[go: up one dir, main page]

CN104333285B - Permagnetic synchronous motor standard is without sensing station Servocontrol device and method - Google Patents

Permagnetic synchronous motor standard is without sensing station Servocontrol device and method Download PDF

Info

Publication number
CN104333285B
CN104333285B CN201310602081.8A CN201310602081A CN104333285B CN 104333285 B CN104333285 B CN 104333285B CN 201310602081 A CN201310602081 A CN 201310602081A CN 104333285 B CN104333285 B CN 104333285B
Authority
CN
China
Prior art keywords
axis current
signal
actual
subtractor
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310602081.8A
Other languages
Chinese (zh)
Other versions
CN104333285A (en
Inventor
鲁文其
胡旭东
史伟民
邓雄飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201310602081.8A priority Critical patent/CN104333285B/en
Publication of CN104333285A publication Critical patent/CN104333285A/en
Application granted granted Critical
Publication of CN104333285B publication Critical patent/CN104333285B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种永磁同步电机准无传感器位置伺服控制装置,包括设置有HALL传感器的永磁同步电机等;HALL传感器与准无传感器控制模块相连接,准无传感器控制模块分别与第五减法器、位置/速度一体化控制器、第三减法器、第四减法器、PI调节器和IPark变换模块相互连接;第五减法器和位置/速度一体化控制器相连接;位置/速度一体化控制器和第三减法器相连接;PI调节器分别和第三减法器、第四减法器和IPark变换模块相连接;IPark变换模块和空间矢量调制模块相连接,空间矢量调制模块和三相逆变器相连接,三相逆变器和永磁同步电机相连接。

The invention discloses a quasi-sensorless position servo control device for a permanent magnet synchronous motor, which includes a permanent magnet synchronous motor provided with a HALL sensor; The subtractor, the position/speed integrated controller, the third subtractor, the fourth subtractor, the PI regulator and the IPark transformation module are connected to each other; the fifth subtractor is connected to the position/speed integrated controller; the position/speed integrated The controller is connected with the third subtractor; the PI regulator is connected with the third subtractor, the fourth subtractor and the IPark transformation module respectively; the IPark transformation module is connected with the space vector modulation module, and the space vector modulation module is connected with the three-phase The inverters are connected to each other, and the three-phase inverter is connected to the permanent magnet synchronous motor.

Description

永磁同步电机准无传感器位置伺服控制装置及方法Quasi-sensorless position servo control device and method for permanent magnet synchronous motor

技术领域technical field

本发明涉及纺织机械机电一体化技术,尤其涉及一种适合纺织机械点到点运动的永磁同步电机准无传感器位置伺服控制装置及方法。The invention relates to the mechatronics technology of textile machinery, in particular to a quasi-sensorless position servo control device and method of a permanent magnet synchronous motor suitable for point-to-point movement of textile machinery.

背景技术Background technique

随着纺织行业节能、高效率、高速度、高精度等要求的不断提出,永磁交流伺服系统因其自身具有的高功率因数、高效率、高动态响应、高可靠性、高过载能力和高输出转矩等优点,在纺织机械中得到应用已成为了一种趋势,是未来大批量应用的核心技术之一,市场前景非常广阔。但某些纺织机械存在一些特殊工况:如经编机运行时要在横移系统时间内驱动梳栉完成“停止→运动→停止”的垫纱运动,需要有极高的响应速度和定位精度,驱动系统定位时间的快慢直接影响了经编机生产速度的提高;缝纫机运行过程电机启动停止非常频繁,属于间歇作业,其工艺过程要求其主传动机构有较高的定位控制,几百ms内实现从零速到最高运行速度的启动或者从最高运行速度到零速的停机,且停车精度小于±3°或者更小;目前针对绣花机绣花框的控制国内外学者提出了双轴伺服驱动的概念,用一个DSP+CPLD控制两个伺服电机运行的方式来带动绣花框运行,原来传统的位置、速度、电流三环控制理论在编程实现时会显的资源紧张从而降低了伺服系统。而且绣花机绣花框只对位置控制有要求,且随着绣花机高效率、高精度的发展,绣花框为了与主电机协调运行,对位置控制要求的响应速度会越来越高,等等。这些纺织机械都有一个共同的特点,它要求伺服系统的位置响应动态性能极高,跟随误差要小,且具有较强的抗干扰能力,而对速度控制要求不高,这点比较符合伺服系统作点到点(点位)运动的特点。而传统位置、速度、电流三环控制结构的位置伺服系统(附图1)在作点位运动时,速度闭环不仅没有发挥作用,还作为控制结构中的串联环节降低了系统位置调节的动态响应性能。为此,需要找寻一种新的方法提高系统的位置响应性能。以此同时,纺织机械(如前面提到的经编机、绣花机等)常常会要求在高温、低温、污浊空气等工作环境以及存在机械震动的工作条件下运行,物理传感器的存在反而导致了系统应用的局限性。如果能取消物理传感器无疑能扩大系统的应用范围,同时也可提高系统的可靠性以及环境适应性。且纺织行业是一个价格敏感型行业,尽可能降低控制成本是所有企业所追求的。为此,某些点位运动场合运用的伺服系统在提高位置响应性能的基础上需无传感器控制的技术,如专利文献1(专利号为200910090386.9)和专利文献2(专利号为200510108039.6)提出了一种不需电流传感器的交流伺服驱动器,可以实现隐极式永磁同步电机的无电流传感器速度闭环矢量控制,降低了调速系统的硬件成本,但专利文献1和2保留了位置检测单元,总的控制成本还是较高,在一些对成本要求较高的纺织场合应用并不合适。With the constant demands of energy saving, high efficiency, high speed and high precision in the textile industry, the permanent magnet AC servo system has high power factor, high efficiency, high dynamic response, high reliability, high overload capacity and high The application of output torque and other advantages in textile machinery has become a trend, and it is one of the core technologies for mass application in the future, and the market prospect is very broad. However, there are some special working conditions in some textile machines: For example, when the warp knitting machine is running, it needs to drive the bar to complete the "stop→movement→stop" yarn laying movement within the time of the traverse system, which requires extremely high response speed and positioning accuracy. , the speed of the positioning time of the drive system directly affects the increase in the production speed of the warp knitting machine; the motor starts and stops very frequently during the operation of the sewing machine, which belongs to intermittent operations. Realize the start from zero speed to the highest operating speed or stop from the highest operating speed to zero speed, and the stopping accuracy is less than ±3° or less; at present, scholars at home and abroad have proposed a dual-axis servo drive for the control of the embroidery frame of the embroidery machine The concept is to use a DSP+CPLD to control the operation of two servo motors to drive the embroidery frame to run. The original traditional three-loop control theory of position, speed, and current will show resource constraints during programming and reduce the servo system. Moreover, the embroidery frame of the embroidery machine only requires position control, and with the development of high efficiency and high precision of the embroidery machine, the embroidery frame will respond faster and faster to the position control requirement in order to coordinate with the main motor, and so on. These textile machines have a common feature, which requires the servo system to have extremely high dynamic performance of position response, small following error, and strong anti-interference ability, but not high requirements for speed control, which is more in line with servo system The characteristics of point-to-point (point) movement. However, the position servo system with the traditional position, speed and current three-loop control structure (attached Figure 1) not only does not play a role in the point-to-point movement, but also reduces the dynamic response of the system's position adjustment as a series link in the control structure. performance. Therefore, it is necessary to find a new method to improve the position response performance of the system. At the same time, textile machinery (such as the aforementioned warp knitting machines, embroidery machines, etc.) is often required to operate in high temperature, low temperature, dirty air and other working environments, as well as working conditions with mechanical vibrations. The existence of physical sensors has led to System application limitations. If the physical sensor can be canceled, the application range of the system can be expanded undoubtedly, and the reliability and environmental adaptability of the system can also be improved at the same time. Moreover, the textile industry is a price-sensitive industry, and it is the pursuit of all enterprises to reduce and control costs as much as possible. For this reason, the servo system used in some point movement occasions needs sensorless control technology on the basis of improving position response performance, such as patent document 1 (patent number 200910090386.9) and patent document 2 (patent number 200510108039.6) proposed An AC servo driver that does not need a current sensor can realize the closed-loop vector control of the speed of the hidden pole permanent magnet synchronous motor without a current sensor, which reduces the hardware cost of the speed control system, but patent documents 1 and 2 retain the position detection unit, The total control cost is still high, and it is not suitable for some textile applications with high cost requirements.

发明内容Contents of the invention

本发明要解决的技术问题是提供一种反应速度更快的点位运动的永磁同步电机准无传感器位置伺服系统及其控制方法。The technical problem to be solved by the present invention is to provide a quasi-sensorless position servo system of a permanent magnet synchronous motor with a faster response speed and a point-to-position movement and a control method thereof.

为了解决上述技术问题,本发明提供一种永磁同步电机准无传感器位置伺服控制装置,包括PI调节器、IPark变换模块、空间矢量调制模块、三相逆变器、永磁同步电机、HALL15、准无传感器控制模块、第三减法器、第四减法器、第五减法器和位置/速度一体化控制器;所述HALL15设置在永磁同步电机本体上,永磁同步电机工作时,通过HALL15输出离散的HALL位置信号所述准无传感器控制模块接受离散的HALL位置信号q轴电压给定uq和d轴电压给定ud,经准无传感器控制模块运算后,输出实际的转子位置信号θm、实际的d轴电流信号id、实际的q轴电流信号iq和永磁同步电机的负载力矩TL;所述第五减法器接受给定位置信号θm *和转子位置信号θm,并对两者作差运算输出位置误差信号θm *m;所述位置/速度一体化控制器接受位置误差信号θm *m、实际的q轴电流信号iq和负载力矩TL,经运算输出永磁同步电机的给定的q轴电流信号所述第三减法器接受给定的q轴电流信号和实际的q轴电流信号iq,并对两者作差运算输出q轴电流的误差信号所述第四减法器接受给定的d轴电流信号和实际的d轴电流信号id,并对两者作差运算输出d轴电流的误差信号所述PI调节器分别接受d轴电流的误差信号和q轴电流的误差信号并经运算分别输出q轴电压给定uq和d轴电压给定ud;所述IPark变换模块接受q轴电压给定uq和d轴电压给定ud,经运算输出静止两相坐标系下的电压分量uα和电压分量uβ;所述空间矢量调制模块接受静止两相坐标系下的电压分量uα和电压分量uβ输入,经运算输出三相逆变器的六路控制信号;所述三相逆变器接受空间矢量调制模块输出的六路控制信号,驱动永磁同步电机运行。In order to solve the above technical problems, the present invention provides a quasi-sensorless position servo control device for a permanent magnet synchronous motor, including a PI regulator, an IPark transformation module, a space vector modulation module, a three-phase inverter, a permanent magnet synchronous motor, HALL15, quasi-sensorless control module, the third subtractor, the fourth subtractor, the fifth subtractor and the position/speed integrated controller; the HALL15 is set on the permanent magnet synchronous motor body, and when the permanent magnet synchronous motor is working, the HALL15 Output discrete HALL position signal The quasi-sensorless control module accepts discrete HALL position signals The q-axis voltage u q and the d-axis voltage u d are given, after the operation of the quasi-sensorless control module, the actual rotor position signal θ m , the actual d-axis current signal i d , the actual q-axis current signal i q and the load torque T L of the permanent magnet synchronous motor; the fifth subtractor accepts the given position signal θ m * and the rotor position signal θ m , and performs differential operation on the two to output the position error signal θ m *m ; The position/speed integrated controller accepts the position error signal θ m *m , the actual q-axis current signal i q and the load torque T L , and outputs the given q-axis current signal of the permanent magnet synchronous motor through calculation The third subtractor accepts the given q-axis current signal and the actual q-axis current signal i q , and make a difference between the two to output the error signal of the q-axis current The fourth subtractor accepts the given d-axis current signal and the actual d-axis current signal i d , and make a difference between the two to output the error signal of the d-axis current The PI regulators respectively accept the error signal of the d-axis current and the error signal of the q-axis current And output q-axis voltage setting u q and d-axis voltage setting u d respectively through calculation; the IPark transformation module accepts q-axis voltage setting u q and d-axis voltage setting u d , and outputs static two-phase coordinates through calculation The voltage component u α and the voltage component u β under the coordinate system; the space vector modulation module accepts the input of the voltage component u α and the voltage component u β under the stationary two-phase coordinate system, and outputs six control signals of the three-phase inverter after calculation ; The three-phase inverter receives six control signals output by the space vector modulation module to drive the permanent magnet synchronous motor to run.

作为对一种永磁同步电机准无传感器位置伺服控制装置的改进:位置/速度一体化控制器的实现方法如下;As an improvement to a quasi-sensorless position servo control device for permanent magnet synchronous motors: the realization method of the position/speed integrated controller is as follows;

第一步,获得电机的运动方程为:In the first step, the equation of motion of the motor is obtained as:

第二步,取系统的状态变量:The second step is to get the state variables of the system:

结合式(1)、式(2)得:Combine formula (1) and formula (2) to get:

第三步,令F=-TL/J,则永磁同步电机位置伺服系统的状态方程为:The third step, order F=-T L /J, then the state equation of the permanent magnet synchronous motor position servo system is:

第四步,取类似PD调节器的滑模面设计为:The fourth step is to take the sliding mode surface design similar to the PD regulator as:

s=c1x1+c2x2 (5)s=c 1 x 1 +c 2 x 2 (5)

第五步,选取控制律:The fifth step is to select the control law:

第六步,得交轴电流的控制函数为:In the sixth step, the control function of the quadrature axis current is:

所述为给定的q轴电流信号, said For a given q-axis current signal,

根据以上公式就可实现位置/速度的一体化控制;According to the above formula, the integrated control of position/speed can be realized;

所述Te为永磁同步电机的输出转矩,J为电机惯量,P为电机极对数,Ψa为永磁体磁链c1和c1为常数。Said T e is the output torque of the permanent magnet synchronous motor, J is the motor inertia, P is the number of pole pairs of the motor, Ψ a is the flux linkage of the permanent magnet, and c 1 and c 1 are constants.

作为一种永磁同步电机准无传感器位置伺服控制装置的进一步改进:准无传感器控制模块由相互信号连接的相电流重构模块和全维观测器转子位置信息估算模块组成;所述全维观测器转子位置信息估算模块接受实际的q轴电流信号iq和离散的HALL位置信号所述全维观测器转子位置信息估算模块输出实际的转子位置信号θm、负载力矩TL和永磁同步电机的实际速度ωm;所述相电流重构模块接受实际速度ωm、q轴电压给定uq和d轴电压给定ud;所述相电流重构模块输出实际的d轴电流信号id、实际的q轴电流信号iqAs a further improvement of the quasi-sensorless position servo control device for permanent magnet synchronous motors: the quasi-sensorless control module is composed of a phase current reconstruction module connected with each other and a full-dimensional observer rotor position information estimation module; the full-dimensional observation The rotor position information estimation module of the generator accepts the actual q-axis current signal i q and the discrete HALL position signal The rotor position information estimation module of the full-dimensional observer outputs the actual rotor position signal θ m , the load torque T L and the actual speed ω m of the permanent magnet synchronous motor; the phase current reconstruction module receives the actual speed ω m , q-axis The voltage is given u q and the d-axis voltage is given u d ; the phase current reconstruction module outputs the actual d-axis current signal i d and the actual q-axis current signal i q ;

所述相电流重构模块的实现方法如下:The implementation method of the phase current reconstruction module is as follows:

所述La、Φa、Ra分别为永磁同步电机的电感、磁链和电阻;The L a , Φ a , and R a are respectively the inductance, flux linkage and resistance of the permanent magnet synchronous motor;

所述全维观测器转子位置信息算法估算模块的实现方法如下:The implementation method of the full-dimensional observer rotor position information algorithm estimation module is as follows:

同样由电机学原理知,永磁同步电机的运动学方程为:Also known from the principles of electromechanics, the kinematic equation of the permanent magnet synchronous motor is:

Jdωm/dt+Bmωm+TL=Tε (12)Jdω m /dt+B m ω m +T L =T ε (12)

m/dt=ωm (13)m /dt = ω m (13)

所述Bm为粘性阻尼系数;Described B m is viscous damping coefficient;

因为控制器的采样频率远远高于扰动转矩的变化时间,所以负载扰动转矩作为一个状态变量,可假定它是一个恒值,即负载扰动转矩对时间的微分为零;Because the sampling frequency of the controller is much higher than the change time of the disturbance torque, the load disturbance torque, as a state variable, can be assumed to be a constant value, that is, the differential of the load disturbance torque to time is zero;

设:Assume:

dTL/dt=0 (14)dT L /dt=0 (14)

由(12)和(13)得电机的动力学状态方程式:The dynamic state equation of the motor is obtained from (12) and (13):

其中,in,

式的输入变量为输出转矩Te,状态变量为机械角位置(为输出实际的转子位置信号θm)、机械角速度(为实际速度ωm)和负载扰动转矩(为负载力矩TL),输出变量为机械角位置(为输出实际的转子位置信号θm);The input variable of the formula is the output torque T e , the state variable is the mechanical angular position (for the output actual rotor position signal θ m ), the mechanical angular velocity (for the actual speed ω m ) and the load disturbance torque (for the load torque T L ) , the output variable is the mechanical angular position (to output the actual rotor position signal θ m );

式(5)可写为式(16):Formula (5) can be written as formula (16):

由动力学状态等式(15),可建立一个全维状态观测器,见式(17):According to the dynamic state equation (15), a full-dimensional state observer can be established, see equation (17):

其中,为被估计的状态变量,为状态反馈增益阵;in, is the estimated state variable, is the state feedback gain matrix;

由(15)-(16)得:From (15)-(16):

其中,为观测误差。其特征方程为:in, is the observation error. Its characteristic equation is:

det[sI-(A-KC)]=s3+(k1+Bm/J)s2+(k2+k1Bm/J)s-k3/J=0 (19)det[sI-(A-KC)]=s 3 +(k 1 +B m /J)s 2 +(k 2 +k 1 B m /J)sk 3 /J=0 (19)

选择适当的K,使(A-KC)有稳定、适当的特征值,时,与x(t)、u(t)和无关;无关;Choose an appropriate K so that (A-KC) has a stable and appropriate eigenvalue, , with x(t), u(t) and irrelevant; and irrelevant;

根据指定的期望极点α、β、γ,则观测器的期望特征多项式为:According to the specified expected poles α, β, γ, the expected characteristic polynomial of the observer is:

s3-(α+β+γ)s2+(αβ+βγ+γα)s-αβγ=0 (20)s 3 -(α+β+γ)s 2 +(αβ+βγ+γα)s-αβγ=0 (20)

由(19)和(20)得:From (19) and (20):

假设Bm=0,且α=β=γ,则式(21)可改写成:Assuming B m =0, and α=β=γ, formula (21) can be rewritten as:

式(17)可改写成:Formula (17) can be rewritten as:

即:which is:

根据系统期望的特性,选择极点所在的位置,按照式构造观测器,即可观测出负载力矩TL、永磁同步电机的实际速度ωm和永磁同步电机实际的转子位置信号θm的值。According to the expected characteristics of the system, select the position of the pole, construct the observer according to the formula, and then observe the value of the load torque T L , the actual speed ω m of the permanent magnet synchronous motor and the actual rotor position signal θ m of the permanent magnet synchronous motor .

一种永磁同步电机准无传感器位置伺服控制方法:A quasi-sensorless position servo control method for a permanent magnet synchronous motor:

a、永磁同步电机开始工作,永磁同步电机的电机轴旋转后,通过HALL15向准无传感器控制模块输出离散的HALL位置信号 a. The permanent magnet synchronous motor starts to work. After the motor shaft of the permanent magnet synchronous motor rotates, the discrete HALL position signal is output to the quasi-sensorless control module through HALL15

b、准无传感器控制模块接收到HALL15的离散的HALL位置信号以及PI调节器的q轴电压给定uq和d轴电压给定ud,并将离散的HALL位置信号q轴电压给定uq和d轴电压给定ud进行运算,运算后得出实际的转子位置信号θm、实际的d轴电流信号id、实际的q轴电流信号iq和永磁同步电机的负载力矩TL;准无传感器控制模块向第五减法器输出实际的转子位置信号θm,向位置/速度一体化控制器输出实际的q轴电流信号iq和负载力矩TL,向第三减法器输出实际的q轴电流信号iq,向第四减法器输出实际的d轴电流信号id,向IPark变换模块输出实际的转子位置信号θmb. The quasi-sensorless control module receives the discrete HALL position signal from HALL15 And the q-axis voltage of the PI regulator is given u q and the d-axis voltage is given u d , and the discrete HALL position signal The q-axis voltage is given u q and the d-axis voltage is given u d for calculation. After the calculation, the actual rotor position signal θ m , the actual d-axis current signal i d , the actual q-axis current signal i q and the permanent magnet The load torque T L of the synchronous motor; the quasi-sensorless control module outputs the actual rotor position signal θ m to the fifth subtractor, and outputs the actual q-axis current signal i q and load torque T L to the position/speed integrated controller, Output the actual q-axis current signal i q to the third subtractor, output the actual d-axis current signal i d to the fourth subtractor, and output the actual rotor position signal θ m to the IPark transformation module;

c、通过上位机系统,给第五减法器输入给定的位置信号θm *,再通过准无传感器控制模块接收到实际的转子位置信号θm;第五减法器再将给定的位置信号θm *和实际的转子位置信号θm进行作差运算,得出位置误差信号θm *m;第五减法器将位置误差信号θm *m输出给位置/速度一体化控制器;c. Through the upper computer system, input the given position signal θ m * to the fifth subtractor, and then receive the actual rotor position signal θ m through the quasi-sensorless control module; the fifth subtractor then sends the given position signal θ m * and the actual rotor position signal θ m are subtracted to obtain the position error signal θ m *m ; the fifth subtractor outputs the position error signal θ m *m to the position/speed integrated control device;

d、位置/速度一体化控制器接收到第五减法器输出的位置误差信号θm *m、准无传感器控制模块输出的实际的q轴电流信号iq和负载力矩TL;经位置/速度一体化控制器运算后得出永磁同步电机的给定的q轴电流信号位置/速度一体化控制器向第三减法器输出给定的q轴电流信号 d. The position/speed integrated controller receives the position error signal θ m *m output by the fifth subtractor, the actual q-axis current signal i q and the load torque T L output by the quasi-sensorless control module; The given q-axis current signal of the permanent magnet synchronous motor is obtained after the operation of the integrated speed controller The position/speed integrated controller outputs a given q-axis current signal to the third subtractor

e、第三减法器接收位置/速度一体化控制器输出的给定的q轴电流信号以及准无传感器控制模块输出的实际的q轴电流信号iq;第三减法器对给定的q轴电流信号和实际的q轴电流信号iq进行运算后得出q轴电流的误差信号第三减法器向PI调节器输出q轴电流的误差信号 e. The third subtractor receives the given q-axis current signal output by the position/speed integrated controller and the actual q-axis current signal i q output by the quasi-sensorless control module; the third subtractor performs the given q-axis current signal The error signal of the q-axis current is obtained after calculation with the actual q-axis current signal i q The third subtractor outputs the error signal of the q-axis current to the PI regulator

f、第四减法器接收上位机系统给出的给定的d轴电流信号以及准无传感器控制模块输出的实际的q轴电流信号iq;第四减法器将给定的d轴电流信号以及实际的q轴电流信号iq进行作差运算后,得出d轴电流的误差信号第四减法器向PI调节器输出d轴电流的误差信号 f. The fourth subtractor receives the given d-axis current signal given by the host computer system and the actual q-axis current signal i q output by the quasi-sensorless control module; the fourth subtractor takes the given d-axis current signal And the actual q-axis current signal i q is subtracted to obtain the error signal of the d-axis current The fourth subtractor outputs the error signal of the d-axis current to the PI regulator

g、PI调节器接收第三减法器输出的q轴电流的误差信号以及第四减法器输出的d轴电流的误差信号经过PI调节器的运算后,得到q轴电压给定uq和d轴电压给定ud;PI调节器向IPark变换模块输出q轴电压给定uq和d轴电压给定udg. The PI regulator receives the error signal of the q-axis current output by the third subtractor and the error signal of the d-axis current output by the fourth subtractor After the operation of the PI regulator, the q-axis voltage setting u q and the d-axis voltage setting u d are obtained; the PI regulator outputs the q-axis voltage setting u q and the d-axis voltage setting u d to the IPark transformation module;

h、IPark变换模块分别接收到PI调节器输出的q轴电压给定uq和d轴电压给定ud,以及准无传感器控制模块输出的实际的转子位置信号θm;经过IPark变换模块的运算后得出静止两相坐标系下的电压分量uα和电压分量uβ;IPark变换模块向空间矢量调制模块输出静止两相坐标系下的电压分量uα和电压分量uβh. The IPark transformation module respectively receives the q-axis voltage reference u q and the d-axis voltage reference u d output by the PI regulator, and the actual rotor position signal θ m output by the quasi-sensorless control module; After the operation, the voltage component u α and voltage component u β in the static two-phase coordinate system are obtained; the IPark transformation module outputs the voltage component u α and voltage component u β in the static two-phase coordinate system to the space vector modulation module;

i、空间矢量调制模块接收到IPark变换模块输出的静止两相坐标系下的电压分量uα和电压分量uβ;经空间矢量调制模块运算后得出三相逆变器的六路控制信号;空间矢量调制模块向三相逆变器6输出三相逆变器的六路控制信号;i. The space vector modulation module receives the voltage component u α and the voltage component u β under the static two-phase coordinate system output by the IPark transformation module; the six-way control signal of the three-phase inverter is obtained after the operation of the space vector modulation module; the space The vector modulation module outputs six control signals of the three-phase inverter to the three-phase inverter 6;

j、三相逆变器接收到空间矢量调制模块输出的三相逆变器的六路控制信号,并通过三相逆变器的六路控制信号驱动永磁同步电机的运行。j. The three-phase inverter receives six control signals of the three-phase inverter output by the space vector modulation module, and drives the operation of the permanent magnet synchronous motor through the six control signals of the three-phase inverter.

本发明的有益效果是,本发明永磁同步电机准无传感器位置伺服控制装置相比传统位置、速度、电流的三环系统控制结构(附图1),由于少了速度闭环这个串联结构,使新系统对位置命令变化的反应速度更快;去掉了价格昂贵的光电编码器、旋转变压器等位置传感器,而采用特殊算法配合价格低廉低分辨率的HALL15估算转子位置信息,去掉了电流传感器,采用控制理论重构的方法获得相电流,不仅提高了系统的环境适应性和可靠性,而且降低了系统的控制成本。适合在多种环境、高效率点位运动的纺织机械场合应用。The beneficial effects of the present invention are that, compared with the three-loop system control structure (accompanying drawing 1) of traditional position, speed, electric current, the quasi-sensorless position servo control device of permanent magnet synchronous motor of the present invention, owing to lacking this serial structure of speed closed loop, makes The new system responds faster to changes in position commands; the expensive photoelectric encoder, resolver and other position sensors are removed, and a special algorithm is used to estimate the rotor position information with the low-cost and low-resolution HALL15, and the current sensor is removed. The phase current is obtained by the method of control theory reconstruction, which not only improves the environmental adaptability and reliability of the system, but also reduces the control cost of the system. It is suitable for textile machinery applications in various environments and high-efficiency point-to-point movement.

附图说明Description of drawings

下面结合附图对本发明的具体实施方式作进一步详细说明。The specific implementation manners of the present invention will be described in further detail below in conjunction with the accompanying drawings.

图1为传统位置、速度、电流三环结构伺服系统原理框图;Figure 1 is a schematic block diagram of a traditional position, speed, and current three-loop servo system;

图2为永磁同步电机准无传感器位置伺服控制装置的原理框图;Fig. 2 is a functional block diagram of a quasi-sensorless position servo control device for a permanent magnet synchronous motor;

图3为位置/速度一体化控制模块的原理框图;Fig. 3 is a functional block diagram of the position/speed integrated control module;

图4为准无传感器控制模块的原理框图。Figure 4 is a functional block diagram of the quasi-sensorless control module.

具体实施方式detailed description

实施例1、图2给出了一种永磁同步电机准无传感器位置伺服控制装置;包括PI调节器3、IPark变换模块4、空间矢量调制模块5、三相逆变器6、永磁同步电机12、HALL15、准无传感器控制模块14、第三减法器、第四减法器、第五减法器和位置/速度一体化控制器13;HALL为HALL传感器;Embodiment 1, Figure 2 provides a quasi-sensorless position servo control device for permanent magnet synchronous motor; including PI regulator 3, IPark transformation module 4, space vector modulation module 5, three-phase inverter 6, permanent magnet synchronous Motor 12, HALL 15, quasi-sensorless control module 14, third subtractor, fourth subtractor, fifth subtractor and position/speed integrated controller 13; HALL is a HALL sensor;

HALL15设置在永磁同步电机12本体上,永磁同步电机12的电机轴旋转的时候,通过HALL15输出离散的HALL位置信号准无传感器控制模块14接受离散的HALL位置信号q轴电压给定uq和d轴电压给定ud;离散的HALL位置信号q轴电压给定uq和d轴电压给定ud经准无传感器控制模块14运算后,输出实际的转子位置信号θm、实际的d轴电流信号id、实际的q轴电流信号iq和永磁同步电机12的负载力矩TL;第五减法器接受实际的转子位置信号θm和给定的位置信号θm *,第五减法器对实际的转子位置信号θm和给定的位置信号θm *进行作差运算后得出位置误差信号θm *m;位置/速度一体化控制器13接受位置误差信号θm *m、实际的q轴电流信号iq和负载力矩TL;经位置/速度一体化控制器13运算后,输出永磁同步电机12的给定的q轴电流信号第三减法器接受给定的q轴电流信号和实际的q轴电流信号iq,第三减法器对给定的q轴电流信号和实际的q轴电流信号iq作差运算,并输出q轴电流的误差信号第四减法器接受实际的d轴电流信号id,并通过上位机系统接收到给定的d轴电流信号通过第四减法器对两者作差运算后,输出d轴电流的误差信号PI调节器3分别接受q轴电流的误差信号和d轴电流的误差信号经运算后分别输出q轴电压给定uq和d轴电压给定ud;IPark变换模块4接受q轴电压给定uq和d轴电压给定ud,经运算后输出静止两相坐标系下的电压分量uα和电压分量uβ;空间矢量调制模块5接受静止两相坐标系下的电压分量uα和电压分量uβ输入,经运算后输出三相逆变器6的六路控制信号;三相逆变器6接受空间矢量调制模块5输出的六路控制信号,驱动永磁同步电机12运行。HALL15 is set on the body of permanent magnet synchronous motor 12, when the motor shaft of permanent magnet synchronous motor 12 rotates, discrete HALL position signals are output through HALL15 The quasi-sensorless control module 14 accepts discrete HALL position signals q-axis voltage given u q and d-axis voltage given u d ; discrete HALL position signal After the q-axis voltage setting u q and the d-axis voltage setting u d are calculated by the quasi-sensorless control module 14, the actual rotor position signal θ m , the actual d-axis current signal i d , and the actual q-axis current signal i q and the load torque T L of the permanent magnet synchronous motor 12; the fifth subtractor accepts the actual rotor position signal θ m and the given position signal θ m * , and the fifth subtractor compares the actual rotor position signal θ m and the given The position signal θ m * is subjected to differential calculation to obtain the position error signal θ m *m ; the position/speed integrated controller 13 receives the position error signal θ m *m and the actual q-axis current signal i q and load torque T L ; after being calculated by the position/speed integrated controller 13, the given q-axis current signal of the permanent magnet synchronous motor 12 is output The third subtractor accepts the given q-axis current signal and the actual q-axis current signal i q , the third subtractor compares the given q-axis current signal Make a difference operation with the actual q-axis current signal i q , and output the error signal of the q-axis current The fourth subtractor accepts the actual d -axis current signal id, and receives the given d-axis current signal through the host computer system After the fourth subtractor performs a difference operation on the two, the error signal of the d-axis current is output The PI regulator 3 respectively receives the error signal of the q-axis current and the error signal of the d-axis current After calculation, output q-axis voltage setting u q and d-axis voltage setting u d respectively; IPark transformation module 4 accepts q-axis voltage setting u q and d-axis voltage setting u d , and outputs static two-phase coordinates after calculation The voltage component u α and voltage component u β in the coordinate system; the space vector modulation module 5 accepts the input of the voltage component u α and voltage component u β in the stationary two-phase coordinate system, and outputs the six-way control of the three-phase inverter 6 after calculation Signal; the three-phase inverter 6 receives six control signals output by the space vector modulation module 5 to drive the permanent magnet synchronous motor 12 to run.

在实际工作的时候,步骤如下:In actual work, the steps are as follows:

1、永磁同步电机12开始工作,永磁同步电机12的电机轴旋转后,通过HALL15向准无传感器控制模块14输出离散的HALL位置信号 1. The permanent magnet synchronous motor 12 starts to work. After the motor shaft of the permanent magnet synchronous motor 12 rotates, a discrete HALL position signal is output to the quasi-sensorless control module 14 through the HALL15

2、准无传感器控制模块14接收到HALL15的离散的HALL位置信号以及PI调节器3的q轴电压给定uq和d轴电压给定ud,并将离散的HALL位置信号q轴电压给定uq和d轴电压给定ud进行运算,运算后得出实际的转子位置信号θm、实际的d轴电流信号id、实际的q轴电流信号iq和永磁同步电机12的负载力矩TL。准无传感器控制模块14向第五减法器输出实际的转子位置信号θm,向位置/速度一体化控制器13输出实际的q轴电流信号iq和负载力矩TL,向第三减法器输出实际的q轴电流信号iq,向第四减法器输出实际的d轴电流信号id,向IPark变换模块4输出实际的转子位置信号θm2. The quasi-sensorless control module 14 receives the discrete HALL position signal of HALL15 And the q-axis voltage of PI regulator 3 is given u q and the d-axis voltage is given u d , and the discrete HALL position signal The q-axis voltage is given u q and the d-axis voltage is given u d for calculation. After the calculation, the actual rotor position signal θ m , the actual d-axis current signal i d , the actual q-axis current signal i q and the permanent magnet The load torque T L of the synchronous machine 12 . The quasi-sensorless control module 14 outputs the actual rotor position signal θ m to the fifth subtractor, outputs the actual q-axis current signal i q and load torque T L to the position/speed integrated controller 13, and outputs to the third subtractor The actual q-axis current signal i q outputs the actual d-axis current signal i d to the fourth subtractor, and outputs the actual rotor position signal θ m to the IPark transformation module 4 .

3、通过上位机系统,给第五减法器输入给定的位置信号θm *,再通过准无传感器控制模块14接收到实际的转子位置信号θm(步骤1所述准无传感器控制模块14向第五减法器输出实际的转子位置信号θm)。第五减法器再将给定的位置信号θm *和实际的转子位置信号θm进行作差运算,得出位置误差信号θm *m;第五减法器将位置误差信号θm *m输出给位置/速度一体化控制器13。3. Through the upper computer system, input the given position signal θ m * to the fifth subtractor, and then receive the actual rotor position signal θ m through the quasi-sensorless control module 14 (the quasi-sensorless control module 14 described in step 1 The actual rotor position signal θ m ) is output to the fifth subtractor. The fifth subtractor performs differential operation on the given position signal θ m * and the actual rotor position signal θ m to obtain the position error signal θ m *m ; the fifth subtractor converts the position error signal θ m *m is output to the position/speed integrated controller 13 .

4、位置/速度一体化控制器13接收到第五减法器输出的位置误差信号θm *m、准无传感器控制模块14输出的实际的q轴电流信号iq和负载力矩TL。经位置/速度一体化控制器13运算后得出永磁同步电机12的给定的q轴电流信号位置/速度一体化控制器13向第三减法器输出给定的q轴电流信号 4. The position/speed integrated controller 13 receives the position error signal θ m *m output by the fifth subtractor, the actual q-axis current signal i q and the load torque T L output by the quasi-sensorless control module 14 . The given q-axis current signal of the permanent magnet synchronous motor 12 is obtained after calculation by the position/speed integrated controller 13 The position/speed integrated controller 13 outputs a given q-axis current signal to the third subtractor

5、第三减法器接收位置/速度一体化控制器13输出的给定的q轴电流信号以及准无传感器控制模块14输出的实际的q轴电流信号iq。第三减法器对给定的q轴电流信号和实际的q轴电流信号iq进行运算后得出q轴电流的误差信号第三减法器向PI调节器3输出q轴电流的误差信号 5. The third subtractor receives the given q-axis current signal output by the position/speed integrated controller 13 And the actual q-axis current signal i q output by the quasi-sensorless control module 14 . The third subtractor for the given q-axis current signal The error signal of the q-axis current is obtained after calculation with the actual q-axis current signal i q The third subtractor outputs the error signal of the q-axis current to the PI regulator 3

6、第四减法器接收上位机系统给出的给定的d轴电流信号以及准无传感器控制模块14输出的实际的q轴电流信号iq;第四减法器将给定的d轴电流信号以及实际的q轴电流信号iq进行作差运算后,得出d轴电流的误差信号第四减法器向PI调节器3输出d轴电流的误差信号 6. The fourth subtractor receives the given d-axis current signal given by the upper computer system and the actual q-axis current signal i q output by the quasi-sensorless control module 14; the fourth subtractor converts the given d-axis current signal And the actual q-axis current signal i q is subtracted to obtain the error signal of the d-axis current The fourth subtractor outputs the error signal of the d-axis current to the PI regulator 3

7、PI调节器3接收第三减法器输出的q轴电流的误差信号以及第四减法器输出的d轴电流的误差信号经过PI调节器3的运算后,得到q轴电压给定uq和d轴电压给定ud;PI调节器3向IPark变换模块4输出q轴电压给定uq和d轴电压给定ud7. The PI regulator 3 receives the error signal of the q-axis current output by the third subtractor and the error signal of the d-axis current output by the fourth subtractor After the operation of the PI regulator 3, the q-axis voltage setting u q and the d-axis voltage setting u d are obtained; the PI regulator 3 outputs the q-axis voltage setting u q and the d-axis voltage setting u to the IPark transformation module 4 d .

8、IPark变换模块4分别接收到PI调节器3输出的q轴电压给定uq和d轴电压给定ud,以及准无传感器控制模块14输出的实际的转子位置信号θm。经过IPark变换模块4的运算后得出静止两相坐标系下的电压分量uα和电压分量uβ;IPark变换模块4向空间矢量调制模块5输出静止两相坐标系下的电压分量uα和电压分量uβ8. The IPark transformation module 4 respectively receives the q-axis voltage reference u q and the d-axis voltage reference u d output by the PI regulator 3 , and the actual rotor position signal θ m output by the quasi-sensorless control module 14 . After the operation of the IPark transformation module 4, the voltage component u α and the voltage component u β under the static two-phase coordinate system are obtained; the IPark transformation module 4 outputs the voltage components u α and the voltage component under the static two-phase coordinate system to the space vector modulation module 5 Voltage component u β .

9、空间矢量调制模块5接收到IPark变换模块4输出的静止两相坐标系下的电压分量uα和电压分量uβ。经空间矢量调制模块5运算后得出三相逆变器6的六路控制信号。空间矢量调制模块5向三相逆变器6输出三相逆变器6的六路控制信号。9. The space vector modulation module 5 receives the voltage component u α and the voltage component u β in the static two-phase coordinate system output by the IPark transformation module 4 . Six control signals of the three-phase inverter 6 are obtained after calculation by the space vector modulation module 5 . The space vector modulation module 5 outputs six control signals of the three-phase inverter 6 to the three-phase inverter 6 .

10、三相逆变器6接收到空间矢量调制模块5输出的三相逆变器6的六路控制信号,并通过三相逆变器6的六路控制信号驱动永磁同步电机12的运行。10. The three-phase inverter 6 receives the six control signals of the three-phase inverter 6 output by the space vector modulation module 5, and drives the operation of the permanent magnet synchronous motor 12 through the six control signals of the three-phase inverter 6.

以上所述的PI调节器3、IPark变换模块4、空间矢量调制模块5、三相逆变器6、永磁同步电机12、HALL15、第三减法器、第四减法器、第五减法器和永磁同步电机12为现有的公知技术。The above-mentioned PI regulator 3, IPark transformation module 4, space vector modulation module 5, three-phase inverter 6, permanent magnet synchronous motor 12, HALL15, the third subtractor, the fourth subtractor, the fifth subtractor and The permanent magnet synchronous motor 12 is an existing known technology.

以上所述的永磁同步电机的准无传感器位置伺服控制装置中,通过准无传感器控制模块14替代传统的基于两相电流传感器和光电编码器11(如图1所示)、旋转变压器等位置传感器的控制方案,采用位置/速度一体化单环控制器13替代传统伺服系统的位置和速度两环控制结构。In the quasi-sensorless position servo control device of the permanent magnet synchronous motor described above, the quasi-sensorless control module 14 replaces the traditional position based on two-phase current sensor and photoelectric encoder 11 (as shown in FIG. 1 ), resolver, etc. In the control scheme of the sensor, the position/speed integrated single-loop controller 13 is used to replace the position and speed two-loop control structure of the traditional servo system.

通过以下的说明,进一步描述准无传感器控制模块14和位置/速度一体化控制器13(位置/速度一体化单环控制器)的运算方法:Through the following explanations, further describe the operation method of the quasi-sensorless control module 14 and the position/speed integrated controller 13 (position/speed integrated single-loop controller):

一、本发明的位置/速度一体化控制器13,其实现方式如下:One, the position/speed integrated controller 13 of the present invention, its realization mode is as follows:

第一步,获得电机(永磁同步电机12)的运动方程为:In the first step, the equation of motion of the motor (permanent magnet synchronous motor 12) obtained is:

第二步,取系统(本发明的永磁同步电机准无传感器位置伺服控制装置)的状态变量:Second step, get the state variable of system (permanent magnet synchronous motor quasi-sensorless position servo control device of the present invention):

结合式(1)、式(2)得:Combine formula (1) and formula (2) to get:

第三步,令F=-TL/J,则永磁同步电机12的位置伺服系统的状态方程为:The third step, order F= -TL /J, then the state equation of the position servo system of the permanent magnet synchronous motor 12 is:

第四步,取类似PD调节器的滑模面设计为:The fourth step is to take the sliding mode surface design similar to the PD regulator as:

s=c1x1+c2x2 (5)s=c 1 x 1 +c 2 x 2 (5)

第五步,选取控制律:The fifth step is to select the control law:

第六步,得交轴电流的控制函数为:In the sixth step, the control function of the quadrature axis current is:

其中,为交轴电流给定, in, is given by the quadrature axis current,

根据以上公式就可实现位置/速度一体化单环控制器13的位置/速度一体化控制。其中,以上所述的Te为电机(永磁同步电机12)输出转矩ωm为电机(永磁同步电机12)的实际速度,TL为负载力矩,θm为实际的转子位置信号,都通过准无传感器控制模块14估算获得;J为电机惯量,P为电机极对数,Ψa为永磁体磁链,都为永磁同步电机12的相关参数,为给定的位置信号,c1和c1为常数。According to the above formula, the position/speed integrated control of the position/speed integrated single-loop controller 13 can be realized. Wherein, above-mentioned T e is motor (permanent magnet synchronous motor 12) output torque ω m is the actual speed of the motor (permanent magnet synchronous motor 12), T L is the load torque, and θ m is the actual rotor position signal, which are all estimated by the quasi-sensorless control module 14; J is the motor inertia, and P is the motor pole logarithm, Ψ a is the flux linkage of the permanent magnet, which are all related parameters of the permanent magnet synchronous motor 12, For a given position signal, c1 and c1 are constants.

具体实现步骤如下:The specific implementation steps are as follows:

1、通过第五减法器对实际的转子位置信号θm和给定的位置信号θm *运算后得出位置误差信号θm *m;通过第五减法器将位置误差信号θm *m送给位置/速度一体化控制器13;1. The position error signal θ m *m is obtained after the actual rotor position signal θ m and the given position signal θ m * are calculated by the fifth subtractor; the position error signal θ m * is obtained by the fifth subtractor -θ m is sent to the position/speed integrated controller 13;

2、位置/速度一体化控制器13根据以上所述的公式计算出给定的q轴电流信号 2. The position/speed integrated controller 13 is based on the above formula Calculate the given q-axis current signal

二、本发明的准无传感器控制模块14,其实现方式如下:Two, the quasi-sensorless control module 14 of the present invention, its realization mode is as follows:

以上所述的准无传感器控制模块14由相互信号连接的相电流重构模块16和全维观测器转子位置信息估算模块17组成(如图4所示):The quasi-sensorless control module 14 described above is composed of a phase current reconstruction module 16 and a full-dimensional observer rotor position information estimation module 17 connected with each other (as shown in FIG. 4 ):

相电流重构模块16的实现方式如下:The implementation of the phase current reconstruction module 16 is as follows:

以上所述的ωm为电机(永磁同步电机12)的实际速度;La、Φa、Ra分别为电机(永磁同步电机12)的电感、磁链和电阻;uq为q轴电压给定,ud为d轴电压给定。The ω m mentioned above is the actual speed of the motor (permanent magnet synchronous motor 12); L a , Φ a , R a are the inductance, flux linkage and resistance of the motor (permanent magnet synchronous motor 12); u q is the q axis Voltage setting, u d is the d-axis voltage setting.

具体实现步骤如下:The specific implementation steps are as follows:

1、将q轴电压给定uq、d轴电压给定ud和全维观测器转子位置信息估算模块17输出的电机实际转速信号ωm输入到相电流重构模块16中;1. Input the q-axis voltage setting u q , the d-axis voltage setting u d and the motor actual speed signal ω m output by the full-dimensional observer rotor position information estimation module 17 into the phase current reconstruction module 16;

2、相电流重构模块16根据公式(8)-(11)计算出永磁同步电机12实际的交轴电流给定id和实际的直轴电流给定iq2. The phase current reconstruction module 16 calculates the actual quadrature-axis current setting i d and the actual direct-axis current setting i q of the permanent magnet synchronous motor 12 according to formulas (8)-(11).

全维观测器转子位置信息估算模块17的计算公式如下:The calculation formula of the full-dimensional observer rotor position information estimation module 17 is as follows:

同样由电机学原理知,电机(永磁同步电机12)的运动学方程为:Also known by the principles of electromechanics, the kinematic equation of the motor (permanent magnet synchronous motor 12) is:

Jdωm/dt+Bmωm+TL=Tε (12)Jdω m /dt+B m ω m +T L =T ε (12)

m/dt=ωm (13)m /dt = ω m (13)

以上所述的ωm为电机(永磁同步电机12)的实际速度(即转子机械角速度);θm为实际的转子位置信号(即机械角位置);Te为永磁同步电机12的输出转矩;TL为负载力矩(即负载扰动转矩);J为转动惯量;Bm粘性阻尼系数。The ω m mentioned above is the actual speed (i.e. the rotor mechanical angular velocity) of the motor (the permanent magnet synchronous motor 12); θ m is the actual rotor position signal (i.e. the mechanical angular position); T e is the output of the permanent magnet synchronous motor 12 Torque; T L is the load moment (that is, the load disturbance torque); J is the moment of inertia; B m is the viscous damping coefficient.

因为控制器的采样频率远远高于扰动转矩的变化时间,所以TL为负载力矩(即负载扰动转矩)作为一个状态变量,可假定它是一个恒值,即TL为负载力矩(即负载扰动转矩)对时间的微分为零。Because the sampling frequency of the controller is much higher than the change time of the disturbance torque, T L is the load torque (that is, the load disturbance torque) as a state variable, which can be assumed to be a constant value, that is, T L is the load torque ( That is, the differential of load disturbance torque) to time is zero.

设:Assume:

dTL/dt=0 (14)dT L /dt=0 (14)

由(12)和(13)得电机的动力学状态方程式:The dynamic state equation of the motor is obtained from (12) and (13):

其中,in,

式(15)的输入变量为永磁同步电机12的输出转矩Te,状态变量为实际的转子位置信号θm(机械角位置)、永磁同步电机12的实际速度ωm(机械角速度)和TL为负载力矩(即负载扰动转矩),输出变量为实际的转子位置信号θm(机械角位置)。式(5)可写为式(16);The input variable of formula (15) is the output torque T e of the permanent magnet synchronous motor 12, the state variable is the actual rotor position signal θ m (mechanical angular position), the actual speed ω m (mechanical angular velocity) of the permanent magnet synchronous motor 12 and TL are the load torque (ie load disturbance torque), and the output variable is the actual rotor position signal θ m (mechanical angular position). Formula (5) can be written as formula (16);

由动力学状态等式(15),可建立一个全维状态观测器,见式(17):According to the dynamic state equation (15), a full-dimensional state observer can be established, see equation (17):

其中,为被估计的状态变量,为状态反馈增益阵。in, is the estimated state variable, is the state feedback gain matrix.

由(15)-(16)得:From (15)-(16):

其中,为观测误差。其特征方程为:in, is the observation error. Its characteristic equation is:

det_sI-(A-KC)]=s3+(k1+Bm/J)s2+(k2+k1Bm/J)s-k3/J=0(19)det_sI-(A-KC)]=s 3 +(k 1 +B m /J)s 2 +(k 2 +k 1 B m /J)sk 3 /J=0 (19)

选择适当的K,使(A-KC)有稳定、适当的特征值,时,与x(t)、u(t)和无关;无关。Choose an appropriate K so that (A-KC) has a stable and appropriate eigenvalue, , with x(t), u(t) and irrelevant; and irrelevant.

根据指定的期望极点α、β、γ,则观测器的期望特征多项式为:According to the specified expected poles α, β, γ, the expected characteristic polynomial of the observer is:

s3-(α+β+γ)s2+(αβ+βγ+γα)s-αβγ=0 (20)s 3 -(α+β+γ)s 2 +(αβ+βγ+γα)s-αβγ=0 (20)

由(19)和(20)得:From (19) and (20):

假设Bm=0,且α=β=γ,则式(21)可改写成:Assuming B m =0, and α=β=γ, formula (21) can be rewritten as:

式(17)可改写成:Formula (17) can be rewritten as:

即:which is:

根据系统期望的特性,选择极点所在的位置,按照式(24)构造观测器,即可观测出负载力矩TL、实际的转子位置信号θm(机械角位置)和永磁同步电机12的实际速度ωm(机械角速度)的值。According to the expected characteristics of the system, select the position of the pole, and construct the observer according to formula (24), then the load torque T L , the actual rotor position signal θ m (mechanical angular position) and the actual position of the permanent magnet synchronous motor 12 can be observed The value of velocity ω m (mechanical angular velocity).

该方法的实现步骤如下:The implementation steps of this method are as follows:

1、HALL15将离散的HALL位置信号反馈到全维观测器转子位置信息估算模块17中;1. HALL15 converts the discrete HALL position signal Feedback to the full-dimensional observer rotor position information estimation module 17;

2、全维观测器转子位置信息估算模块17根据公式估算出永磁同步电机12的实际转子位置(实际的转子位置信号θm)、实际速度ωm和负载力矩TL2. The rotor position information estimation module 17 of the full-dimensional observer estimates the actual rotor position (the actual rotor position signal θ m ), the actual speed ω m and the load torque T L of the permanent magnet synchronous motor 12 according to the formula;

3、PI调节器3将q轴电压给定uq和d轴电压给定ud输入到相电流重构模块16中(q轴电压给定uq和d轴电压给定ud通过PI调节器3获得,PI调节器3为现有的公知技术);3. The PI regulator 3 inputs the given q-axis voltage u q and the given d-axis voltage u d into the phase current reconstruction module 16 (the given q-axis voltage u q and the given d-axis voltage u d are regulated by PI 3 obtains, and PI regulator 3 is existing known technology);

4、相电流重构模块16根据公式(24)估算出永磁同步电机12的实际的d轴电流信号id和实际的q轴电流信号iq,并将实际的q轴电流信号iq反馈给全维观测器转子位置信息估算模块17。4. The phase current reconstruction module 16 estimates the actual d-axis current signal i d and the actual q-axis current signal i q of the permanent magnet synchronous motor 12 according to formula (24), and feeds back the actual q-axis current signal i q Give the rotor position information estimation module 17 of the full-dimensional observer.

最后,还需要注意的是,以上列举的仅是本发明的一个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。Finally, it should also be noted that what is listed above is only a specific embodiment of the present invention. Obviously, the present invention is not limited to the above embodiments, and many variations are possible. All deformations that can be directly derived or associated by those skilled in the art from the content disclosed in the present invention should be considered as the protection scope of the present invention.

Claims (3)

1.永磁同步电机准无传感器位置伺服控制装置,其特征是:包括PI调节器(3)、IPark变换模块(4)、空间矢量调制模块(5)、三相逆变器(6)、永磁同步电机(12)、HALL(15)、准无传感器控制模块(14)、第三减法器、第四减法器、第五减法器和位置/速度一体化控制器(13);所述HALL(15)为HALL传感器;1. A quasi-sensorless position servo control device for a permanent magnet synchronous motor, characterized in that it includes a PI regulator (3), an IPark transformation module (4), a space vector modulation module (5), a three-phase inverter (6), Permanent magnet synchronous motor (12), HALL (15), quasi-sensorless control module (14), the third subtractor, the fourth subtractor, the fifth subtractor and position/speed integrated controller (13); HALL (15) is a HALL sensor; 所述HALL(15)设置在永磁同步电机(12)本体上,永磁同步电机(12)工作时,通过HALL(15)输出离散的HALL位置信号;The HALL (15) is arranged on the permanent magnet synchronous motor (12) body, and when the permanent magnet synchronous motor (12) works, a discrete HALL position signal is output through the HALL (15); 所述准无传感器控制模块(14)接受离散的HALL位置信号、q轴电压给定uq和d轴电压给定ud,经准无传感器控制模块(14)运算后,输出实际的转子位置信号θm、实际的d轴电流信号id、实际的q轴电流信号iq和永磁同步电机(12)的负载力矩TLThe quasi-sensorless control module (14) receives discrete HALL position signals, given q-axis voltage u q and given d-axis voltage u d , and outputs the actual rotor position after calculation by the quasi-sensorless control module (14) signal θ m , the actual d-axis current signal i d , the actual q-axis current signal i q and the load torque T L of the permanent magnet synchronous motor (12); 所述第五减法器接受给定位置信号θm *和转子位置信号θm,并对两者作差运算输出位置误差信号θm *mThe fifth subtractor receives a given position signal θ m * and a rotor position signal θ m , and performs a difference operation on the two to output a position error signal θ m *m ; 所述位置/速度一体化控制器(13)接受位置误差信号θm *m、实际的q轴电流信号iq和负载力矩TL,经运算输出永磁同步电机(12)的给定的q轴电流信号 The position/speed integrated controller (13) receives the position error signal θ m *m , the actual q-axis current signal i q and the load torque T L , and outputs the given value of the permanent magnet synchronous motor (12) through calculation The q-axis current signal 所述第三减法器接受给定的q轴电流信号和实际的q轴电流信号iq,并对两者作差运算输出q轴电流的误差信号 The third subtractor accepts the given q-axis current signal and the actual q-axis current signal i q , and make a difference between the two to output the error signal of the q-axis current 所述第四减法器接受给定的d轴电流信号和实际的d轴电流信号id,并对两者作差运算输出d轴电流的误差信号 The fourth subtractor accepts the given d-axis current signal and the actual d-axis current signal i d , and make a difference between the two to output the error signal of the d-axis current 所述PI调节器(3)分别接受d轴电流的误差信号和q轴电流的误差信号并经运算分别输出q轴电压给定uq和d轴电压给定udThe PI regulator (3) respectively receives the error signal of the d-axis current and the error signal of the q-axis current And output q-axis voltage setting u q and d-axis voltage setting u d respectively through operation; 所述IPark变换模块(4)接受q轴电压给定uq和d轴电压给定ud,经运算输出静止两相坐标系下的电压分量uα和电压分量uβThe IPark transformation module (4) accepts the given q-axis voltage u q and the given d-axis voltage u d , and outputs the voltage component u α and voltage component u β under the static two-phase coordinate system through calculation; 所述空间矢量调制模块(5)接受静止两相坐标系下的电压分量uα和电压分量uβ输入,经运算输出三相逆变器(6)的六路控制信号;The space vector modulation module (5) accepts the input of the voltage component and the voltage component under the static two-phase coordinate system, and outputs six control signals of the three-phase inverter (6) through calculation; 所述三相逆变器(6)接受空间矢量调制模块(5)输出的六路控制信号,驱动永磁同步电机(12)运行;The three-phase inverter (6) receives six control signals output by the space vector modulation module (5) to drive the permanent magnet synchronous motor (12) to run; 准无传感器控制模块(14)由相互信号连接的相电流重构模块(16)和全维观测器转子位置信息估算模块(17)组成;所述全维观测器转子位置信息估算模块(17)接受实际的q轴电流信号iq和离散的HALL位置信号;所述全维观测器转子位置信息估算模块(17)输出实际的转子位置信号θm、负载力矩TL和永磁同步电机(12)的实际速度ωm;所述相电流重构模块(16)接受实际速度ωm、q轴电压给定uq和d轴电压给定ud;所述相电流重构模块(16)输出实际的d轴电流信号id、实际的q轴电流信号iqThe quasi-sensorless control module (14) is composed of a phase current reconstruction module (16) connected with each other and a full-dimensional observer rotor position information estimation module (17); the full-dimensional observer rotor position information estimation module (17) Accept the actual q-axis current signal i q and the discrete HALL position signal; the full-dimensional observer rotor position information estimation module (17) outputs the actual rotor position signal θ m , load torque T L and permanent magnet synchronous motor (12 ) actual speed ω m ; the phase current reconstruction module (16) accepts the actual speed ω m , q-axis voltage given u q and d-axis voltage given u d ; the phase current reconstruction module (16) outputs The actual d-axis current signal i d , the actual q-axis current signal i q ; 所述相电流重构模块(16)的实现方法如下:The implementation method of the phase current reconstruction module (16) is as follows: ii dd == 11 LL aa sthe s ++ RR aa (( uu dd ++ LL aa ωω mm ii qq )) -- -- -- (( 88 )) ii qq == 11 LL aa sthe s ++ RR aa (( uu qq -- ΦΦ aa ωω mm -- LL aa ωω mm ii dd )) -- -- -- (( 99 )) ii dd (( kk ++ 11 )) == (( 11 -- αα )) // RR αα zz -- αα [[ uu dd (( kk )) ++ LL aa ωω mm (( kk )) ii qq (( kk )) ]] -- -- -- (( 1010 )) ii qq (( kk ++ 11 )) == (( 11 -- αα )) // RR αα zz -- αα [[ uu qq (( kk )) -- ΦΦ aa ωω mm (( kk )) -- LL aa ωω mm (( kk )) ii dd (( kk )) ]] -- -- -- (( 1111 )) 所述La、Φa、Ra分别为永磁同步电机(12)的电感、永磁体磁链和电阻;Described L a , Φ a , R a are respectively the inductance, permanent magnet flux linkage and resistance of the permanent magnet synchronous motor (12); 所述全维观测器转子位置信息算法估算模块(17)的实现方法如下:The implementation method of the full-dimensional observer rotor position information algorithm estimation module (17) is as follows: 同样由电机学原理知,永磁同步电机(12)的运动学方程为:Also known by the principle of electromechanics, the kinematic equation of the permanent magnet synchronous motor (12) is: Jdωm/dt+Bmωm+TL=T 12)Jdω m /dt+B m ω m +T L =T 12) m/dt=ωm (13)m /dt = ω m (13) 所述Bm为粘性阻尼系数;所述Te为永磁同步电机(12)的输出转矩,J为电机惯量;Described B m is viscous damping coefficient; Described T e is the output torque of permanent magnet synchronous motor (12), and J is motor inertia; 因为控制器的采样频率远远高于扰动转矩的变化时间,所以负载扰动转矩作为一个状态变量,可假定它是一个恒值,即负载扰动转矩对时间的微分为零;Because the sampling frequency of the controller is much higher than the change time of the disturbance torque, the load disturbance torque, as a state variable, can be assumed to be a constant value, that is, the differential of the load disturbance torque to time is zero; 设:Assume: dTL/dt=0 (14)dT L /dt=0 (14) 由(12)和(13)得电机的动力学状态方程式:From (12) and (13), the dynamic state equation of the motor is obtained: dd xx // dd tt == AA xx ++ BB uu ythe y == CC xx -- -- -- (( 1515 )) 其中,in, AA == 00 11 00 00 -- BB mm // JJ -- 11 // JJ 00 00 00 ,, BB == 00 11 // JJ 00 ,, xx == θθ mm ωω mm TT LL ,, CC == 11 00 00 ,, uu == TT aa ,, ythe y == θθ mm ;; 式(15)可写为式(16):Formula (15) can be written as formula (16): dd dd tt θθ mm ωω mm TT LL == 00 11 00 00 -- BB mm // JJ -- 11 // JJ 00 00 00 θθ mm ωω mm TT LL ++ 00 11 // JJ 00 TT aa -- -- -- (( 1616 )) 由动力学状态等式(15),可建立一个全维状态观测器,见式(17):From the dynamic state equation (15), a full-dimensional state observer can be established, see equation (17): dd xx ^^ // dd tt == AA xx ^^ ++ BB uu ++ KK (( ythe y -- ythe y ^^ )) ythe y ^^ == CC xx ^^ -- -- -- (( 1717 )) 其中,为被估计的状态变量,K=[k1 k2 k3]T为状态反馈增益阵;in, is the estimated state variable, K=[k 1 k 2 k 3 ] T is the state feedback gain matrix; 由(15)-(16)得:From (15)-(16): dd xx ~~ // dd tt == (( AA -- KK CC )) xx ~~ -- -- -- (( 1818 )) 其特征方程为:Its characteristic equation is: det[sI-(A-KC)]=s3+(k1+Bm/J)s2+(k2+k1 Bm/J)s-k3/J=0 (19)det[sI-(A-KC)]=s 3 +(k 1 +B m /J)s 2 +(k 2 +k 1 B m /J)sk 3 /J=0 (19) 选择适当的K,使(A-KC)有稳定、适当的特征值,时,与x(t)、u(t)和无关;无关;Choose an appropriate K so that (A-KC) has a stable and appropriate eigenvalue, , with x(t), u(t) and irrelevant; and irrelevant; 根据指定的期望极点α、β、γ,则观测器的期望特征多项式为:According to the specified expected poles α, β, γ, the expected characteristic polynomial of the observer is: s3-(α+β+γ)s2+(αβ+βγ+γα)s-αβγ=0 (20)s 3 -(α+β+γ)s 2 +(αβ+βγ+γα)s-αβγ=0 (20) 由(19)和(20)得:From (19) and (20): kk 11 == -- (( αα ++ ββ ++ γγ )) -- BB mm // JJ kk 22 == (( αα ββ ++ ββ γγ ++ γγ αα )) ++ (( αα ++ ββ ++ γγ )) BB mm // JJ ++ (( BB mm // JJ )) 22 kk 33 == αα ββ γγ JJ -- -- -- (( 21twenty one )) 假设Bm=0,且α=β=γ,则式(21)可改写成:Assuming B m =0, and α=β=γ, formula (21) can be rewritten as: kk 11 == -- 33 αα kk 22 == 33 αα 22 kk 33 == αα 33 JJ -- -- -- (( 22twenty two )) 式(17)可改写成:Formula (17) can be rewritten as: dd dd tt θθ ^^ mm ωω ^^ mm TT ^^ LL == 00 11 00 00 -- BB mm // JJ ^^ -- 11 // JJ ^^ 00 00 00 θθ ^^ mm ωω ^^ mm TT ^^ LL ++ 00 11 // JJ ^^ 00 TT aa ++ kk 11 kk 22 kk 33 (( θθ mm -- θθ ^^ mm )) -- -- -- (( 23twenty three )) 即:which is: dd θθ ^^ mm // dd tt == ωω ^^ ++ kk 11 ×× (( θθ mm -- θθ ^^ mm )) dd ωω ^^ mm // dd tt == -- BB mm // JJ ^^ ×× ωω ^^ mm -- 11 // JJ ^^ ×× TT ^^ LL ++ 11 // JJ ^^ ×× TT aa ++ kk 22 ×× (( θθ mm -- θθ ^^ mm )) dd TT ^^ LL // dd tt == kk 33 ×× (( θθ mm -- θθ ^^ mm )) -- -- -- (( 24twenty four )) 根据系统期望的特性,选择极点所在的位置,按照式(24)构造观测器,即可观测出负载力矩TL、永磁同步电机(12)的实际速度ωm和永磁同步电机(12)实际的转子位置信号θm的值。According to the expected characteristics of the system, select the position of the pole, and construct the observer according to formula (24), then the load torque T L , the actual speed ω m of the permanent magnet synchronous motor (12) and the permanent magnet synchronous motor (12) can be observed The value of the actual rotor position signal θ m . 2.根据权利要求1所述永磁同步电机准无传感器位置伺服控制装置,其特征是:位置/速度一体化控制器(13)的实现方法如下;2. according to the described permanent magnet synchronous motor quasi-sensorless position servo control device of claim 1, it is characterized in that: the realization method of position/speed integrated controller (13) is as follows; 第一步,获得电机的运动方程为:In the first step, the equation of motion of the motor is obtained as: TT aa -- TT LL == JJ dωdω mm dd tt -- -- -- (( 11 )) 第二步,取系统的状态变量:The second step is to get the state variables of the system: xx 11 == θθ mm -- θθ mm ** xx 22 == xx ·· 11 == ωω mm -- -- -- (( 22 )) 结合式(1)、式(2)得:Combine formula (1) and formula (2) to get: xx ·· 11 == xx 22 == ωω mm xx ·· 22 == TT aa -- TT LL JJ == 11 JJ [[ 33 22 PΦPΦ aa ii qq -- TT LL ]] -- -- -- (( 33 )) 第三步,令F=-TL/J,则永磁同步电机位置伺服系统的状态方程为:The third step, order F=-T L /J, then the state equation of the permanent magnet synchronous motor position servo system is: xx ·&Center Dot; 11 xx ·&Center Dot; 22 == 00 11 00 00 xx 11 xx 22 ++ 00 aa ii qq ++ 00 Ff -- -- -- (( 44 )) 第四步,取类似PD调节器的滑模面设计为:The fourth step is to take the sliding mode surface design similar to the PD regulator as: S=c1x1+c2x2 (5)S=c 1 x 1 +c 2 x 2 (5) 第五步,选取控制律:The fifth step is to select the control law: sthe s ·&Center Dot; == -- ϵϵ sgnsgn sthe s -- kk sthe s -- -- -- (( 66 )) 第六步,得交轴电流的控制函数为:In the sixth step, the control function of the quadrature axis current is: ii qq ** == -- ϵϵ sgnsgn sthe s -- kk sthe s -- -- -- (( 77 )) 所述为给定的q轴电流信号, said For a given q-axis current signal, 根据以上公式就可实现位置/速度的一体化控制;According to the above formula, the integrated control of position/speed can be realized; 所述P为电机极对数,c1和c2为常数。The P is the number of pole pairs of the motor, and c 1 and c 2 are constants. 3.利用权利要求1或2所述装置进行的一种永磁同步电机准无传感器位置伺服控制方法,其特征是:3. a kind of permanent magnet synchronous motor quasi-sensorless position servo control method utilizing the described device of claim 1 or 2 is characterized in that: a、永磁同步电机(12)开始工作,永磁同步电机(12)的电机轴旋转后,通过HALL(15)向准无传感器控制模块(14)输出离散的HALL位置信号;A, permanent magnet synchronous motor (12) starts working, after the motor shaft of permanent magnet synchronous motor (12) rotates, output discrete HALL position signal to quasi-sensorless control module (14) by HALL (15); b、准无传感器控制模块(14)接收到HALL(15)的离散的HALL位置信号以及PI调节器(3)的q轴电压给定uq和d轴电压给定ud,并将离散的HALL位置信号、q轴电压给定uq和d轴电压给定ud进行运算,运算后得出实际的转子位置信号θm、实际的d轴电流信号id、实际的q轴电流信号iq和永磁同步电机(12)的负载力矩TL;准无传感器控制模块(14)向第五减法器输出实际的转子位置信号θm,向位置/速度一体化控制器(13)输出实际的q轴电流信号iq和负载力矩TL,向第三减法器输出实际的q轴电流信号iq,向第四减法器输出实际的d轴电流信号id,向IPark变换模块(4)输出实际的转子位置信号θmb. The quasi-sensorless control module (14) receives the discrete HALL position signal from HALL (15) and the q-axis voltage given u q and d-axis voltage given u d of the PI regulator (3), and the discrete HALL position signal, q-axis voltage reference u q and d-axis voltage reference u d are calculated, and the actual rotor position signal θ m , actual d-axis current signal i d , actual q-axis current signal i q and the load torque T L of the permanent magnet synchronous motor (12); the quasi-sensorless control module (14) outputs the actual rotor position signal θ m to the fifth subtractor, and outputs the actual rotor position signal θ m to the position/speed integrated controller (13) q-axis current signal i q and load torque T L , output the actual q-axis current signal i q to the third subtractor, output the actual d-axis current signal i d to the fourth subtractor, and output the actual d-axis current signal i d to the IPark transformation module (4) Output the actual rotor position signal θ m ; c、通过上位机系统,给第五减法器输入给定的位置信号θm *,再通过准无传感器控制模块(14)接收到实际的转子位置信号θm;第五减法器再将给定的位置信号θm *和实际的转子位置信号θm进行作差运算,得出位置误差信号θm *m;第五减法器将位置误差信号θm *m输出给位置/速度一体化控制器(13);c. Through the upper computer system, input the given position signal θ m * to the fifth subtractor, and then receive the actual rotor position signal θ m through the quasi-sensorless control module (14); The position signal θ m * and the actual rotor position signal θ m are subtracted to obtain the position error signal θ m *m ; the fifth subtractor outputs the position error signal θ m *m to the position/speed Integrated controller (13); d、位置/速度一体化控制器(13)接收到第五减法器输出的位置误差信号θm *m、准无传感器控制模块(14)输出的实际的q轴电流信号iq和负载力矩TL;经位置/速度一体化控制器(13)运算后得出永磁同步电机(12)的给定的q轴电流信号位置/速度一体化控制器(13)向第三减法器输出给定的q轴电流信号 d. The position/speed integrated controller (13) receives the position error signal θ m *m output by the fifth subtractor, the actual q-axis current signal i q output by the quasi-sensorless control module (14) and the load Torque T L ; the given q-axis current signal of the permanent magnet synchronous motor (12) is obtained after the operation of the position/speed integrated controller (13) The position/speed integrated controller (13) outputs a given q-axis current signal to the third subtractor e、第三减法器接收位置/速度一体化控制器(13)输出的给定的q轴电流信号以及准无传感器控制模块(14)输出的实际的q轴电流信号iq;第三减法器对给定的q轴电流信号和实际的q轴电流信号iq进行运算后得出q轴电流的误差信号第三减法器向PI调节器(3)输出q轴电流的误差信号 e, the third subtractor receives the given q-axis current signal output by the position/speed integrated controller (13) And the actual q-axis current signal i q output by the quasi-sensorless control module (14); the third subtractor is to the given q-axis current signal The error signal of the q-axis current is obtained after calculation with the actual q-axis current signal i q The third subtractor outputs the error signal of the q-axis current to the PI regulator (3) f、第四减法器系接收系统给定的d轴电流信号以及准无传感器控制模块(14)输出的实际的d轴电流信号id;第四减法器将给定的d轴电流信号以及实际的d轴电流信号id进行作差运算后,得出d轴电流的误差信号第四减法器向PI调节器(3)输出d轴电流的误差信号 f. The fourth subtractor receives the d-axis current signal given by the system And the actual d-axis current signal i d output by the quasi-sensorless control module (14); the fourth subtractor will give the given d-axis current signal And the actual d-axis current signal i d after the difference operation, the error signal of the d-axis current is obtained The fourth subtractor outputs the error signal of the d-axis current to the PI regulator (3) g、PI调节器(3)接收第三减法器输出的q轴电流的误差信号以及第四减法器输出的d轴电流的误差信号经过PI调节器(3)的运算后,得到q轴电压给定uq和d轴电压给定ud;PI调节器(3)向IPark变换模块(4)输出q轴电压给定uq和d轴电压给定udg. PI regulator (3) receives the error signal of the q-axis current output by the third subtractor and the error signal of the d-axis current output by the fourth subtractor After the operation of the PI regulator (3), the given q-axis voltage u q and the given d-axis voltage u d are obtained; the PI regulator (3) outputs the given q-axis voltage u q and u q to the IPark transformation module (4) d-axis voltage given u d ; h、IPark变换模块(4)分别接收到PI调节器(3)输出的q轴电压给定uq和d轴电压给定ud,以及准无传感器控制模块(14)输出的实际的转子位置信号θm;经过IPark变换模块(4)的运算后得出静止两相坐标系下的电压分量uα和电压分量uβ;IPark变换模块(4)向空间矢量调制模块(5)输出静止两相坐标系下的电压分量uα和电压分量uβh. The IPark conversion module (4) respectively receives the q-axis voltage reference u q and the d-axis voltage reference u d output by the PI regulator (3), as well as the actual rotor position output by the quasi-sensorless control module (14) Signal θ m ; get the voltage component u α and voltage component u β under the static two-phase coordinate system after the operation of the IPark transformation module (4); the IPark transformation module (4) outputs the static two-phase to the space vector modulation module (5) Voltage component u α and voltage component u β in the phase coordinate system; i、空间矢量调制模块(5)接收到IPark变换模块(4)输出的静止两相坐标系下的电压分量uα和电压分量uβ;经空间矢量调制模块(5)运算后得出三相逆变器(6)的六路控制信号;空间矢量调制模块(5)向三相逆变器6输出三相逆变器(6)的六路控制信号;i, the space vector modulation module (5) receives the voltage component u α and the voltage component u β under the static two-phase coordinate system output by the IPark transformation module (4); draw three-phase after the operation of the space vector modulation module (5) Six-way control signals of the inverter (6); the space vector modulation module (5) outputs six-way control signals of the three-phase inverter (6) to the three-phase inverter 6; j、三相逆变器(6)接收到空间矢量调制模块(5)输出的三相逆变器(6)的六路控制信号,并通过三相逆变器(6)的六路控制信号驱动永磁同步电机(12)的运行。j. The three-phase inverter (6) receives the six control signals of the three-phase inverter (6) output by the space vector modulation module (5), and drives the permanent drive through the six control signals of the three-phase inverter (6). The operation of the magnetic synchronous motor (12).
CN201310602081.8A 2013-11-21 2013-11-21 Permagnetic synchronous motor standard is without sensing station Servocontrol device and method Active CN104333285B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310602081.8A CN104333285B (en) 2013-11-21 2013-11-21 Permagnetic synchronous motor standard is without sensing station Servocontrol device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310602081.8A CN104333285B (en) 2013-11-21 2013-11-21 Permagnetic synchronous motor standard is without sensing station Servocontrol device and method

Publications (2)

Publication Number Publication Date
CN104333285A CN104333285A (en) 2015-02-04
CN104333285B true CN104333285B (en) 2017-04-05

Family

ID=52407956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310602081.8A Active CN104333285B (en) 2013-11-21 2013-11-21 Permagnetic synchronous motor standard is without sensing station Servocontrol device and method

Country Status (1)

Country Link
CN (1) CN104333285B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014212383A1 (en) * 2014-06-27 2015-12-31 Robert Bosch Gmbh Method for operating an electric machine, electric machine
CN105932919B (en) * 2016-06-07 2018-11-30 深圳市百盛传动有限公司 A kind of permanent magnet synchronous motor position control method based on motor model
CN106208839B (en) * 2016-07-25 2019-04-02 河南师范大学 A kind of permanent magnet synchronous motor voltage-type location measurement method used for wind power generation and device
KR101852754B1 (en) * 2016-10-27 2018-04-27 엘에스산전 주식회사 Sensoelss control system for permanent magnet synchronous machine
CN106292274B (en) * 2016-11-02 2019-05-10 湖南工业大学 A Cascaded Sliding Mode Observer and Its Adhesion Coefficient and Derivative Estimation Method
KR102676718B1 (en) * 2018-03-14 2024-06-19 현대자동차주식회사 Control method and control system of motor rotation speed
CN108880358A (en) * 2018-07-02 2018-11-23 哈尔滨理工大学 Method for controlling permanent magnet synchronous motor and device based on angular displacement without Time Delay Observer
CN108923712B (en) * 2018-08-28 2019-12-31 青岛大学 Single-loop speed control method, device and system for permanent magnet synchronous motor
CN110190793B (en) * 2019-05-31 2020-12-25 东南大学 Two-degree-of-freedom numerical control machine tool and control system and positioning method thereof
CN110323983B (en) * 2019-07-23 2021-05-11 广东工业大学 A current decoupling method, device, equipment and medium of a permanent magnet synchronous motor
CN111416560B (en) * 2020-04-27 2024-04-05 廖铉泓 Permanent magnet synchronous motor control method and system without current sensor
CN115313950B (en) * 2022-08-19 2023-12-26 中山市瑞思科传动科技有限公司 Driving system of servo motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867374A (en) * 2009-04-17 2010-10-20 索尼公司 Analog-to-digital converters, solid-state imaging devices, and camera systems
CN101931366A (en) * 2010-08-03 2010-12-29 浙江大学 A motor energy-saving driving circuit and control method based on a supercapacitor
CN103401501A (en) * 2013-04-15 2013-11-20 湖南大学 Permanent magnet synchronous motor (PMSM) servo system control method based on fuzzy and active disturbance rejection control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867374A (en) * 2009-04-17 2010-10-20 索尼公司 Analog-to-digital converters, solid-state imaging devices, and camera systems
CN101931366A (en) * 2010-08-03 2010-12-29 浙江大学 A motor energy-saving driving circuit and control method based on a supercapacitor
CN103401501A (en) * 2013-04-15 2013-11-20 湖南大学 Permanent magnet synchronous motor (PMSM) servo system control method based on fuzzy and active disturbance rejection control

Also Published As

Publication number Publication date
CN104333285A (en) 2015-02-04

Similar Documents

Publication Publication Date Title
CN104333285B (en) Permagnetic synchronous motor standard is without sensing station Servocontrol device and method
CN103312244B (en) Based on the brshless DC motor Direct Torque Control of segmented sliding moding structure
CN103532464B (en) The vector control system without sensor of permagnetic synchronous motor and control method
CN107482976A (en) Method and device for fault-tolerant predictive control of loss-of-excitation faults for permanent magnet synchronous motors
CN103051274B (en) Variable damping-based passive control method for two-degree-of-freedom permanent magnetic synchronous motor
CN105159227B (en) A kind of positioning of double-shaft moving platform and dynamic trajectory follow-up control apparatus and method
CN108092567A (en) A kind of Speed control of permanent magnet synchronous motor system and method
CN107370436A (en) A kind of direct Torque Control based on Super twisting sliding formworks
CN106887976A (en) Consider many permagnetic synchronous motor deviation coupling control methods of acceleration
CN101557193B (en) Vector control method of non-sinusoidal back EMF surface type AC permanent magnet motor
CN102957372A (en) Double closed-loop control system of permanent-magnet synchronous motor
CN103269199B (en) Electric car induction motor torque current setting device
CN105406784B (en) The torque of simplex winding bearing-free motor and suspending power self-operated controller and building method
CN106911280A (en) Permanent-magnetism linear motor method for controlling position-less sensor based on new disturbance observer
CN107017817A (en) A kind of high speed IPM synchronous motor current decoupling control method
CN104953916A (en) Novel speed controller based on speed regulating system of permanent magnet synchronous motor
CN111756288A (en) Method for improving estimation performance of permanent magnet synchronous motor without position sensor
CN110401392A (en) A MPC control method for motors used in new energy vehicles
CN103647493B (en) A kind of infinite method for estimating rotating speed of H of permagnetic synchronous motor
CN103532442A (en) Construction method of optimized active disturbance rejection controllers of bearing-less permanent magnet motor suspension system
Xiong et al. Sensor-less complex system control of pmsm based on improved smo
CN102185547A (en) Method for controlling non-radial displacement transducer of multi-phase and single-winding bearingless motor
CN112003523B (en) A method to improve the speed estimation stability of permanent magnet synchronous linear motor
CN101383573B (en) Direct levitation force control method for permanent magnet bearingless motor
CN110995096A (en) A bearingless and ironless permanent magnet motor suspension force prediction control system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant