drive the motor; a control unit, the control unit can control whether the transformer enters the boost mode.
优选地,在本发明的电机驱动控制装置中,所述控制单元进一步包括:变压器控制单元,所述变压器控制单元能够控制所述变压器是否进入所述升压模式;和逆变器控制单元,所述逆变器控制单元能够控制所述逆变器。Preferably, in the motor drive control device of the present invention, the control unit further includes: a transformer control unit capable of controlling whether the transformer enters the boost mode; and an inverter control unit, the The inverter control unit is capable of controlling the inverter.
进一步优选地,在本发明的电机驱动控制装置中,所述变压器控制单元进一步包括:总线电压指令生成器和控制信号生成器,其中,所述总线电压指令生成器根据输入的转矩指令和电机信息输出总线电压指令到所述控制信号生成器,所述控制信号生成器根据接收到的总线电压指令控制变压器是否进入升压模式。Further preferably, in the motor drive control device of the present invention, the transformer control unit further includes: a bus voltage command generator and a control signal generator, wherein the bus voltage command generator is based on the input torque command and the motor The information outputs the bus voltage command to the control signal generator, and the control signal generator controls whether the transformer enters the boost mode according to the received bus voltage command.
另外优选地,在本发明的电机驱动控制装置中,所述逆变器控制单元进一步包括:电流指令生成器,电流变换器,d轴电流控制器,q轴电流控制器和控制信号生成器,其中,所述电流指令生成器接收输入的转矩指令和电机转速信号,并分别输出d轴电流指令、q轴电流指令到所述d轴电流控制器、q轴电流控制器,所述所述d轴电流控制器、q轴电流控制器分别输出到所述控制信号生成器,所述控制信号生成器根据d轴电流控制器和q轴电流控制器的输出来控制逆变器。In addition, preferably, in the motor drive control device of the present invention, the inverter control unit further includes: a current command generator, a current converter, a d-axis current controller, a q-axis current controller and a control signal generator, Wherein, the current command generator receives the input torque command and the motor speed signal, and outputs the d-axis current command and the q-axis current command to the d-axis current controller and the q-axis current controller respectively, and the said The d-axis current controller and the q-axis current controller are respectively output to the control signal generator, and the control signal generator controls the inverter according to the outputs of the d-axis current controller and the q-axis current controller.
优选地,在本发明的电机驱动控制装置中,所述变压器控制单元根据用于系统优化标准的优化表控制变压器是否进入升压模式。Preferably, in the motor drive control device of the present invention, the transformer control unit controls whether the transformer enters the boost mode according to an optimization table used for system optimization criteria.
优选地,在本发明的电机驱动控制装置中,所述系统优化标准是系统功率损耗最小。Preferably, in the motor drive control device of the present invention, the system optimization criterion is minimum system power loss.
优选地,在本发明的电机驱动控制装置中,所述优化表包括总线电压指令表,d轴电机电流指令表,和q轴电机电流指令表。Preferably, in the motor drive control device of the present invention, the optimization table includes a bus voltage command table, a d-axis motor current command table, and a q-axis motor current command table.
优选地,在本发明的电机驱动控制装置中,所述变压器控制单元通过滞环控制来控制变压器在升压模式和非升压模式之间进行切换。Preferably, in the motor drive control device of the present invention, the transformer control unit controls the transformer to switch between boost mode and non-boost mode through hysteresis control.
本发明还涉及一种电机驱动控制方法,该控制方法包括以下步骤:The present invention also relates to a motor drive control method, which includes the following steps:
步骤S1:设置系统优化标准,并收集实现所述系统优化标准所必需的数据信息;Step S1: setting system optimization standards, and collecting data information necessary to realize the system optimization standards;
步骤S2:利用步骤S1中所收集的数据信息,制订用于系统优化标准的三张优化表:总线电压指令表,d轴电机电流指令表,和q轴电机电流指令表;Step S2: Using the data information collected in step S1, formulate three optimization tables for system optimization standards: bus voltage command table, d-axis motor current command table, and q-axis motor current command table;
步骤S3:基于转矩指令和电机转速在优化表中搜索最优总线电压指令,并结合检测到的直流电源电压确定实际总线电压指令;根据实际总线电压指令,和实际测量到的总线电压,通过比较这两个电压值,生成控制信号,实现反馈控制,执行确定的总线电压控制;Step S3: Search the optimal bus voltage command in the optimization table based on the torque command and the motor speed, and determine the actual bus voltage command in combination with the detected DC power supply voltage; according to the actual bus voltage command and the actual measured bus voltage, pass Comparing these two voltage values, generating a control signal, implementing feedback control, and performing a determined bus voltage control;
步骤S4:根据外部输入的转矩指令和电机转速在优化表中搜索最优d轴电流和最优q轴电流,根据最优d轴电流和q轴电流实施对逆变器的控制。Step S4: Search the optimal d-axis current and the optimal q-axis current in the optimization table according to the externally input torque command and the motor speed, and control the inverter according to the optimal d-axis current and q-axis current.
优选地,在本发明的电机驱动控制方法中,步骤S2进一步包括以下步骤:Preferably, in the motor drive control method of the present invention, step S2 further includes the following steps:
步骤S201,在该步骤中进行初始化:设定直流电源电压小于电池电压范围的最小值;设定当前总线电压为电池电压范围的最小值;设定当前电机转速为转速范围最小值;设定当前电机转矩为转矩范围最小值;设定滞环量;Step S201, perform initialization in this step: set the DC power supply voltage to be lower than the minimum value of the battery voltage range; set the current bus voltage to be the minimum value of the battery voltage range; set the current motor speed to be the minimum value of the speed range; set the current The motor torque is the minimum value of the torque range; set the hysteresis amount;
步骤S202,设定总线电压;Step S202, setting the bus voltage;
步骤S203,设定电机转速;Step S203, setting the motor speed;
步骤S204,设定电机转矩;Step S204, setting the motor torque;
步骤S205,计算在特定总线电压、电机转速和转矩下,d轴电流和q轴电流的可能组合;Step S205, calculating possible combinations of d-axis current and q-axis current under a specific bus voltage, motor speed and torque;
步骤S206,计算在上述d轴电流和q轴电流的可能组合下的各功率单元的功率损耗;Step S206, calculating the power loss of each power unit under the possible combination of the above-mentioned d-axis current and q-axis current;
步骤S207,通过比较各功率单元的功率损耗之和来确定最优的d轴电流和q轴电流;Step S207, determining the optimal d-axis current and q-axis current by comparing the sum of power losses of each power unit;
步骤S208,判断电机转矩是否达到最大值,若否,则逐步增大转矩,并返回至步骤S204;若是,则进入下一步骤S209;Step S208, judge whether the motor torque reaches the maximum value, if not, gradually increase the torque, and return to step S204; if so, enter the next step S209;
步骤S209,判断电机转速是否达到最大值,若否,则逐步增大转速,并返回至步骤S203;若是,则进入下一步骤S211;Step S209, judge whether the motor speed reaches the maximum value, if not, gradually increase the speed, and return to step S203; if so, enter the next step S211;
步骤S210,判断总线电压是否达到最大值,若否,则逐步增大总线电压,并返回至步骤S202;若是,则进入下一步骤S211;Step S210, judge whether the bus voltage reaches the maximum value, if not, gradually increase the bus voltage, and return to step S202; if so, enter the next step S211;
步骤S211,比较不同总线电压设置下最优d轴电流、q轴电流时的各功率单元的功率损耗,并确定d轴电流、q轴电流和总线电压的总体最优表。Step S211 , comparing the power loss of each power unit with the optimal d-axis current and q-axis current under different bus voltage settings, and determining the overall optimal table of d-axis current, q-axis current and bus voltage.
优选地,在本发明的电机驱动控制方法中,步骤S3进一步包括以下步骤:Preferably, in the motor drive control method of the present invention, step S3 further includes the following steps:
步骤S301:在优化表中检索总线电压并检测直流电源电压;Step S301: Retrieve the bus voltage in the optimization table and detect the DC power supply voltage;
步骤S302:判断在先模式是否是非升压模式,若是,则进入步骤S303;若否,则进入步骤S306;Step S302: Determine whether the previous mode is a non-boost mode, if yes, go to step S303; if not, go to step S306;
步骤S303:判断总线电压是否小于直流电压与滞环量之和;若总线电压小于直流电源电压与滞环量之和,则进入步骤S304;若否,则进入步骤S305;Step S303: Determine whether the bus voltage is less than the sum of the DC voltage and the hysteresis amount; if the bus voltage is less than the sum of the DC power supply voltage and the hysteresis amount, proceed to step S304; if not, proceed to step S305;
步骤S304,执行非升压控制,且发出指令使总线电压指令等于直流电压到变压器控制单元,进入步骤S311;Step S304, execute non-boosting control, and send an instruction to make the bus voltage instruction equal to the DC voltage to the transformer control unit, and enter step S311;
步骤S305,变压器控制单元控制变压器进入升压模式,发出指令到变压器控制单元,进入步骤S311;Step S305, the transformer control unit controls the transformer to enter the boost mode, sends an instruction to the transformer control unit, and enters step S311;
步骤S306,控制程序进一步判断总线电压指令是否小于直流电源电压,若是,则进入步骤S307;若否,则进入步骤S308;Step S306, the control program further judges whether the bus voltage command is lower than the DC power supply voltage, if yes, then enters step S307; if not, then enters step S308;
步骤S307,进入非升压控制,并进入步骤S311;Step S307, enter non-boost control, and enter step S311;
步骤S308,控制程序进一步判断总线电压是否大于直流电源电压与第二滞环量之和,若是,则进入步骤S39,若否,则进入步骤S310;Step S308, the control program further judges whether the bus voltage is greater than the sum of the DC power supply voltage and the second hysteresis amount, if yes, then enters step S39, if not, then enters step S310;
步骤S309,进入升压控制,总线电压指令等于总线电压,并进入步骤S311;Step S309, enter boost control, the bus voltage command is equal to the bus voltage, and enter step S311;
步骤S310,进入升压控制,总线电压指令等于直流电压与第二滞环量之和,并进入步骤S311;Step S310, enter boost control, the bus voltage command is equal to the sum of the DC voltage and the second hysteresis, and enter step S311;
步骤S311,控制程序判断总线电压指令减去前一总线电压指令之差是否大于设置的最大允许的电压控制变化步长,若是,则进入步骤S312,若否,则进入步骤S313;Step S311, the control program judges whether the difference between the bus voltage command minus the previous bus voltage command is greater than the set maximum allowable voltage control change step, if yes, then enter step S312, if not, then enter step S313;
步骤S312,控制程序设置总线电压指令等于前一总线电压指令与设置的最大允许的电压控制变化步长之和,并让变压器控制单元控制总线电压成总线电压指令;Step S312, the control program sets the bus voltage command equal to the sum of the previous bus voltage command and the set maximum allowable voltage control change step size, and makes the transformer control unit control the bus voltage to become the bus voltage command;
步骤S313,控制程序设置总线电压指令等于总路线电压,并让变压器控制单元控制总线电压成总线电压指令。Step S313, the control program sets the bus voltage command to be equal to the bus line voltage, and allows the transformer control unit to control the bus voltage to become the bus voltage command.
优选地,在本发明的电机驱动控制方法中,所述步骤S1中的所述数据信息包括系统中每个功率元件的损耗模型。Preferably, in the motor drive control method of the present invention, the data information in the step S1 includes a loss model of each power element in the system.
优选地,在本发明的电机驱动控制方法中,所述滞环量基于总线电压波动、总线电压测量精度和/或变压器死区确定。Preferably, in the motor drive control method of the present invention, the hysteresis amount is determined based on bus voltage fluctuation, bus voltage measurement accuracy and/or transformer dead zone.
优选地,在本发明的电机驱动控制方法中,所述步长可以是常数或者变量。Preferably, in the motor drive control method of the present invention, the step size may be constant or variable.
利用本发明的电机驱动控制装置和控制方法,可以实现以下技术效果:1)系统始终在最优状态运行2)总线电压控制与电机控制配合良好3)考虑变化的直流电流电压进行总线电压控制,同时简单的实现过程确保升压与非升压模式之间的平稳转换。Using the motor drive control device and control method of the present invention, the following technical effects can be achieved: 1) the system is always running in the optimal state 2) the bus voltage control and the motor control are well coordinated 3) the bus voltage control is performed considering the changing DC current voltage, Simultaneously, the simple implementation process ensures a smooth transition between boost and non-boost modes.
附图说明Description of drawings
为了更详细地描述本发明,以下将结合附图并参照具体实施例进行进一步描述,其中:In order to describe the present invention in more detail, the following will be further described in conjunction with the accompanying drawings and with reference to specific embodiments, wherein:
图1是现有技术的功率级结构示意图;FIG. 1 is a schematic diagram of a power stage structure in the prior art;
图2是根据本发明的电机驱动控制装置的示意图;2 is a schematic diagram of a motor drive control device according to the present invention;
图3是根据本发明的电机驱动控制方法的流程图;Fig. 3 is a flow chart of the motor drive control method according to the present invention;
图4是根据本发明的电机驱动控制方法的步骤2的详细流程图;Fig. 4 is a detailed flowchart of step 2 of the motor drive control method according to the present invention;
图5是根据本发明的电机驱动控制方法的滞环控制的详细流程图;Fig. 5 is a detailed flow chart of hysteresis control according to the motor drive control method of the present invention;
图6是d轴电流指令、转矩与转速的示意图;Fig. 6 is a schematic diagram of d-axis current command, torque and rotational speed;
图7是q轴电流指令、转矩与转速的示意图;和Fig. 7 is a schematic diagram of q-axis current command, torque and rotational speed; and
图8是总线电压指令、转矩与转速的示意图。Fig. 8 is a schematic diagram of bus voltage command, torque and rotational speed.
具体实施方式detailed description
以下将参照附图进一步详细地说明本发明的实施例。Embodiments of the present invention will be described in further detail below with reference to the accompanying drawings.
首先参照图2,图中所示功率级包括:输出直流电压Vdc的直流电源15;变压器14,其能够在升压模式中将直流电压Vdc升压为总线直流电压Vbus;逆变器12、12’,其一侧输入直流电压Vbus,而在另一侧输出交流电压;和电机11、11’,分别由逆变器12、12’驱动,电机11、11’可以进一步连接到传动链,传动链可以是混合动力/纯电动汽车的传动链。具体地,在本实施例中,直流电源15是具有内部电阻的电池/蓄电池,变压器14是双向升降压式电路,逆变器12、12’是三相逆变器,电机11、11’是永磁同步电机。应当注意的是,在其他实施例中,逆变器和电机的数量可以分别是1个以上,本实施例中以2台逆变器和2台电机为例进行说明。Referring first to FIG. 2, the power stage shown in the figure includes: a DC power supply 15 outputting a DC voltage V dc ; a transformer 14 capable of boosting the DC voltage V dc to a bus DC voltage V bus in a boost mode; an inverter 12, 12', one side of which inputs DC voltage V bus and outputs AC voltage on the other side; and motors 11, 11' are respectively driven by inverters 12, 12', and motors 11, 11' can be further connected to The transmission chain, the transmission chain may be a transmission chain of a hybrid/pure electric vehicle. Specifically, in this embodiment, the DC power supply 15 is a battery/accumulator with internal resistance, the transformer 14 is a bidirectional buck-boost circuit, the inverters 12, 12' are three-phase inverters, and the motors 11, 11' It is a permanent magnet synchronous motor. It should be noted that, in other embodiments, the number of inverters and motors may be more than one respectively. In this embodiment, two inverters and two motors are taken as an example for illustration.
进一步地,如图2所示,根据本发明的电机驱动控制装置主要包括:直流电源15;变压器14;逆变器12、12’;电机11、11’;和控制单元300,能够控制变压器14进入非升压模式或升压模式,所述控制单元300也可以用于控制逆变器12、12’。Further, as shown in FIG. 2, the motor drive control device according to the present invention mainly includes: a DC power supply 15; a transformer 14; inverters 12, 12'; motors 11, 11'; and a control unit 300 capable of controlling the transformer 14 In non-boost mode or boost mode, the control unit 300 can also be used to control the inverters 12, 12'.
更具体地,控制单元300可以进一步包括:变压器控制单元200,用于控制变压器14。优选地,控制单元300还包括逆变器控制单元100,用于控制逆变器12、12’。具体地,变压器控制单元200主要包括:总线电压指令生成器201和控制信号生成器202。其中,总线电压指令生成器201接收来自控制装置外部的信号,包括:电机信息,例如电机实时的转矩、转速、温度、来自外部转矩指令生成器的转矩指令Tcmd,并且总线电压指令生成器201实时地检测直流电流电压Vdc,并确定是否需要升压。根据上述参数,以及优化表(下文中将详细描述),总线电压指令生成器201生成总线电压指令Vbus_local到控制信号生成器202。控制信号生成器202还接收总线电压反馈Vbus_fbk,该信号表示变压器14实际输出的实时总线电压,控制信号生成器202根据总线电压指令Vbus_local和实时的总线电压Vbus_fbk生成控制信号(本例中为PWM信号)对变压器14进行控制。More specifically, the control unit 300 may further include: a transformer control unit 200 for controlling the transformer 14 . Preferably, the control unit 300 further includes an inverter control unit 100 for controlling the inverters 12, 12'. Specifically, the transformer control unit 200 mainly includes: a bus voltage command generator 201 and a control signal generator 202 . Among them, the bus voltage command generator 201 receives signals from the outside of the control device, including: motor information, such as the real-time torque, speed, temperature of the motor, the torque command T cmd from the external torque command generator, and the bus voltage command The generator 201 detects the direct current voltage V dc in real time, and determines whether to boost the voltage. According to the above parameters and an optimization table (described in detail below), the bus voltage command generator 201 generates a bus voltage command V bus_local to the control signal generator 202 . The control signal generator 202 also receives the bus voltage feedback V bus_fbk , which represents the real-time bus voltage actually output by the transformer 14, and the control signal generator 202 generates a control signal according to the bus voltage instruction V bus_local and the real-time bus voltage V bus_fbk (in this example is a PWM signal) to control the transformer 14.
以下进一步详细地说明逆变器控制单元100。根据本发明的逆变器控制单元100包括电流指令生成器101、电流变换器102、d轴电流控制器103、q轴电流控制器104和控制信号生成器105。The inverter control unit 100 will be described in further detail below. The inverter control unit 100 according to the present invention includes a current command generator 101 , a current converter 102 , a d-axis current controller 103 , a q-axis current controller 104 and a control signal generator 105 .
具体地,逆变器控制单元100通过以下方式对逆变器12、12’进行控制。外部转矩指令发生器输入车辆信息,诸如油门深度或来自车辆控制器的转矩指令。它还输入功率级系统信息,诸如电机速度、逆变器温度等,并输出转矩指令Tcmd。而电流指令生成器101则接收上述转矩指令Tcmd和相关电机信息。电流指令生成器101根据转矩指令Tcmd和电机转速的输入,以及优化表(下文中会详细描述),生成电流指令Id_cmd和Iq_cmd分别到d轴电流控制器103和q轴电流控制器104。电流变换器102从外部接收电机电流反馈信号Ifbk和电机位置反馈信号Pfbk,根据上述接收到的信号,电流变换器102生成d轴电流反馈信号Id_fbk,并发送到d轴电流控制器103。同时,根据从外部接收电机电流反馈信号Ifbk和电机位置反馈信号Pfbk,电流变换器102生成q轴电流反馈信号Iq_fbk,并发送到q轴电流控制器104。d轴电流控制器103和q轴电流控制器105对接收到的信号进行处理后发送电机控制信号到控制信号生成器105,所述控制信号生成器105根据接收到的信号生成相应的控制信号,以对逆变器12、12’进行控制。Specifically, the inverter control unit 100 controls the inverters 12, 12' in the following manner. The external torque command generator inputs vehicle information such as throttle depth or a torque command from a vehicle controller. It also inputs power stage system information, such as motor speed, inverter temperature, etc., and outputs a torque command T cmd . The current command generator 101 receives the aforementioned torque command T cmd and related motor information. The current command generator 101 generates current commands I d_cmd and I q_cmd to the d-axis current controller 103 and the q-axis current controller respectively according to the input of the torque command T cmd and the motor speed, and an optimization table (described in detail below). 104. The current converter 102 receives the motor current feedback signal I fbk and the motor position feedback signal P fbk from the outside. According to the above received signals, the current converter 102 generates a d-axis current feedback signal I d_fbk and sends it to the d-axis current controller 103 . At the same time, according to the motor current feedback signal I fbk and the motor position feedback signal P fbk received from the outside, the current converter 102 generates a q-axis current feedback signal I q_fbk and sends it to the q-axis current controller 104 . The d-axis current controller 103 and the q-axis current controller 105 send the motor control signal to the control signal generator 105 after processing the received signal, and the control signal generator 105 generates a corresponding control signal according to the received signal, To control the inverters 12, 12'.
电流指令生成器101包括有两张表:d轴电机电流(Id)指令表,和q轴电机电流(Iq)指令表,分别用于电流指令Id_cmd和Iq_cmd。电流控制器103、104的输出进入控制信号生成器105,以控制逆变器12、12’。The current command generator 101 includes two tables: a d-axis motor current (I d ) command table, and a q-axis motor current (I q ) command table, which are used for current commands I d_cmd and I q_cmd respectively . The output of the current controllers 103, 104 enters a control signal generator 105 to control the inverters 12, 12'.
电流指令生成器101和总线电压指令生成器201所接收的转矩指令Tcmd可以来自外部的转矩指令生成器,其接收功率级系统信息和例如车辆信息。The torque command T cmd received by the current command generator 101 and the bus voltage command generator 201 may come from an external torque command generator which receives power level system information and, for example, vehicle information.
以上是对于根据本发明的电机驱动控制装置的详细说明,接下来进一步详细说明根据本发明的电机驱动控制方法,如图3所示,该方法主要包括以下步骤:The above is a detailed description of the motor drive control device according to the present invention. Next, the motor drive control method according to the present invention is further described in detail. As shown in FIG. 3, the method mainly includes the following steps:
步骤S1:设置系统优化标准,并收集实现上述系统优化标准所必需的数据信息。Step S1: Set system optimization standards, and collect data information necessary to realize the above system optimization standards.
具体地,上述系统优化标准可以是系统效率最高,损耗最小。系统中主要包括变压器14、逆变器12、12’和电机11、11’三组功率单元。当变压器14处于升压模式时,其会产生功率损耗。而当总线电压Vbus过高时,也会导致逆变器12、12’产生不必要的功率损耗。但当总线电压Vbus过低时,则会使得电机11、11’不能在最佳状态下工作,因此需要选择合适的总线电压Vbus以实现系统效率最高这一系统优化标准。Specifically, the above-mentioned system optimization standard may be the highest system efficiency and the smallest loss. The system mainly includes three groups of power units including a transformer 14, inverters 12, 12' and motors 11, 11'. When the transformer 14 is in boost mode, it experiences power losses. And when the bus voltage V bus is too high, it will also cause unnecessary power loss of the inverters 12, 12'. However, when the bus voltage V bus is too low, the motors 11 and 11 ′ cannot work in an optimal state. Therefore, it is necessary to select an appropriate bus voltage V bus to achieve the system optimization standard of the highest system efficiency.
但是除选择系统效率作为系统优化标准之外,也可以选择其他条件作为系统优化标准。例如,选择功率部件(逆变器12、12’,变压器14和电机11、11’)的平均温升最低,或者某个功率部件的温升最低作为系统优化标准。However, in addition to selecting system efficiency as the system optimization standard, other conditions can also be selected as the system optimization standard. For example, the lowest average temperature rise of power components (inverter 12, 12', transformer 14 and motor 11, 11'), or the lowest temperature rise of a certain power component is selected as the system optimization standard.
本实施例以系统效率最高作为系统优化标准进行进一步的说明。当选择系统效率最高为系统优化标准时,必须收集的数据信息包括:每个功率元件的损耗模型。通过收集上述信息,可以掌握在预定总线电压Vbus、d轴电流Id、q轴电流Iq下,变压器14、逆变器12、12’和电机11、11’分别的功率损耗,从而选择相应的优选参数。上述数据信息的收集途径可以是真实测试或理论计算。In this embodiment, the highest system efficiency is used as the system optimization standard for further description. When selecting the highest system efficiency as the system optimization standard, the data information that must be collected includes: the loss model of each power component. By collecting the above information, the respective power losses of the transformer 14, inverters 12, 12' and motors 11, 11' can be grasped under the predetermined bus voltage V bus , d-axis current I d , and q-axis current I q , so as to select Corresponding preferred parameters. The way of collecting the above data information can be real test or theoretical calculation.
步骤S2:利用步骤S1中所收集的数据信息,制订用于系统优化标准的三张优化表:总线电压指令Vbus_cmd表,d轴电机电流指令Id_cmd表,和q轴电机电流指令Iq_cmd表。Step S2: Using the data information collected in step S1, formulate three optimization tables for system optimization standards: the bus voltage command V bus_cmd table, the d-axis motor current command I d_cmd table, and the q-axis motor current command I q_cmd table .
表1总线电压指令表Vbus_cmd Table 1 Bus voltage command table V bus_cmd
表2d轴电机电流指令Id_cmd表Table 2 d-axis motor current command I d_cmd table
表3q轴电机电流指令Iq_cmd表Table 3 q-axis motor current command I q_cmd table
以上三张表1-3仅是用于示例优化表的制订。The above three tables 1-3 are only used to formulate example optimization tables.
制订上述三张表的目的在于,在电机速度和转矩的特定组合下,系统以表内特定点运行,以实现最优目标。在表的制定过程中(表可以离线制定),不必考虑变化的直流电源电压Vdc。由于上述3个表协调制定(如下述步骤S201-S211所述),因此变化的总线电压Vbus对电机控制的影响可以被减小到最低水平。The purpose of formulating the above three tables is that under the specific combination of motor speed and torque, the system operates at a specific point in the table to achieve the optimal goal. During the making of the table (the table can be made off-line), it is not necessary to take into account the changing DC supply voltage V dc . Since the above three tables are formulated in coordination (as described in the following steps S201-S211), the influence of the changing bus voltage V bus on the motor control can be reduced to a minimum level.
优选地,步骤S2可以进一步包括以下步骤,通过两个循环来完整地扫描电机转矩范围和速度范围。一个循环从步骤S203到S208,而另一个循环从步骤S204到S209。在步骤S202中准备好对应于特定Vbus组的优选Id、Iq。步骤S202到S210形成最外循环,通过其查找到对应于不同Vbus设置的最优Id、Iq表。在最后步骤S211中,通过比较每一点的损耗,不同Vbus设置的最优Id、Iq被转化为整个Id、Iq表和Vbus表。Preferably, step S2 may further include the step of completely scanning the motor torque range and speed range through two cycles. One loop is from step S203 to S208, and the other loop is from step S204 to S209. In step S202, the preferred I d , I q corresponding to a specific V bus group are prepared. Steps S202 to S210 form the outermost loop, through which the optimal I d and I q tables corresponding to different V bus settings are searched. In the final step S211, by comparing the losses at each point, the optimal Id , Iq for different V bus settings is transformed into the entire Id , Iq table and V bus table.
表通过以下方式准备:Id表与Iq表相协调,因此Vbus控制和电机控制相协调。电机控制不必考虑当前的Vbus,因为如果根据上述表控制Vbus,则始终存在足够的电压用于电机控制。The tables are prepared in the following way: I d table is coordinated with I q table, so V bus control and motor control are coordinated. The motor control does not have to take into account the current Vbus because there is always enough voltage for motor control if Vbus is controlled according to the above table.
具体如图4所示:Specifically as shown in Figure 4:
步骤S201,在该步骤中进行初始化:设定直流电源电压Vdc小于电池电压范围的最小值;设定当前Vbus为电池电压范围的最小值;设定当前电机转速为转速范围最小值;设定当前电机转矩为转矩范围最小值;设定滞环量;Step S201, perform initialization in this step: set the DC power supply voltage V dc to be less than the minimum value of the battery voltage range; set the current V bus to the minimum value of the battery voltage range; set the current motor speed to the minimum value of the speed range; set Set the current motor torque as the minimum value of the torque range; set the hysteresis amount;
步骤S202,设定总线电压Vbus;Step S202, setting the bus voltage V bus ;
步骤S203,设定电机转速;Step S203, setting the motor speed;
步骤S204,设定电机转矩;Step S204, setting the motor torque;
步骤S205,计算在特定总线电压Vbus、电机转速和转矩下,d轴电流Id和q轴电流Iq的可能组合;Step S205, calculating possible combinations of d-axis current I d and q-axis current I q under a specific bus voltage V bus , motor speed and torque;
步骤S206,计算在上述d轴电流Id和q轴电流Iq的可能组合下的各功率单元的功率损耗;Step S206, calculating the power loss of each power unit under the possible combination of the above-mentioned d-axis current Id and q -axis current Iq;
步骤S207,通过比较各功率单元的功率损耗之和来确定最优的d轴电流Id和q轴电流Iq;Step S207, determining the optimal d-axis current I d and q-axis current I q by comparing the sum of the power losses of each power unit;
步骤S208,判断电机转矩是否达到最大值,若否,则逐步增大转矩,并返回至步骤S204;若是,则进入下一步骤S209;Step S208, judge whether the motor torque reaches the maximum value, if not, gradually increase the torque, and return to step S204; if so, enter the next step S209;
步骤S209,判断电机转速是否达到最大值,若否,则逐步增大转速,并返回至步骤S203;若是,则进入下一步骤S211;Step S209, judge whether the motor speed reaches the maximum value, if not, gradually increase the speed, and return to step S203; if so, enter the next step S211;
步骤S210,判断总线电压Vbus是否达到最大值,若否,则逐步增大总线电压Vbus,并返回至步骤S202;若是,则进入下一步骤S211;Step S210, judge whether the bus voltage V bus reaches the maximum value, if not, gradually increase the bus voltage V bus , and return to step S202; if so, enter the next step S211;
步骤S211,比较不同总线电压Vbus设置下最优d轴电流Id、q轴电流Iq时的各功率单元的功率损耗,并确定d轴电流Id、q轴电流Iq和总线电压Vbus的总体最优表。Step S211, compare the power loss of each power unit when the optimal d-axis current I d and q-axis current I q are set under different bus voltage V bus settings, and determine the d-axis current I d , q-axis current I q and the bus voltage V Overall optimal table for bus .
步骤S3:基于转矩指令Tcmd和电机转速在优化表中搜索最优总线电压指令Vbus_cmd,并结合检测到的直流电源电压Vdc确定总线电压Vbus;根据需求的总线电压,和实际测量到的总线电压,通过比较这两个电压值,生成控制信号,实现反馈控制,执行确定的总线电压Vbus控制。Step S3: Search the optimal bus voltage command V bus_cmd in the optimization table based on the torque command T cmd and the motor speed, and determine the bus voltage V bus in combination with the detected DC power supply voltage V dc ; the bus voltage according to the demand, and the actual measurement By comparing the two voltage values, a control signal is generated to realize feedback control and execute a determined bus voltage V bus control.
具体地,在步骤S3中,例如通过输入功率级系统信息和车辆信息输入转矩指令Tcmd。然后,利用输入的转矩指令Tcmd、电机速度等参数在Vbus优化表中搜索总线电压指令Vbus_cmd。当搜索到总线电压指令Vbus_cmd后,检测实时的直流电源电压Vdc。变压器控制单元140首先确定是否使变压器14进入升压模式,即是否将直流电源电压Vdc升压成为总线电压Vbus_cmd;或者进行非升压模式,即不升压而是让Vdc通过升降压电路成为总线电压。也就是说,如果总线电压指令Vbus_cmd高于直流电源电压Vdc,则将直流电源电压Vdc升压成总线电压Vbus;如果总线电压指令Vbus_cmd低于直流电源电压Vdc,不升压而让直流电源电压Vdc直接通过该变压电路。优选地在一个实施例中,为减少升压和非升压模式之间的频繁转换,并在转换期间更好地控制总线电压Vbus,需要在步骤S3中进行滞环控制可以执行滞环控制(如下述步骤S303到S310)和/或固定或变化步长的电压控制(如下述步骤S311和S312),即,消除频繁转换并具有更好的电压控制质量。频繁地在升压模型和非升压模式之间转换控制模式,或者大步长的转换电压控制值,会使得总线电压出现不必要的控制波动,不利于电机控制的稳定性,也不利于变压器和逆变器中功率开关的寿命。图5显示了示例执行步骤。Specifically, in step S3, the torque command T cmd is input, for example, by inputting power level system information and vehicle information. Then, the bus voltage command V bus_cmd is searched in the V bus optimization table by using the input torque command T cmd , motor speed and other parameters. When the bus voltage command V bus_cmd is found , the real-time DC power supply voltage V dc is detected. The transformer control unit 140 first determines whether to make the transformer 14 enter the boost mode, that is, whether to boost the DC power supply voltage V dc to become the bus voltage V bus_cmd ; Voltage circuit becomes the bus voltage. That is to say, if the bus voltage command V bus_cmd is higher than the DC power supply voltage V dc , the DC power supply voltage V dc will be boosted to the bus voltage V bus ; if the bus voltage command V bus_cmd is lower than the DC power supply voltage V dc , the voltage will not be boosted And the DC power supply voltage V dc is directly passed through the transformer circuit. Preferably, in one embodiment, in order to reduce frequent transitions between boost and non-boost modes, and better control the bus voltage V bus during transitions, it is necessary to perform hysteresis control in step S3. Hysteresis control can be performed (as steps S303 to S310 below) and/or fixed or variable step voltage control (as steps S311 and S312 below), ie, eliminate frequent transitions and have better voltage control quality. Frequently switching the control mode between boost mode and non-boost mode, or switching the voltage control value with a large step size, will cause unnecessary control fluctuations in the bus voltage, which is not conducive to the stability of the motor control and is not conducive to the transformer and the lifetime of the power switches in the inverter. Figure 5 shows example execution steps.
具体地,上述步骤如图5所示:Specifically, the above steps are shown in Figure 5:
S301:在优化表中检索总线电压Vbus_cmd并检测直流电源电压Vdc;S301: Retrieve the bus voltage V bus_cmd in the optimization table and detect the DC power supply voltage V dc ;
S302:判断在先模式是否是非升压模式,若是,则进入步骤S303;若否,则进入步骤S306;S302: Determine whether the previous mode is a non-boost mode, if yes, enter step S303; if not, enter step S306;
S303:判断总线电压Vbus_cmd是否小于Vdc+dV1,其中dV1是滞环量。该滞环量需要考虑总线电压波动,总线电压测量精度,变压器死区等的影响,以经验来定;若总线电压Vbus_cmd小于直流电源电压Vdc与滞环量dV1之和,则进入步骤S304;若否,则进入步骤S305;S303: Determine whether the bus voltage V bus_cmd is less than V dc +dV1, where dV1 is a hysteresis value. The amount of hysteresis needs to consider bus voltage fluctuations, bus voltage measurement accuracy, transformer dead zone, etc., and is determined empirically; if the bus voltage V bus_cmd is less than the sum of the DC power supply voltage V dc and the hysteresis amount dV1, proceed to step S304 ; If not, enter step S305;
在步骤S304中,非升压控制,且发出指令Vbus_local=Vdc到变压器控制器,进入步骤S311;In step S304, step-up control is not performed, and the instruction V bus_local =V dc is sent to the transformer controller, and step S311 is entered;
在步骤S305中,变压器控制单元200控制变压器14进入升压模式,发出指令Vbus_local=Vbus_cmd到变压器控制器,进入步骤S311;In step S305, the transformer control unit 200 controls the transformer 14 to enter the boost mode, sends an instruction V bus_local =V bus_cmd to the transformer controller, and enters step S311;
在S306中,控制程序进一步判断总线电压指令Vbus_cmd是否小于直流电源电压Vdc,若是,则进入步骤S307;若否,则进入步骤S308;In S306, the control program further judges whether the bus voltage command V bus_cmd is smaller than the DC power supply voltage V dc , and if so, proceeds to step S307; if not, proceeds to step S308;
在步骤S307中,由于直流电源电压Vdc大于需要的总线电压指令,不必要进行升压,因此进入非升压控制,Vbus_local=Vdc,并进入步骤S311;In step S307, since the DC power supply voltage Vdc is greater than the required bus voltage command, boosting is not necessary, so enter non-boosting control, V bus_local = V dc , and enter step S311;
在步骤S308中,控制程序进一步判断总线电压Vbus_cmd是否大于直流电源电压Vdc与dV2之和,若是,则进入步骤S39,若否,则进入步骤S310;In step S308, the control program further judges whether the bus voltage V bus_cmd is greater than the sum of the DC power supply voltage V dc and dV2, if yes, then enters step S39, if not, then enters step S310;
在步骤S309中,进入升压控制,Vbus_local=Vbus_cmd,并进入步骤S311;In step S309, enter boost control, V bus_local = V bus_cmd , and enter step S311;
在步骤S310中,进入升压控制,Vbus_local=Vdc+dV2,其中dV2是第二滞环量,并进入步骤S311;In step S310, enter boost control, V bus_local =V dc +dV2, where dV2 is the second hysteresis value, and enter step S311;
在步骤S311中,控制程序判断Vbus_local减去前一Vbus_local之差是否大于设置的最大允许的电压控制变化步长Step,若是,则进入步骤S312,若否,则进入步骤S313;其中步长step可以是常数或者变量。In step S311, the control program judges whether the difference between V bus_local minus the previous V bus_local is greater than the maximum allowable voltage control change step Step, if so, then enters step S312, if not, then enters step S313; wherein the step step can be a constant or a variable.
在步骤S312中,控制程序设置Vbus_local=前一Vbus_local+设置的最大允许的电压控制变化步长step,并让变压器控制单元控制总线202电压到Vbus_local;In step S312, the control program sets V bus_local = the previous V bus_local + the maximum allowed voltage control change step step, and allows the transformer control unit to control the voltage of the bus 202 to Vbus_local;
在步骤S313中,控制程序设置Vbus_local=Vbus_local,并让变压器控制单元202控制总线电压到Vbus_local。In step S313 , the control program sets V bus_local =V bus_local , and lets the transformer control unit 202 control the bus voltage to V bus_local .
变压器控制单元202,接收到总线电压指令生成器201的总线电压指令Vbus_local,并且实时地检测总线电压。根据这两个电压值,产生需要的控制信号,来控制变压器,使得总线电压为期望的Vbus_local。如果Vbus_local和Vdc相等,则不必要进行升压,为非升压状态。The transformer control unit 202 receives the bus voltage command V bus_local from the bus voltage command generator 201 and detects the bus voltage in real time. According to these two voltage values, a required control signal is generated to control the transformer so that the bus voltage is the desired V bus_local . If V bus_local and V dc are equal, boosting is not necessary and it is a non-boosting state.
接下来执行步骤S4:根据转矩指令和电机转速在优化表中搜索最优d轴电流Id和最优q轴电流Iq,根据最优d轴电流Id和q轴电流Iq实施对逆变器12、12’的控制。在步骤4中,电流指令生成器101仅需要在对应的优化表中搜索Id和Iq,而并不考虑总线电压Vbus,因为已选择较大Vbus,则保证充分的总线电压Vbus被提供给逆变器12、12’。也就是说,由于在步骤S3中受控的总线电压Vbus始终等于或高于需要的总线电压Vbus_cmd,电机控制不必关注总线电压Vbus,而只需要针对特定的电压转矩和速度搜索相应Id和Iq优化表中的优选电流指令。因此,电机控制与总线电压控制相协调。Then execute step S4: search the optimal d-axis current I d and the optimal q-axis current I q in the optimization table according to the torque command and the motor speed, and implement the optimization according to the optimal d-axis current I d and the q-axis current I q Control of the inverters 12, 12'. In step 4, the current command generator 101 only needs to search for I d and I q in the corresponding optimization table, regardless of the bus voltage V bus , because a larger V bus has been selected, then a sufficient bus voltage V bus is guaranteed is supplied to the inverter 12, 12'. That is to say, since the controlled bus voltage V bus in step S3 is always equal to or higher than the required bus voltage V bus_cmd , the motor control does not need to pay attention to the bus voltage V bus , but only needs to search for a specific voltage, torque and speed. I d and I q optimized current commands in the table. Thus, motor control is coordinated with bus voltage control.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述披露的技术内容作出些许更动或者修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any form. Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any skilled person who is familiar with the profession can use the technical content disclosed above to make some changes without departing from the scope of the technical solution of the present invention. Or be modified as an equivalent embodiment of an equivalent change, but any simple modification, equivalent change and modification made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solution of the present invention still belong to the technical solution of the present invention In the range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310309245.8A CN104333291B (en) | 2013-07-22 | 2013-07-22 | Motor drive control device and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310309245.8A CN104333291B (en) | 2013-07-22 | 2013-07-22 | Motor drive control device and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104333291A CN104333291A (en) | 2015-02-04 |
CN104333291B true CN104333291B (en) | 2017-08-04 |
Family
ID=52407961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310309245.8A Active CN104333291B (en) | 2013-07-22 | 2013-07-22 | Motor drive control device and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104333291B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107745655B (en) * | 2017-10-11 | 2024-02-06 | 珠海英搏尔电气股份有限公司 | Control method and control unit of electric vehicle driving circuit and electric vehicle |
CN111490673B (en) * | 2020-05-21 | 2021-02-09 | 四川虹美智能科技有限公司 | Output voltage control method and device |
CN113452304A (en) * | 2021-06-18 | 2021-09-28 | 合肥巨一动力系统有限公司 | Bus voltage optimizing control method of motor controller integrated with BOOST converter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1537355A (en) * | 2001-08-02 | 2004-10-13 | �����Զ�����ʽ���� | Motor drive control device |
CN1757155A (en) * | 2003-06-05 | 2006-04-05 | 丰田自动车株式会社 | Motor drive device, vehicle equipped with the device, and computer-readable storage medium storing a program for causing a computer to control voltage conversion |
CN101461130A (en) * | 2006-05-30 | 2009-06-17 | 丰田自动车株式会社 | Motor drive control system and control method thereof |
CN101978592A (en) * | 2008-03-18 | 2011-02-16 | 丰田自动车株式会社 | Motor drive control apparatus, vehicle with motor drive control apparatus, and motor drive control method |
CN202906833U (en) * | 2012-08-31 | 2013-04-24 | 浙江吉利汽车研究院有限公司杭州分公司 | Vehicle motor controller |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4452735B2 (en) * | 2007-09-05 | 2010-04-21 | 本田技研工業株式会社 | Boost converter control device and control method |
-
2013
- 2013-07-22 CN CN201310309245.8A patent/CN104333291B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1537355A (en) * | 2001-08-02 | 2004-10-13 | �����Զ�����ʽ���� | Motor drive control device |
CN1757155A (en) * | 2003-06-05 | 2006-04-05 | 丰田自动车株式会社 | Motor drive device, vehicle equipped with the device, and computer-readable storage medium storing a program for causing a computer to control voltage conversion |
CN101461130A (en) * | 2006-05-30 | 2009-06-17 | 丰田自动车株式会社 | Motor drive control system and control method thereof |
CN101978592A (en) * | 2008-03-18 | 2011-02-16 | 丰田自动车株式会社 | Motor drive control apparatus, vehicle with motor drive control apparatus, and motor drive control method |
CN202906833U (en) * | 2012-08-31 | 2013-04-24 | 浙江吉利汽车研究院有限公司杭州分公司 | Vehicle motor controller |
Also Published As
Publication number | Publication date |
---|---|
CN104333291A (en) | 2015-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gan et al. | New integrated multilevel converter for switched reluctance motor drives in plug-in hybrid electric vehicles with flexible energy conversion | |
CN106330056B (en) | Motor drive | |
US20190052216A1 (en) | Motor control device and machine tool system for controlling motor in accordance with amount of drop in power supply voltage | |
CN104079230A (en) | Asynchronous motor efficiency optimizing control method, device and system and electric car | |
TWI446138B (en) | Wind power excitation synchronous generator system and control method thereof | |
CN107134950A (en) | Control device of electric motor | |
CN110289792A (en) | Scaling method, control method and the bench test control system of permanent magnet synchronous motor | |
CN105071731A (en) | Efficient acceleration control method for permanent-magnet synchronous motor | |
CN104333291B (en) | Motor drive control device and control method | |
CN102420566B (en) | Control device of brushless doubly-fed machine and control method thereof | |
Selvamathi et al. | Electric motor drives and their applications with simulation practices | |
CN107800350A (en) | Speed-adjusting circuit of alternating and air conditioner | |
JP2019149863A (en) | Motor drive system having power storage device | |
Yang et al. | Loss‐minimization control of vector‐controlled induction motor drives | |
CN107134949A (en) | Control device of electric motor | |
JP2012170197A (en) | Motor drive control device for limiting output of motor in accordance with power characteristic of ac power supply | |
CN101272126B (en) | Full speed range control method and control device of double-feedback electric motor | |
Barote et al. | Smart storage solution for wind systems | |
CN104660139B (en) | Method for controlling running of alternating current magnetic bearing electro spindle based on matrix converters | |
Bubalo et al. | Optimized isolated operation of a WECS-powered microgrid with a battery-assisted qZSI | |
Dar'Enkov et al. | Autonomous power plant with variable speed based on multi-windings generator | |
CN111137163B (en) | Electric vehicle quick charging control method and system based on virtual synchronous motor | |
CN107733293A (en) | A kind of method and device of controlled motor reduction of speed | |
CN205509902U (en) | Intelligence exchanges pressure regulating fan rotational speed control system | |
CN201716402U (en) | Full-power performance testing system of motor or power generator with no loading machine or drive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220823 Address after: German ANGARAN Patentee after: Siemens AG Address before: Munich, Germany Patentee before: SIEMENS AG |
|
TR01 | Transfer of patent right |