[go: up one dir, main page]

CN104330298A - Method and device for evaluating and measuring mesomechanics/micromechanics performance of surface gradient metal material - Google Patents

Method and device for evaluating and measuring mesomechanics/micromechanics performance of surface gradient metal material Download PDF

Info

Publication number
CN104330298A
CN104330298A CN201410599229.1A CN201410599229A CN104330298A CN 104330298 A CN104330298 A CN 104330298A CN 201410599229 A CN201410599229 A CN 201410599229A CN 104330298 A CN104330298 A CN 104330298A
Authority
CN
China
Prior art keywords
sigma
depth
parameter
micro
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410599229.1A
Other languages
Chinese (zh)
Other versions
CN104330298B (en
Inventor
李伟
邓海龙
孙振铎
张晓航
张震宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201410599229.1A priority Critical patent/CN104330298B/en
Priority claimed from CN201410599229.1A external-priority patent/CN104330298B/en
Publication of CN104330298A publication Critical patent/CN104330298A/en
Application granted granted Critical
Publication of CN104330298B publication Critical patent/CN104330298B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种表面梯度金属材料的细微观力学性能评估测量方法及装置,包括:建立纳米压痕试验的有限元模型,验证模型可靠性;基于表面处理工艺及基体材料弹性模量,预估表面梯度材料的细观力学性能参数,结合所述的有限元模型计算其相应微观力学性能参数;基于数学建模法,对施加载荷和压痕接触深度进行量纲分析,建立无量纲方程;根据无量纲方程,选取预估及计算的相应细微观力学性能参数,建立无量纲函数关系式;沿试样表面不同的纵深方向,结合纳米压痕试验,获得载荷-位移响应曲线,反推材料相应位置的细观力学性能参数;基于确定的细观力学性能参数,建立表面梯度材料的细观力学性能梯度曲线。

A method and device for evaluating and measuring microscopic mechanical properties of surface gradient metal materials, including: establishing a finite element model for nanoindentation tests to verify the reliability of the model; based on the surface treatment process and the elastic modulus of the matrix material, estimating the surface gradient material The mesoscopic mechanical performance parameters of the above-mentioned finite element model are combined to calculate its corresponding microscopic mechanical performance parameters; based on the mathematical modeling method, the applied load and the indentation contact depth are subjected to dimensional analysis, and a dimensionless equation is established; according to the dimensionless equation , select the estimated and calculated corresponding micro-mechanical performance parameters, and establish a dimensionless functional relationship; along the different depth directions of the sample surface, combined with nano-indentation tests, the load-displacement response curve is obtained, and the micro-mechanical properties of the corresponding position of the material are reversed. Observational mechanical property parameters; based on the determined mesoscopic mechanical property parameters, the mesoscopic mechanical property gradient curve of the surface gradient material is established.

Description

表面梯度金属材料的细微观力学性能评估测量方法及装置Measuring method and device for evaluating microscopic mechanical properties of surface gradient metal materials

技术领域technical field

本发明是关于金属材料力学性能测试技术,特别是关于一种表面梯度金属材料的细微观力学性能评估测量方法及装置。The invention relates to a testing technology for the mechanical properties of metal materials, in particular to a method and device for evaluating and measuring microscopic mechanical properties of surface gradient metal materials.

背景技术Background technique

随着工业高精端的发展,微小型机械或构件被大量研制与使用。同时,为满足机构具有高强度、高可靠性等要求,脉冲放电、离子注入、激光冲击及渗碳处理工艺等新型表面处理工艺也被广泛采用。因此,明确包含处理层在内的构件材料的基础力学性能,显得尤为重要。With the development of industrial high-end, micro-miniature machinery or components have been developed and used in large quantities. At the same time, in order to meet the requirements of high strength and high reliability of the mechanism, new surface treatment processes such as pulse discharge, ion implantation, laser shock and carburizing treatment processes are also widely used. Therefore, it is particularly important to clarify the basic mechanical properties of the component materials including the treatment layer.

传统金属材料的力学性能是通过标准试件的单调拉伸试验获得。对应表面处理的材料,其力学性能测量存在两个问题:(1)无视处理层的存在,将处理层和基体视为均匀材料来处理,没有虑及材料表面性能的梯度变化。(2)对于微小型构件而言,其试验设备及测量方法均不适用。纳米压痕仪可以用于材料在微纳米级力学性能的测定,但是目前的研究主要集中于薄膜材料,而对于表面处理金属材料仅仅侧重于硬度的测试,至今没有形成一种有效的、包含处理层在内的材料梯度力学性能表征方法。The mechanical properties of traditional metal materials are obtained through monotonic tensile tests on standard specimens. There are two problems in the measurement of mechanical properties of materials with surface treatment: (1) The existence of the treatment layer is ignored, and the treatment layer and the substrate are treated as uniform materials, and the gradient change of the surface properties of the material is not considered. (2) For small and small components, the test equipment and measurement methods are not applicable. The nanoindentation instrument can be used to measure the mechanical properties of materials at the micro-nano level, but the current research mainly focuses on thin film materials, and only focuses on the hardness test of surface-treated metal materials. A method for characterization of gradient mechanical properties of materials within layers.

因此,一种具有较好理论性、实用可靠、简洁方便的表面梯度金属材料的细微观力学性能评估方法亟待建立。Therefore, a theoretical, practical, reliable, simple and convenient method for evaluating the microscopic mechanical properties of surface gradient metal materials needs to be established urgently.

发明内容Contents of the invention

本发明提供一种表面梯度金属材料的细微观力学性能评估测量方法及装置,以避免忽略表面处理层而近似测定材料力学性能所带来的误差,弥补表面梯度力学性能表征方法的空白。The invention provides a method and device for evaluating and measuring the microscopic mechanical properties of surface gradient metal materials, so as to avoid errors caused by approximately measuring the mechanical properties of materials while ignoring the surface treatment layer, and to make up for the gap in the characterization method of surface gradient mechanical properties.

为了实现上述目的,本发明提供一种表面梯度金属材料的细微观力学性能评估测量方法,所述的细微观力学性能评估测量方法包括:In order to achieve the above object, the present invention provides a method for evaluating and measuring microscopic mechanical properties of surface gradient metal materials, and the method for evaluating and measuring microscopic mechanical properties includes:

步骤1:通过二维建模、赋予材料属性、网格划分、施加边界条件等,建立纳米压痕试验的有限元仿真模型,并验证其准确性;Step 1: Establish a finite element simulation model for the nanoindentation test through two-dimensional modeling, endowing material properties, meshing, and applying boundary conditions, and verify its accuracy;

步骤2:基于表面处理工艺及基体材料弹性模量,预估表面梯度材料的细观力学性能参数(E,σy,n),结合所述的有限元模型计算所述细观力学性能参数对应的微观力学性能参数(F,S,hc);其中,E为所测材料的弹性模量,σy为所测材料的屈服应力,n为所测材料的应变硬化指数,F为纳米压痕试验机压头上的加载载荷,S为所测材料的硬度,hc为压头与所测材料之间的压痕接触深度;Step 2: Estimate the mesomechanical performance parameters (E, σ y , n) of the surface gradient material based on the surface treatment process and the elastic modulus of the matrix material, and calculate the corresponding mesomechanical performance parameters in combination with the finite element model The micromechanical performance parameters (F, S, h c ); where, E is the elastic modulus of the measured material, σ y is the yield stress of the measured material, n is the strain hardening exponent of the measured material, and F is the nanocompression is the load on the indenter of the indenter, S is the hardness of the material to be tested, and hc is the indentation contact depth between the indenter and the material to be tested;

步骤3:基于数学建模法,对加载载荷F和压头与所测材料之间的压痕接触深度hc进行量纲分析,建立关于压头和所测材料相关参数的无量纲方程:Step 3: Based on the mathematical modeling method, perform dimensional analysis on the loading load F and the indentation contact depth h c between the indenter and the measured material, and establish a dimensionless equation about the relevant parameters of the indenter and the measured material:

Ff EhEh 22 == ΠΠ αα [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 11 ))

hh cc hh == ΠΠ ββ [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 22 ))

步骤4:根据无量纲方程,结合步骤2中预估及计算的相应的材料细微观力学参数(E、σy、n、F、S、hc),建立无量纲函数关系式:Step 4: According to the dimensionless equation, combined with the corresponding material microscopic mechanical parameters (E, σ y , n, F, S, h c ) estimated and calculated in step 2, establish a dimensionless functional relationship:

ΠΠ αα (( σσ ythe y EE. ,, nno )) == (( aa -- bnbn )) (( σσ ythe y EE. )) [[ cc loglog (( σσ ythe y EE. )) -- dndn ]] -- -- -- (( 33 ))

ΠΠ ββ (( σσ ythe y EE. ,, nno )) == ee ++ fexpfexp (( gngn )) expexp [[ ii (( σσ ythe y EE. )) ]] -- -- -- (( 44 ))

其中,a、b、c、d、e、f、g、i均为拟合参数;Among them, a, b, c, d, e, f, g, i are fitting parameters;

步骤5:制备表面梯度材料截面抛光试样,沿所述试样表面不同的纵深方向,结合纳米压痕试验,按预定深度获得一系列载荷-位移响应曲线。得到材料硬度、最大加载载荷F及压痕接触深度hc的值,并将所述材料硬度、最大加载载荷F及压痕接触深度hc的值代入到无量纲关系式中,反推出表面梯度材料相应位置的细观力学性能参数;Step 5: prepare cross-sectional polished samples of the surface gradient material, and obtain a series of load-displacement response curves at predetermined depths along the different depth directions of the sample surface, combined with nano-indentation tests. Obtain the values of material hardness, maximum loading F, and indentation contact depth hc , and substitute the values of material hardness, maximum loading F, and indentation contact depth hc into the dimensionless relational formula, and deduce the surface gradient The mesoscopic mechanical property parameters of the corresponding position of the material;

步骤6:将步骤5中得到的细观力学性能参数(E,σy,n)按深度作图,建立表面梯度材料的细观力学性能梯度曲线。Step 6: The mesomechanical property parameters (E, σ y , n) obtained in step 5 are plotted according to the depth, and the mesomechanical property gradient curve of the surface gradient material is established.

在一实施例中,在所述步骤1中,建立纳米压痕试验的有限元仿真模型,包括:采用二维模型对所测材料进行建模,利用一维线段对压头进行建模,生成纳米压痕试验的初始实体模型。鉴于模型的轴对称性,取所述初始实体模型的二分之一建立纳米压痕试验的有限元仿真模型。In one embodiment, in the step 1, the finite element simulation model of the nanoindentation test is established, including: using a two-dimensional model to model the measured material, using a one-dimensional line segment to model the indenter, generating Initial solid model for nanoindentation experiments. In view of the axial symmetry of the model, a finite element simulation model of the nanoindentation test is established by taking half of the initial solid model.

在一实施例中,所述材料参数属性包括:σy=1187MPa、E=201GPa、ν=0.3、n=0.203。In an embodiment, the material parameter properties include: σ y =1187MPa, E=201GPa, ν=0.3, n=0.203.

在一实施例中,所述步骤2包括:基于表面处理工艺及基体材料弹性模量,预估表面梯度材料的细观力学性能参数(E,σy,n),结合所述的有限元模型,生成若干组载荷-位移响应曲线,根据所述载荷-位移响应曲线,计算出若干组相应微观力学参数(F,S,hc)。In one embodiment, the step 2 includes: based on the surface treatment process and the elastic modulus of the matrix material, estimating the mesoscopic mechanical property parameters (E, σ y , n) of the surface gradient material, combined with the finite element model , generate several sets of load-displacement response curves, and calculate several sets of corresponding micromechanical parameters (F, S, h c ) according to the load-displacement response curves.

在一实施例中,所述步骤3包括:In one embodiment, the step 3 includes:

基于数学建模法,将压头加载载荷F和压头与所测材料之间的压痕接触深度hc分别表示为关于压头和所测材料相关参数的函数总方程:Based on the mathematical modeling method, the load F of the indenter and the indentation contact depth h c between the indenter and the measured material are respectively expressed as a function total equation of the relevant parameters of the indenter and the measured material:

F=F(h,E,ν,Eiiy,n,μ,θ)      (5)F=F(h,E,ν,E iiy ,n,μ,θ) (5)

hc=hc(h,E,ν,Eiiy,n,μ,θ)      (6)h c =h c (h,E,ν,E iiy ,n,μ,θ) (6)

其中,ν为所测材料的泊松比,Ei和νi分别为压头的弹性模量和泊松比,μ为压头与所测材料间的摩擦系数,θ为压头的半角角度;Among them, ν is the Poisson's ratio of the measured material, E i and ν i are the elastic modulus and Poisson's ratio of the indenter respectively, μ is the friction coefficient between the indenter and the measured material, and θ is the half angle of the indenter;

在不考虑参数之间耦合的情况下,将所述函数总方程转化为无量纲函数:Without considering the coupling between parameters, the total equation of the function is transformed into a dimensionless function:

Ff EhEh 22 == Ff (( hh hh ,, EE. EE. ,, vv EE. 00 hh 00 ,, EE. ii EE. ,, vv ii EE. 00 hh 00 ,, σσ ythe y EE. ,, nno EE. 00 hh 00 ,, μμ EE. 00 hh 00 ,, θθ EE. 00 hh 00 )) -- -- -- (( 77 ))

hh cc EhEh 22 == hh cc (( hh hh ,, EE. EE. ,, vv EE. 00 hh 00 ,, EE. ii EE. ,, vv ii EE. 00 hh 00 ,, σσ ythe y EE. ,, nno EE. 00 hh 00 ,, μμ EE. 00 hh 00 ,, θθ EE. 00 hh 00 )) -- -- -- (( 88 ))

上述压头和所测材料的参数中,只有弹性模量的量纲[E]和深度的量纲[h]是独立的,其他参数均用这两个独立量纲的指数积的形式表示。Among the above-mentioned parameters of the indenter and the measured material, only the dimension [E] of the elastic modulus and the dimension [h] of the depth are independent, and other parameters are expressed in the form of the exponential product of these two independent dimensions.

省略所述无量纲函数中的Ei、νi及μ,对于一个给定角度θ的压头,应用Π定理,无量纲函数关系式进一步简化为所述的无量纲方程:By omitting E i , ν i and μ in the dimensionless function, and applying the Π theorem to an indenter with a given angle θ, the relational expression of the dimensionless function is further simplified into the dimensionless equation:

Ff EhEh 22 == ΠΠ αα [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 11 ))

hh cc hh == ΠΠ ββ [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 22 ))

在一实施例中,所述步骤5包括:制备表面梯度材料截面抛光试样,沿试样表面不同的纵深方向,结合纳米压痕试验,按预定深度获得一系列载荷-位移响应曲线。得到材料硬度、最大加载载荷F及压痕接触深度hc的值,并将其代入到无量纲关系式中,反推出表面梯度材料相应位置的细观力学性能参数;In one embodiment, the step 5 includes: preparing a cross-sectional polished sample of the surface gradient material, and obtaining a series of load-displacement response curves at predetermined depths in combination with nanoindentation tests along different depth directions on the surface of the sample. Obtain the values of material hardness, maximum load F and indentation contact depth hc , and substitute them into the dimensionless relational formula, and deduce the mesoscopic mechanical performance parameters of the corresponding position of the surface gradient material;

在一实施例中,所述步骤6包括:将步骤5中得到的细观力学性能参数按深度作图,建立表面梯度材料的细观力学性能梯度曲线。In one embodiment, the step 6 includes: plotting the mesoscopic mechanical property parameters obtained in step 5 by depth to establish a gradient curve of the mesoscopic mechanical property of the surface gradient material.

为了实现上述目的,本发明提供了一种表面梯度金属材料的细微观力学性能评估及测量装置,所述的细微观力学性能测量方法装置包括:In order to achieve the above object, the present invention provides a device for evaluating and measuring microscopic mechanical properties of surface gradient metal materials. The device for measuring microscopic mechanical properties includes:

模型建立单元,通过二维建模、赋予材料属性、网格划分、施加边界条件等,建立纳米压痕试验的有限元仿真模型,并验证其准确性;Model building unit, through two-dimensional modeling, endowing material properties, grid division, imposing boundary conditions, etc., establishes the finite element simulation model of nano-indentation test, and verifies its accuracy;

细微观力学参数计算单元,基于表面处理工艺及基体材料弹性模量,预估表面梯度材料的细观力学性能参数(E,σy,n),结合所述的有限元模型计算所述细观力学性能参数对应的微观力学性能参数(F,S,hc);其中,E为所测材料的弹性模量,σy为所测材料的屈服应力,n为所测材料的应变硬化指数,F为纳米压痕试验机压头上的加载载荷,S为所测材料的硬度,hc为压头与所测材料之间的压痕接触深度;The microscopic mechanical parameter calculation unit estimates the microscopic mechanical performance parameters (E, σ y , n) of the surface gradient material based on the surface treatment process and the elastic modulus of the matrix material, and calculates the microscopic The microscopic mechanical property parameters corresponding to the mechanical property parameters (F, S, h c ); where, E is the elastic modulus of the measured material, σ y is the yield stress of the measured material, n is the strain hardening exponent of the measured material, F is the loading load on the indenter of the nano-indentation testing machine, S is the hardness of the material to be tested, h c is the indentation contact depth between the indenter and the material to be tested;

无量纲方程生成单元,基于数学建模法,对加载载荷F和压头与所测材料之间的压痕接触深度hc进行量纲分析,建立关于压头和所测材料相关参数的无量纲方程:The dimensionless equation generation unit, based on the mathematical modeling method, performs dimensional analysis on the loading load F and the indentation contact depth h c between the indenter and the measured material, and establishes a dimensionless equation for the relevant parameters of the indenter and the measured material equation:

Ff EhEh 22 == ΠΠ αα [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 11 ))

hh cc hh == ΠΠ ββ [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 22 ))

无量纲关系式生成单元,根据无量纲方程,结合细微观力学参数计算单元相对应材料的细微观力学参数(E,σy,n,F,S,hc),拟合得到无量纲函数关系式;The dimensionless relationship generation unit, according to the dimensionless equation, combines the microscopic mechanical parameters to calculate the microscopic mechanical parameters (E, σ y , n, F, S, h c ) of the corresponding material of the unit, and fits the dimensionless functional relationship Mode;

ΠΠ αα (( σσ ythe y EE. ,, nno )) == (( aa -- bnbn )) (( σσ ythe y EE. )) [[ cc loglog (( σσ ythe y EE. )) -- dndn ]] -- -- -- (( 33 ))

ΠΠ ββ (( σσ ythe y EE. ,, nno )) == ee ++ fexpfexp (( gngn )) expexp [[ ii (( σσ ythe y EE. )) ]] -- -- -- (( 44 ))

其中,a、b、c、d、e、f、g、i均为拟合参数;Among them, a, b, c, d, e, f, g, i are fitting parameters;

力学性能参数生成单元,制备表面梯度材料截面抛光试样,沿所述试样表面不同的纵深方向,结合纳米压痕试验,按预定深度获得一系列载荷-位移响应曲线。得到材料硬度、最大加载载荷F及压痕接触深度hc的值,并将所述材料硬度、最大加载载荷F及压痕接触深度hc的值代入到无量纲关系式中,反推出表面梯度材料相应位置的细观力学性能参数;The mechanical performance parameter generation unit prepares cross-sectional polished samples of surface gradient materials, and obtains a series of load-displacement response curves according to predetermined depths in combination with nano-indentation tests along different depth directions on the surface of the samples. Obtain the values of material hardness, maximum loading F, and indentation contact depth hc , and substitute the values of material hardness, maximum loading F, and indentation contact depth hc into the dimensionless relational formula, and deduce the surface gradient The mesoscopic mechanical property parameters of the corresponding position of the material;

力学性能梯度曲线单元,将力学性能参数生成单元得到的细观力学性能参数按深度作图,建立表面梯度材料的细观力学性能梯度曲线。The mechanical property gradient curve unit plots the mesoscopic mechanical property parameters obtained by the mechanical property parameter generation unit according to the depth, and establishes the mesoscopic mechanical property gradient curve of the surface gradient material.

在一实施例中,所述的模型建立单元具体用于:采用二维模型对所测材料进行建模,利用一维线段对压头进行建模,生成纳米压痕试验的初始实体模型。鉴于模型的轴对称性,取所述初始实体模型的二分之一建立有限元仿真模型。In an embodiment, the model building unit is specifically configured to: use a two-dimensional model to model the measured material, use a one-dimensional line segment to model the indenter, and generate an initial solid model of the nanoindentation test. In view of the axial symmetry of the model, a finite element simulation model is established by taking half of the initial solid model.

在一实施例中,所述材料参数属性包括:σy=1187MPa、E=201GPa、ν=0.3、n=0.203。In an embodiment, the material parameter properties include: σ y =1187MPa, E=201GPa, ν=0.3, n=0.203.

在一实施例中,所述细微观力学参数计算单元具体用于:基于表面处理工艺及基体材料弹性模量,预估表面梯度材料的细观力学性能参数(E,σy,n),结合所述的有限元模型,生成若干组载荷-位移响应曲线,得到若干组微观力学参数(F,S,hc)。In one embodiment, the micro-mechanical parameter calculation unit is specifically configured to: estimate the micro-mechanical performance parameters (E, σ y , n) of the surface gradient material based on the surface treatment process and the elastic modulus of the matrix material, combined with The finite element model generates several sets of load-displacement response curves, and obtains several sets of micromechanical parameters (F, S, h c ).

在一实施例中,所述无量纲方程生成单元包括:In one embodiment, the dimensionless equation generation unit includes:

总方程生成模块,基于数学建模法,将压头加载载荷F和压头与所测材料之间的压痕接触深度hc分别表示为关于压头和所测材料相关参数的函数总方程:The total equation generation module, based on the mathematical modeling method, expresses the load F of the indenter and the indentation contact depth h c between the indenter and the measured material respectively as a function total equation of the relevant parameters of the indenter and the measured material:

F=F(h,E,ν,Eiiy,n,μ,θ)   (5)F=F(h,E,ν,E iiy ,n,μ,θ) (5)

hc=hc(h,E,ν,Eiiy,n,μ,θ)   (6)h c =h c (h,E,ν,E iiy ,n,μ,θ) (6)

其中,ν为所测材料的泊松比,Ei和νi分别为压头的弹性模量和泊松比,μ为压头与所测材料间的摩擦系数,θ为压头的半角角度;Among them, ν is the Poisson's ratio of the measured material, E i and ν i are the elastic modulus and Poisson's ratio of the indenter respectively, μ is the friction coefficient between the indenter and the measured material, and θ is the half angle of the indenter;

无量纲函数生成模块,用于在不考虑参数之间耦合的情况下,将所述函数总方程转化为无量纲函数:The dimensionless function generation module is used to transform the total equation of the function into a dimensionless function without considering the coupling between parameters:

Ff EhEh 22 == Ff (( hh hh ,, EE. EE. ,, vv EE. 00 hh 00 ,, EE. ii EE. ,, vv ii EE. 00 hh 00 ,, σσ ythe y EE. ,, nno EE. 00 hh 00 ,, μμ EE. 00 hh 00 ,, θθ EE. 00 hh 00 )) -- -- -- (( 77 ))

hh cc EhEh 22 == hh cc (( hh hh ,, EE. EE. ,, vv EE. 00 hh 00 ,, EE. ii EE. ,, vv ii EE. 00 hh 00 ,, σσ ythe y EE. ,, nno EE. 00 hh 00 ,, μμ EE. 00 hh 00 ,, θθ EE. 00 hh 00 )) -- -- -- (( 88 ))

上述压头和所测材料的参数中,只有弹性模量的量纲[E]和深度的量纲[h]是独立的,其他参数均用这两个独立量纲的指数积的形式表示。Among the above-mentioned parameters of the indenter and the measured material, only the dimension [E] of the elastic modulus and the dimension [h] of the depth are independent, and other parameters are expressed in the form of the exponential product of these two independent dimensions.

无量纲方程生成模块,用于省略所述无量纲函数中的Ei、νi及μ,对于一个给定角度θ的压头,应用Π定理将无量纲函数关系式进一步简化为所述的无量纲方程:The dimensionless equation generation module is used to omit E i , ν i and μ in the dimensionless function, and for a pressure head with a given angle θ, apply the Π theorem to further simplify the dimensionless function relation to the dimensionless function Gang equation:

Ff EhEh 22 == ΠΠ αα [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 11 ))

hh cc hh == ΠΠ ββ [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 22 ))

在一实施例中,力学性能参数生成单元具体用于:制备表面梯度材料截面抛光试样,沿试样表面不同的纵深方向,结合纳米压痕试验,按预定深度获得一系列载荷-位移响应曲线。得到材料硬度、最大加载载荷F及压痕接触深度hc,并将其代入到无量纲关系式中,反推出表面梯度材料相应位置的细观力学性能参数。In one embodiment, the mechanical property parameter generation unit is specifically used to: prepare cross-section polished samples of surface gradient materials, and obtain a series of load-displacement response curves according to predetermined depths in combination with nanoindentation tests along different depth directions on the surface of the samples . The material hardness, the maximum loading F and the indentation contact depth h c are obtained and substituted into the dimensionless relational formula to deduce the mesoscopic mechanical performance parameters of the corresponding position of the surface gradient material.

本发明在试验测定和表征方法上弥补了获得表面梯度金属材料的细微观力学性能的空白。本发明基于量纲分析法构建的表面梯度材料的微观力学性能与细观力学性能之间的关系,具备较好的理论基础,为研究表面梯度金属材料的可靠性分析和设计提供有效依据;本发明提供了一种新的表面梯度金属材料的细微观力学性能的表征方法及测量装置,可以更直观地了解表面梯度金属材料的力学性能变化。The invention fills up the gap in obtaining the fine and microscopic mechanical properties of surface gradient metal materials in terms of test measurement and characterization methods. The relationship between the micro-mechanical properties and the meso-mechanical properties of surface gradient materials constructed by the present invention based on the dimensional analysis method has a good theoretical basis and provides an effective basis for studying the reliability analysis and design of surface gradient metal materials; The invention provides a new characterization method and measuring device for the microscopic mechanical properties of the surface gradient metal material, which can more intuitively understand the change of the mechanical properties of the surface gradient metal material.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings on the premise of not paying creative efforts.

图1为本发明实施例表面梯度金属材料的细微观力学性能测量方法流程图;Fig. 1 is the flow chart of the method for measuring the microscopic mechanical properties of the surface gradient metal material of the embodiment of the present invention;

图2为本发明实施例纳米压痕参数示意图;Fig. 2 is a schematic diagram of nanoindentation parameters according to an embodiment of the present invention;

图3为本发明实施例有限元计算模型图;Fig. 3 is a finite element calculation model diagram of an embodiment of the present invention;

图4为本发明实施例Cr-Mn合金钢纳米压痕仿真和试验对比图;Fig. 4 is the nano-indentation simulation and test comparison diagram of Cr-Mn alloy steel of the embodiment of the present invention;

图5为本发明实施例的表面梯度金属材料的细微观力学性能测量装置的结构框图;Fig. 5 is a structural block diagram of a device for measuring microscopic mechanical properties of a surface gradient metal material according to an embodiment of the present invention;

图6为本发明实施例的无量纲方程生成单元503的结构框图;FIG. 6 is a structural block diagram of a dimensionless equation generation unit 503 according to an embodiment of the present invention;

图7为本发明实施例的表面梯度金属材料的试验硬度分布图;Fig. 7 is the test hardness distribution diagram of the surface gradient metal material of the embodiment of the present invention;

图8为本发明实施例的表面梯度金属材料的屈服强度拟合梯度曲线图。Fig. 8 is a curve diagram of the fitting gradient of the yield strength of the surface gradient metal material of the embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

如图1所示,本发明提供一种表面梯度金属材料的细微观力学性能评估测量方法,所述的细微观力学性能测量方法包括:As shown in Figure 1, the present invention provides a method for evaluating and measuring the microscopic mechanical properties of a surface gradient metal material, and the method for measuring the microscopic mechanical properties includes:

S101:通过二维建模、赋予材料属性、网格划分、施加边界条件等,建立纳米压痕试验的有限元仿真模型,并验证其准确性;S101: Through two-dimensional modeling, endowing material properties, meshing, imposing boundary conditions, etc., establish a finite element simulation model for nanoindentation test, and verify its accuracy;

S102:基于表面处理工艺及基体材料弹性模量,预估表面梯度材料细观力学性能参数(E,σy,n),结合所述的有限元模型计算其相应微观力学性能参数(F,S,hc);其中,E为所测材料的弹性模量,σy为所测材料的屈服应力,n为所测材料的应变硬化指数,F为纳米压痕试验机压头上的加载载荷,S为所测材料的硬度,hc为压头与所测材料之间的压痕接触深度;S102: Based on the surface treatment process and the elastic modulus of the matrix material, estimate the mesoscopic mechanical performance parameters (E, σ y , n) of the surface gradient material, and calculate the corresponding microscopic mechanical performance parameters (F, S , h c ); where E is the elastic modulus of the measured material, σ y is the yield stress of the measured material, n is the strain hardening exponent of the measured material, and F is the load on the indenter of the nanoindentation testing machine , S is the hardness of the material to be tested, h c is the indentation contact depth between the indenter and the material to be tested;

S103:基于数学建模法,对加载载荷F和压头与所测材料之间的压痕接触深度hc进行量纲分析,建立关于压头和所测材料相关参数的无量纲方程:S103: Based on the mathematical modeling method, carry out dimensional analysis on the loading load F and the indentation contact depth h c between the indenter and the measured material, and establish a dimensionless equation about the parameters related to the indenter and the measured material:

Ff EhEh 22 == ΠΠ αα [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 11 ))

hh cc hh == ΠΠ ββ [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 22 ))

S104:根据无量纲方程,选取S102中相对应的材料细微观力学参数(E,σy、n、F,S,hc),拟合得到无量纲函数关系式:S104: According to the dimensionless equation, select the corresponding material microscopic mechanical parameters (E, σ y , n, F, S, h c ) in S102, and fit the dimensionless function relation:

ΠΠ αα (( σσ ythe y EE. ,, nno )) == (( aa -- bnbn )) (( σσ ythe y EE. )) [[ cc loglog (( σσ ythe y EE. )) -- dndn ]] -- -- -- (( 33 ))

ΠΠ ββ (( σσ ythe y EE. ,, nno )) == ee ++ fexpfexp (( gngn )) expexp [[ ii (( σσ ythe y EE. )) ]] -- -- -- (( 44 ))

其中,a、b、c、d、e、f、g、i均为拟合参数;Among them, a, b, c, d, e, f, g, i are fitting parameters;

S105:制备表面梯度材料截面抛光试样,沿试样表面不同的纵深方向,结合纳米压痕试验,按预定深度获得一系列载荷-位移响应曲线。得到材料硬度、最大加载载荷F及压痕接触深度hc的值,并将其代入到无量纲关系式中,反推出表面梯度材料相应位置的细观力学性能参数;S105: Prepare cross-sectional polished samples of the surface gradient material, combine nanoindentation tests along different depth directions on the surface of the samples, and obtain a series of load-displacement response curves at predetermined depths. Obtain the values of material hardness, maximum load F and indentation contact depth hc , and substitute them into the dimensionless relational formula, and deduce the mesoscopic mechanical performance parameters of the corresponding position of the surface gradient material;

S106:将S105中得到的细观力学性能参数按深度作图,建立表面梯度材料的细观力学性能梯度曲线。S106: Plotting the mesomechanical property parameters obtained in S105 by depth to establish a mesomechanical property gradient curve of the surface gradient material.

由图1所示的流程可知,本发明首先建立纳米压痕试验的有限元仿真模型,进行验证;然后基于有限元仿真模型,根据细观力学材料参数计算微观力学参数;基于数学建模法,结合加载载荷F和压痕接触深度hc进行量纲分析,建立无量纲方程;根据无量纲方程,选取相对应若干组材料细观力学参数和若干组微观力学参数所对应的离散数值点,拟合得到无量纲函数关系式;制备表面梯度材料截面抛光试样,沿试样表面不同的纵深方向,结合纳米压痕试验,按预定深度获得一系列载荷-位移响应曲线,并将其代入到无量纲关系式中,反推出表面梯度材料相应位置的细观力学性能参数;最后,将上述中得到的细观力学性能参数按深度作图,建立其材料的细观力学性能梯度曲线。As can be seen from the flow process shown in Figure 1, the present invention first establishes the finite element simulation model of the nanoindentation test for verification; then based on the finite element simulation model, calculates the micromechanical parameters according to the mesomechanical material parameters; based on the mathematical modeling method, Combining the loading load F and the indentation contact depth hc for dimensional analysis, a dimensionless equation is established; according to the dimensionless equation, several sets of material mesomechanical parameters and discrete numerical points corresponding to several sets of micromechanical parameters are selected to simulate Combined to obtain the dimensionless function relational expression; prepare surface gradient material cross-section polished samples, combine with nano-indentation test along different depth directions on the surface of the sample, obtain a series of load-displacement response curves according to the predetermined depth, and substitute them into the infinite In the relational formula of the class, the mesoscopic mechanical property parameters of the corresponding position of the surface gradient material are inversely deduced; finally, the mesoscopic mechanical property parameters obtained in the above are plotted according to the depth, and the mesomechanical property gradient curve of the material is established.

图1的上述流程可以概括为仿真计算、参数拟合、压痕试验及模型反推四个步骤,通过如图1所示的方法,本发明在试验测定和表征方法上弥补了获得表面梯度金属材料的细微观力学性能的空白。本发明基于量纲分析法构建的表面梯度材料的微观力学性能与细观力学性能之间的关系,具备较好的理论基础,为研究表面梯度金属材料的可靠性分析和设计提供有效依据;本发明提供了一种新的表面梯度金属材料的细微观力学性能的表征方法及测量装置,可以更直观地了解表面梯度金属材料的力学性能变化。The above process of Fig. 1 can be summarized as four steps of simulation calculation, parameter fitting, indentation test and model inversion. Through the method shown in Fig. 1, the present invention makes up for the method of obtaining surface gradient metal in the test measurement and characterization methods. The gaps in the microscopic mechanical properties of materials. The relationship between the micro-mechanical properties and the meso-mechanical properties of the surface gradient material constructed by the present invention based on the dimensional analysis method has a good theoretical basis and provides an effective basis for studying the reliability analysis and design of the surface gradient metal material; The invention provides a new characterization method and measuring device for the microscopic mechanical properties of the surface gradient metal material, which can more intuitively understand the change of the mechanical properties of the surface gradient metal material.

本发明采用纳米压痕技术进行建模,纳米压痕技术也称深度敏感压痕技术,是最简单的测试材料微观力学性能的方法之一,可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量、硬度等。纳米压痕试验参数含义如图2所示,本发明基于ABAQUS建立纳米压痕有限元仿真模型。图2中,h和hr分别为压痕深度和残余压痕深度,hc是指压头压入材料时压头与材料的接触深度,a为压头半径。The present invention uses nano-indentation technology for modeling. Nano-indentation technology is also called depth-sensitive indentation technology. It is one of the simplest methods for testing the microscopic mechanical properties of materials. It can measure various mechanical properties of materials on the nanometer scale. Such as load-displacement curve, elastic modulus, hardness, etc. The meanings of the parameters of the nanoindentation test are shown in Figure 2. The present invention establishes a nanoindentation finite element simulation model based on ABAQUS. In Fig. 2, h and h r are the indentation depth and residual indentation depth respectively, h c refers to the contact depth between the indenter and the material when the indenter is pressed into the material, and a is the radius of the indenter.

为真实模拟纳米压痕试验测量所测材料的微观力学参数,在一实施例中,本发明在S101中建立纳米压痕试验的有限元仿真模型时,首先采用二维模型对所测材料进行建模,利用一维线段对压头进行建模,生成纳米压痕试验的初始实体模型。鉴于模型的轴对称性,取所述初始实体模型的二分之一建立纳米压痕试验的有限元仿真模型。有限元仿真模型建立之后,可以进行仿真分析,如图3所示。In order to truly simulate the nano-indentation test to measure the micro-mechanical parameters of the measured material, in one embodiment, when the present invention establishes the finite element simulation model of the nano-indentation test in S101, firstly, the two-dimensional model is used to construct the measured material. The model is used to model the indenter with one-dimensional line segments to generate the initial solid model of the nanoindentation test. In view of the axial symmetry of the model, a finite element simulation model of the nanoindentation test is established by taking half of the initial solid model. After the finite element simulation model is established, the simulation analysis can be carried out, as shown in Figure 3.

S101具体实施时,在建立有限元仿真模型的过程中要考虑到纳米压痕的尺寸效应,所测材料的尺寸应该大于压痕深度的十倍以上,在仿真模型中,压痕深度为1500nm,所测材料为边长为30μm的正方形。在距离压头较近的区域,塑性变形较大,网格单元小且密,在距离压头较远的区域,材料发生的变形较小,甚至有的区域仅仅发生了弹性变形,没有发生塑性变形,其区域采用较大且疏的网格。各区域之间采用过渡区域连接。在距离压头较近的区域,网格单元大小为125nm,单元采用四节点对称减缩单元(CAX4R),以便能够准确模拟其区域产生的大变形。以Cr-Mn合金钢为对象,其试验结果与有限元计算结果较为一致,如图4所示。In the specific implementation of S101, the size effect of nano-indentation should be considered in the process of establishing the finite element simulation model. The size of the measured material should be more than ten times larger than the indentation depth. In the simulation model, the indentation depth is 1500nm, The measured material was a square with a side length of 30 μm. In the area close to the indenter, the plastic deformation is large, and the grid cells are small and dense. In the area far away from the indenter, the deformation of the material is small, and even some areas only undergo elastic deformation without plastic deformation. Deformation with a larger and sparser mesh for its regions. The regions are connected by transitional regions. In the area close to the indenter, the size of the grid unit is 125nm, and the unit uses a four-node symmetrical reduction unit (CAX4R), so as to accurately simulate the large deformation generated in the area. Taking Cr-Mn alloy steel as the object, the test results are consistent with the finite element calculation results, as shown in Figure 4.

S101中,材料参数属性包括:σy=1187MPa、E=201GPa、ν=0.3、n=0.203,上述取值仅为本发明的一种实施方式,本发明不以此为限制。In S101 , the material parameter attributes include: σ y =1187MPa, E=201GPa, ν=0.3, n=0.203, the above values are only one embodiment of the present invention, and the present invention is not limited thereto.

在一实施例中,S101中边界、载荷分别为:下边边界固定,压头向下移动1500nm。In one embodiment, the boundary and the load in S101 are respectively: the lower boundary is fixed, and the indenter moves downward by 1500 nm.

S102通过对同一个模型多次仿真,可以得到相关力学参数。具体实施时,可以预先设定若干组细观力学材料参数,如下表1所示。S102 By simulating the same model multiple times, relevant mechanical parameters can be obtained. During specific implementation, several groups of mesomechanical material parameters can be preset, as shown in Table 1 below.

表1模拟计算时采用的材料弹塑性参数组合Table 1 Combination of elastic-plastic parameters of materials used in simulation calculation

由于所测渗碳金属材料基体的弹性模量为201GPa,选取表1中与其弹性模量相临的170GPa和210GPa的70组参数值输入到S101中创建的有限元仿真模型中,进而可以得到70组载荷-位移响应曲线,并计算出70组微观力学参数(F,S,hc)。细观弹塑性力学参数(E,σy,n)与微观力学参数(F,S,hc)之间存在一一对应的关系。E为所测材料的弹性模量;σy为所测材料的屈服应力;n为所测材料的应变硬化指数;F为纳米压痕试验机压头上的加载载荷;S为所测材料的硬度;hc为压头与所测材料之间的压痕接触深度。Since the measured elastic modulus of the carburized metal material matrix is 201GPa, 70 sets of parameter values of 170GPa and 210GPa adjacent to the elastic modulus in Table 1 are selected and input into the finite element simulation model created in S101, and then 70 can be obtained Set load-displacement response curves, and calculate 70 sets of micromechanical parameters (F, S, h c ). There is a one-to-one correspondence between the mesoscopic elastic-plastic mechanical parameters (E, σ y , n) and the microscopic mechanical parameters (F, S, h c ). E is the elastic modulus of the tested material; σy is the yield stress of the tested material; n is the strain hardening exponent of the tested material; F is the load on the indenter of the nanoindentation testing machine; Hardness; h c is the indentation contact depth between the indenter and the material to be tested.

S103为通过量纲分析,建立无量纲方程的步骤。具体实施时,可以利用数学建模的思想将压头加载载荷F和压头与所测材料之间的压痕接触深度hc分别表示成关于压头和所测材料相关参数的函数总方程(函数关系式):S103 is a step of establishing dimensionless equations through dimensional analysis. During specific implementation, the idea of mathematical modeling can be used to express the load F of the indenter and the indentation contact depth hc between the indenter and the material to be measured as the total function equation of the relevant parameters of the indenter and the material to be measured ( function relationship):

F=F(h,E,ν,Eiiy,n,μ,θ)      (5)F=F(h,E,ν,E iiy ,n,μ,θ) (5)

hc=hc(h,E,ν,Eiiy,n,μ,θ)      (6)h c =h c (h,E,ν,E iiy ,n,μ,θ) (6)

上述总方程中,ν为所测材料的泊松比,Ei和νi分别为压头的弹性模量和泊松比,μ为压头与所测材料间的摩擦系数,θ为压头的半角角度。In the above general equation, ν is the Poisson's ratio of the measured material, E i and ν i are the elastic modulus and Poisson's ratio of the indenter respectively, μ is the friction coefficient between the indenter and the measured material, and θ is the indenter's half angle.

对于上述方程中每个变量的单位如下表2所示,通过量纲分析,选取弹性模量的量纲[E]和深度的量纲[h]为基本量纲,其他参数均用这两个独立量纲的指数积的形式表示。The unit of each variable in the above equation is shown in Table 2 below. Through dimensional analysis, the dimension of the elastic modulus [E] and the dimension of the depth [h] are selected as the basic dimensions, and other parameters use these two Expressed in the form of exponential products of independent dimensions.

表2金属材料压痕问题相关参量的量纲Table 2 Dimensions of parameters related to indentation of metal materials

参量Parameter 符号symbol 量纲dimension 压痕载荷Indentation load Ff LMT-2 LMT -2 屈服强度Yield Strength σy σ y L-1MT-2 L -1 MT -2 应变硬化指数strain hardening exponent nno 11 弹性模量Elastic Modulus EE. LMT-2 LMT -2 压痕接触深度Indentation Contact Depth hc h c LL

在不考虑各个参数之间耦合的情况下,可以将上述总方程可以转化为下述的无量纲函数:Without considering the coupling between various parameters, the above general equation can be transformed into the following dimensionless function:

Ff EhEh 22 == Ff (( hh hh ,, EE. EE. ,, vv EE. 00 hh 00 ,, EE. ii EE. ,, vv ii EE. 00 hh 00 ,, σσ ythe y EE. ,, nno EE. 00 hh 00 ,, μμ EE. 00 hh 00 ,, θθ EE. 00 hh 00 )) -- -- -- (( 77 ))

hh cc EhEh 22 == hh cc (( hh hh ,, EE. EE. ,, vv EE. 00 hh 00 ,, EE. ii EE. ,, vv ii EE. 00 hh 00 ,, σσ ythe y EE. ,, nno EE. 00 hh 00 ,, μμ EE. 00 hh 00 ,, θθ EE. 00 hh 00 )) -- -- -- (( 88 ))

上述的无量纲函数中,压头的变形可以忽略不计,据此可消去上述无量纲函数中的压头参数Ei和νi,摩擦系数μ对大角度压头压入问题的影响很小,因此上述无量纲函数中将摩擦系数μ也可消去。对于金属材料,泊松比ν可以取0.3,同样做消去处理。所以,对于一个给定角度θ的压头,应用Π定理无量纲函数关系式进一步简化为S103中的无量纲方程:In the above-mentioned dimensionless function, the deformation of the indenter can be ignored, so the indenter parameters E i and ν i in the above-mentioned dimensionless function can be eliminated, and the friction coefficient μ has little influence on the indentation problem of the large-angle indenter. Therefore, the friction coefficient μ in the above dimensionless function can also be eliminated. For metal materials, the Poisson's ratio ν can be taken as 0.3, and the elimination process is also performed. Therefore, for a pressure head with a given angle θ, apply the Π theorem to further simplify the dimensionless function relation to the dimensionless equation in S103:

Ff EhEh 22 == ΠΠ αα [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 11 ))

hh cc hh == ΠΠ ββ [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 22 ))

S104为确定无量纲函数的具体表达式的步骤。具体实施时,可以在S102、S103的基础上,根据上述无量纲方程,选取相对应的70组材料细观力学参数(E,σy,n)和70组微观力学参数(F,S,hc)所对应的离散数值点,拟合数据得到具体的无量纲函数关系式,见上述公式(3)及公式(4)。S104 is a step of determining the specific expression of the dimensionless function. During specific implementation, on the basis of S102 and S103, according to the above-mentioned dimensionless equation, select corresponding 70 sets of material mesomechanical parameters (E, σ y , n) and 70 sets of micromechanical parameters (F, S, h c ) The corresponding discrete numerical points, fitting the data to obtain a specific dimensionless functional relationship, see the above formula (3) and formula (4).

在一实施例中,对细微观力学性能参数未知的所述渗碳梯度Cr-Mn合金钢零件,上述公式(3)、(4)中参数a、b、c、d、e、f、g、i的取值分别为:a=2.67,b=2.11,c=-0.053,d=0.42,e=0.5,f=0.29,g=-2.76,i=-40.32。据此,公式(3)和(4)可变为:In one embodiment, for the carburized gradient Cr-Mn alloy steel parts whose fine and microscopic mechanical property parameters are unknown, the parameters a, b, c, d, e, f, g in the above formulas (3) and (4) The values of and i are respectively: a=2.67, b=2.11, c=-0.053, d=0.42, e=0.5, f=0.29, g=-2.76, i=-40.32. Accordingly, formulas (3) and (4) can become:

Ff EhEh 22 == (( 2.672.67 -- 2.112.11 nno )) (( σσ ythe y EE. )) [[ -- 0.0530.053 loglog (( σσ ythe y EE. )) -- 0.420.42 nno ]] -- -- -- (( 99 ))

hh cc hh == 0.50.5 ++ 0.290.29 expexp (( -- 2.762.76 nno )) expexp [[ -- 40.3240.32 (( σσ ythe y EE. )) ]] -- -- -- (( 1010 ))

基于不同表面处理工艺及基体材料弹性模量,选取的若干组预估表面梯度材料细观力学性能参数不同,上述拟合参数的取值也有所不同,不再一一赘述。Based on the different surface treatment processes and the elastic modulus of the matrix material, the selected groups of estimated mesomechanical performance parameters of the surface gradient material are different, and the values of the above fitting parameters are also different, so I will not repeat them one by one.

对于细微观力学性能参数未知的所述渗碳梯度Cr-Mn合金钢零件,S105具体实施时,首先制备渗碳梯度零件截面抛光试样,然后沿试样表面不同的纵深方向,结合纳米压痕试验,按预定深度获得一系列载荷-位移响应曲线。得到材料硬度、最大加载载荷F及压痕接触深度hc,并将其代入到无量纲关系式中,反推出表面梯度材料相应位置的细观力学性能参数,Cr-Mn合金钢(渗碳梯度零件)硬度分布如图7所示。For the carburized gradient Cr-Mn alloy steel parts whose fine and micro mechanical properties parameters are unknown, when S105 is implemented, firstly prepare the cross-section polished samples of the carburized gradient parts, and then combine nano-indentation along the different depth directions of the sample surface For the test, a series of load-displacement response curves are obtained at predetermined depths. Obtain the material hardness, maximum load F and indentation contact depth h c , and substitute them into the dimensionless relational formula to deduce the mesoscopic mechanical performance parameters of the corresponding position of the surface gradient material. Cr-Mn alloy steel (carburized gradient Parts) hardness distribution is shown in Figure 7.

通过S106,将步骤S105中得到的细观力学性能参数按深度作图,建立表面梯度材料细观力学性能梯度曲线。具体实施时,以屈服强度为例,得到Cr-Mn合金钢(渗碳梯度零件)屈服强度拟合梯度曲线如图8所示。Through S106, the mesoscopic mechanical property parameters obtained in step S105 are plotted by depth to establish a gradient curve of the mesoscopic mechanical property of the surface gradient material. In specific implementation, taking the yield strength as an example, the fitting gradient curve of the yield strength of Cr-Mn alloy steel (carburized gradient parts) is obtained as shown in Fig. 8 .

本发明在试验测定和表征方法上弥补了量化表面梯度金属材料的细微观力学性能的空白。本发明基于量纲分析法构建的表面梯度材料的微观力学性能与细观力学性能之间的关系,具备较好的理论基础,为研究表面梯度金属材料的可靠性分析和设计供有效依据;本发明提供了一种新的表面梯度金属材料的细微观力学性能的表征方法及测量装置,可以更直观地了解表面梯度金属材料的力学性能变化。The invention makes up the blank of quantifying the fine and microscopic mechanical properties of the surface gradient metal material in terms of test measurement and characterization methods. The relationship between the micro-mechanical properties and the meso-mechanical properties of the surface gradient material constructed by the present invention based on the dimensional analysis method has a good theoretical basis and provides an effective basis for studying the reliability analysis and design of the surface gradient metal material; The invention provides a new characterization method and measuring device for the microscopic mechanical properties of the surface gradient metal material, which can more intuitively understand the change of the mechanical properties of the surface gradient metal material.

如图5所示,本发明提供一种表面梯度金属材料的细微观力学性能评估测量装置,其细微观力学性能测量方法装置包括:模型建立单元501,细微观力学参数计算单元502,无量纲方程生成单元503,无量纲关系式生成单元504及力学性能参数生成单元505。As shown in Figure 5, the present invention provides a microscopic mechanical property evaluation and measurement device of a surface gradient metal material, and its microscopic mechanical property measurement method device includes: model building unit 501, microscopic mechanical parameter calculation unit 502, dimensionless A generation unit 503 , a dimensionless relational expression generation unit 504 and a mechanical performance parameter generation unit 505 .

模型建立单元501用于建立纳米压痕试验的有限元仿真模型,进行如下仿真分析:赋予材料参数属性,进行网格划分,施加边界条件及载荷。The model establishment unit 501 is used to establish a finite element simulation model of the nanoindentation test, and perform the following simulation analysis: assigning material parameter properties, performing grid division, and applying boundary conditions and loads.

在一实施例中,501用于采用二维模型对所测材料进行建模,利用一维线段对压头进行建模,生成纳米压痕试验的初始实体模型。鉴于模型的轴对称性,取所述初始实体模型的二分之一建立纳米压痕试验的有限元仿真模型。In an embodiment, 501 is used to model the measured material by using a two-dimensional model, model the indenter by using a one-dimensional line segment, and generate an initial solid model of the nanoindentation test. In view of the axial symmetry of the model, a finite element simulation model of the nanoindentation test is established by taking half of the initial solid model.

在建立有限元仿真模型的过程中要考虑到纳米压痕的尺寸效应,所测材料的尺寸应大于压痕深度的十倍以上,在仿真模型中,压痕深度为1500nm,所测材料为边长为30μm的正方形。在距离压头较近的区域,塑性变形较大,网格单元小且密,在距离压头较远的区域,材料发生的变形较小,甚至有的区域仅仅发生了弹性变形,没有发生塑性变形,其区域采用较大且疏的网格。各区域之间采用过渡区域连接。在距离压头较近的区域,网格单元大小为125nm,单元采用四节点对称减缩单元(CAX4R),以便准确模拟其区域产生的大变形。采用Cr-Mn合金钢对有限元仿真模型进行验证,结果表明其有限元仿真模型与实际试验情况一致,如图4所示。In the process of establishing the finite element simulation model, the size effect of nano-indentation should be considered. The size of the measured material should be more than ten times larger than the indentation depth. In the simulation model, the indentation depth is 1500nm, and the measured material is edge A square with a length of 30 μm. In the area close to the indenter, the plastic deformation is large, and the grid cells are small and dense. In the area far away from the indenter, the deformation of the material is small, and even some areas only undergo elastic deformation without plastic deformation. Deformation with a larger and sparser mesh for its regions. Transitional areas are used to connect the areas. In the area close to the indenter, the grid unit size is 125nm, and the four-node symmetrical reduction unit (CAX4R) is used in the unit to accurately simulate the large deformation in the area. The finite element simulation model is verified by Cr-Mn alloy steel, and the results show that the finite element simulation model is consistent with the actual test situation, as shown in Figure 4.

上述赋予的材料参数属性包括:σy=1187MPa、E=201GPa、ν=0.3、n=0.203,上述取值仅为本发明的一种实施方式,本发明不以此为限制。The material parameter attributes assigned above include: σ y =1187MPa, E=201GPa, ν=0.3, n=0.203, the above values are only one embodiment of the present invention, and the present invention is not limited thereto.

在一实施例中,施加的边界条件可以为:下边边界固定;载荷是压头向下移动1500nm。In an embodiment, the applied boundary conditions may be: the lower boundary is fixed; the load is that the indenter moves downward by 1500 nm.

细微观力学参数计算单元502用于基于所述的有限元仿真模型,根据细观力学材料参数(E,σy,n)计算微观力学参数(F,S,hc)。The micro-mechanical parameter calculation unit 502 is used to calculate the micro-mechanical parameters (F, S, h c ) according to the micro-mechanical material parameters (E, σ y , n) based on the finite element simulation model.

基于表面处理工艺及基体材料弹性模量,选取表1中若干组(E,σy,n)参数组合输入到S101中创建的有限元仿真模型中,从而可以得到若干组载荷-位移响应曲线,计算出若干组微观力学参数(F,S,hc)。细观弹塑性力学参数(E,σy,n)与微观力学参数(F,S,hc)有相对应的关系。E为所测材料的弹性模量;σy为所测材料的屈服应力;n为所测材料的应变硬化指数;F为纳米压痕试验机压头上的加载载荷;S为所测材料的硬度;hc为压头与所测材料之间的压痕接触深度。Based on the surface treatment process and the elastic modulus of the matrix material, several sets of (E, σ y , n) parameter combinations in Table 1 are selected and input into the finite element simulation model created in S101, so that several sets of load-displacement response curves can be obtained, Several sets of micromechanical parameters (F, S, h c ) are calculated. The mesoscopic elastic-plastic mechanical parameters (E, σ y , n) have a corresponding relationship with the microscopic mechanical parameters (F, S, h c ). E is the elastic modulus of the tested material; σy is the yield stress of the tested material; n is the strain hardening exponent of the tested material; F is the load on the indenter of the nanoindentation testing machine; Hardness; h c is the indentation contact depth between the indenter and the material to be tested.

无量纲方程生成单元503用于对加载载荷F和压头与所测材料之间的压痕接触深度hc进行量纲分析,建立关于压头和所测材料相关参数的无量纲方程:The dimensionless equation generating unit 503 is used to perform dimensional analysis on the loading load F and the indentation contact depth h c between the indenter and the material to be measured, and establish a dimensionless equation about parameters related to the indenter and the material to be measured:

Ff EhEh 22 == ΠΠ αα [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 11 ))

hh cc hh == ΠΠ ββ [[ σσ ythe y EE. ,, nno ]] -- -- -- (( 22 ))

在一实施例中,如图6所示,无量纲方程生成单元503包括:总方程生成模块601,无量纲函数生成模块602及无量纲方程生成模块603。In one embodiment, as shown in FIG. 6 , the dimensionless equation generation unit 503 includes: a total equation generation module 601 , a dimensionless function generation module 602 and a dimensionless equation generation module 603 .

总方程生成模块601用于,根据数学建模法,将压头加载载荷F和压头与所测材料之间的压痕接触深度hc分别表示成关于压头和所测材料相关参数的函数总方程:The general equation generating module 601 is used to express the load F of the indenter and the indentation contact depth hc between the indenter and the material to be measured as functions of the relevant parameters of the indenter and the material to be measured according to the mathematical modeling method Total equation:

F=F(h,E,ν,Eiiy,n,μ,θ)    (5)F=F(h,E,ν,E iiy ,n,μ,θ) (5)

hc=hc(h,E,ν,Eiiy,n,μ,θ)    (6)h c =h c (h,E,ν,E iiy ,n,μ,θ) (6)

其中,ν为所测材料的泊松比,Ei和νi分别为压头的弹性模量和泊松比,μ为压头与所测材料间的摩擦系数,θ为压头的半角角度;Among them, ν is the Poisson's ratio of the measured material, E i and ν i are the elastic modulus and Poisson's ratio of the indenter respectively, μ is the friction coefficient between the indenter and the measured material, and θ is the half angle of the indenter;

无量纲函数生成模块602用于在不考虑参数之间耦合的情况下,将所述函数总方程转化为无量纲函数:The dimensionless function generating module 602 is used to transform the total equation of the function into a dimensionless function without considering the coupling between parameters:

Ff EhEh 22 == Ff (( hh hh ,, EE. EE. ,, vv EE. 00 hh 00 ,, EE. ii EE. ,, vv ii EE. 00 hh 00 ,, σσ ythe y EE. ,, nno EE. 00 hh 00 ,, μμ EE. 00 hh 00 ,, θθ EE. 00 hh 00 )) -- -- -- (( 77 ))

hh cc EhEh 22 == hh cc (( hh hh ,, EE. EE. ,, vv EE. 00 hh 00 ,, EE. ii EE. ,, vv ii EE. 00 hh 00 ,, σσ ythe y EE. ,, nno EE. 00 hh 00 ,, μμ EE. 00 hh 00 ,, θθ EE. 00 hh 00 )) -- -- -- (( 88 ))

上述压头和所测材料的参数中,只有弹性模量的量纲[E]和深度的量纲[h]是独立的,其他参数均用这两个独立量纲的指数积的形式表示。Among the above-mentioned parameters of the indenter and the measured material, only the dimension [E] of the elastic modulus and the dimension [h] of the depth are independent, and other parameters are expressed in the form of the exponential product of these two independent dimensions.

无量纲方程生成模块603用于省略所述无量纲函数中的Ei、νi及μ,对于一个给定角度θ的压头,应用Π定理将无量纲函数关系式进一步简化为无量纲方程,见上述公式(1)及公式(2)。The dimensionless equation generation module 603 is used to omit E i , ν i and μ in the dimensionless function, and for a pressure head with a given angle θ, apply the Π theorem to further simplify the dimensionless function relation to a dimensionless equation, See formula (1) and formula (2) above.

无量纲关系式生成单元504用于根据所述无量纲方程,选取相对应的若干组材料细观力学参数(E,σy,n)和若干组微观力学参数(F,S,hc)所对应的离散数值点,拟合数据得到无量纲函数关系式:The dimensionless relation generation unit 504 is used to select corresponding sets of material mesomechanical parameters (E, σ y , n) and several sets of micromechanical parameters (F, S, h c ) according to the dimensionless equation. Corresponding to the discrete numerical points, fitting the data to obtain the dimensionless function relation:

ΠΠ αα (( σσ ythe y EE. ,, nno )) == (( aa -- bnbn )) (( σσ ythe y EE. )) [[ cc loglog (( σσ ythe y EE. )) -- dndn ]] -- -- -- (( 33 ))

ΠΠ ββ (( σσ ythe y EE. ,, nno )) == ee ++ fexpfexp (( gngn )) expexp [[ ii (( σσ ythe y EE. )) ]] -- -- -- (( 44 ))

其中,a、b、c、d、e、f、g、i均为拟合参数。Among them, a, b, c, d, e, f, g, i are fitting parameters.

力学性能参数生成单元505用于制备表面梯度材料截面抛光试样,沿试样表面不同的纵深方向,结合纳米压痕试验,按预定深度获得一系列载荷-位移响应曲线。得到材料硬度、最大加载载荷F及压痕接触深度hc,并将其代入到无量纲关系式中,反推出表面梯度材料相应位置的细观力学性能参数;The mechanical property parameter generation unit 505 is used to prepare cross-sectional polished samples of surface gradient materials, and obtain a series of load-displacement response curves at predetermined depths along different depth directions on the sample surface, combined with nano-indentation tests. Obtain the material hardness, maximum loading F and indentation contact depth h c , and substitute them into the dimensionless relational formula to deduce the mesoscopic mechanical performance parameters of the corresponding position of the surface gradient material;

在一实施例中,对于细微观力学性能参数未知的所述渗碳梯度Cr-Mn合金钢零件,上述公式(3)、(4)中的拟合参数a、b、c、d、e、f、g、i的取值分别为:a=2.67,b=2.11,c=-0.053,d=0.42,e=0.5,f=0.29,g=-2.76,i=-40.32。此时,公式(3)及公式(4)变为:In one embodiment, for the carburized gradient Cr-Mn alloy steel part whose fine and microscopic mechanical property parameters are unknown, the fitting parameters a, b, c, d, e, The values of f, g, and i are respectively: a=2.67, b=2.11, c=-0.053, d=0.42, e=0.5, f=0.29, g=-2.76, i=-40.32. At this point, formula (3) and formula (4) become:

Ff EhEh 22 == (( 2.672.67 -- 2.112.11 nno )) (( σσ ythe y EE. )) [[ -- 0.0530.053 loglog (( σσ ythe y EE. )) -- 0.420.42 nno ]] -- -- -- (( 99 ))

hh cc hh == 0.50.5 ++ 0.290.29 expexp (( -- 2.762.76 nno )) expexp [[ -- 40.3240.32 (( σσ ythe y EE. )) ]] -- -- -- (( 1010 ))

基于不同表面处理工艺及基体材料弹性模量,选取的若干组预估表面梯度材料细观力学性能参数不同,上述拟合参数的取值也有所不同,不再一一赘述。Based on the different surface treatment processes and the elastic modulus of the matrix material, the selected groups of estimated mesomechanical performance parameters of the surface gradient material are different, and the values of the above fitting parameters are also different, so I will not repeat them one by one.

在一实施例中,力学性能参数生成单元505可以用于对于细观力学性能参数未知的所述渗碳梯度Cr-Mn合金钢零件,首先制备表面梯度材料截面抛光试样,然后沿试样表面不同的纵深方向,结合纳米压痕试验,按预定深度获得一系列载荷-位移响应曲线。得到材料硬度、最大加载载荷F及压痕接触深度hc,并将其代入到无量纲关系式中,反推出渗碳梯度材料相应位置的细观力学性能参数;In one embodiment, the mechanical property parameter generation unit 505 can be used for the carburized gradient Cr-Mn alloy steel parts whose mesoscopic mechanical property parameters are unknown, first prepare a surface gradient material section polished sample, and then along the surface of the sample A series of load-displacement response curves are obtained at predetermined depths in different depth directions, combined with nano-indentation tests. Obtain the material hardness, maximum load F and indentation contact depth h c , and substitute them into the dimensionless relational formula to deduce the mesoscopic mechanical performance parameters of the corresponding position of the carburized gradient material;

在一实施例中,力学性能参数生成单元506可以将单元505中得到的细观力学性能参数按深度作图,建立表面梯度材料细观力学性能梯度曲线。In an embodiment, the mechanical property parameter generating unit 506 may map the mesoscopic mechanical property parameters obtained in the unit 505 by depth to establish a gradient curve of the mesoscopic mechanical property of the surface gradient material.

本发明在试验测定和表征方法上弥补了获得表面梯度金属材料的细微观力学性能的空白。本发明基于量纲分析法构建的表面梯度材料的微观力学性能与细观力学性能之间的关系,具备较好的理论基础,为研究表面梯度金属材料的可靠性分析和设计供有效依据;本发明提供了一种新的表面梯度金属材料的细微观力学性能的表征方法及测量装置,可以更直观地了解表面梯度金属材料的力学性能变化。The invention fills up the gap in obtaining the fine and microscopic mechanical properties of surface gradient metal materials in terms of test measurement and characterization methods. The relationship between the micro-mechanical properties and the meso-mechanical properties of the surface gradient material constructed by the present invention based on the dimensional analysis method has a good theoretical basis and provides an effective basis for studying the reliability analysis and design of the surface gradient metal material; The invention provides a new characterization method and measuring device for the microscopic mechanical properties of the surface gradient metal material, which can more intuitively understand the change of the mechanical properties of the surface gradient metal material.

本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.

本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。In the present invention, specific examples have been applied to explain the principles and implementation methods of the present invention, and the descriptions of the above examples are only used to help understand the method of the present invention and its core idea; meanwhile, for those of ordinary skill in the art, according to this The idea of the invention will have changes in the specific implementation and scope of application. To sum up, the contents of this specification should not be construed as limiting the present invention.

Claims (10)

1. a thin Micro Mechanical Properties assessment measuring method for surface graded metal material, is characterized in that, comprising:
Step 1: by two-dimentional modeling, give material properties, stress and strain model, applying boundary condition, set up the limit element artificial module of nano indentation test, and verify the accuracy of described limit element artificial module;
Step 2: based on process of surface treatment and matrix material elastic modulus, estimates micro-mechanical property parameter (E, the σ of surperficial functionally gradient material (FGM) y, n), in conjunction with described in finite element model calculate described micro-mechanical property parameter corresponding Micro Mechanical Properties parameter (F, S, h c); Wherein, E for measure and monitor the growth of standing timber material elastic modulus, σ yfor measure and monitor the growth of standing timber material yield stress, n for measure and monitor the growth of standing timber material strain hardening exponent, F is the loaded load on nano indentation test compressing head, S for measure and monitor the growth of standing timber material hardness, h cfor pressure head with the impression between expecting of measuring and monitoring the growth of standing timber contact the degree of depth;
Step 3: based on mathematics modeling, to imposed load F and pressure head with the impression between expecting of measuring and monitoring the growth of standing timber contact degree of depth h ccarry out dimensional analysis, setting up measures and monitor the growth of standing timber about pressure head and institute expects the Non-di-mensional equation of correlation parameter:
F Eh 2 = Π α [ σ y E , n ] - - - ( 1 )
h c h = Π β [ σ y E , n ] - - - ( 2 )
Step 4: according to described Non-di-mensional equation, the respective fine Micromechanics parameter (E, the σ that estimate in selecting step 2 and calculate y, n, F, S, h c), set up dimensionless functional relation:
Π α = ( σ y E , n ) = ( a - bn ) ( σ y E ) [ c log ( σ y E ) - dn ] - - - ( 3 )
Π β = ( σ y E , n ) = e + fexp ( gn ) exp [ i ( σ y E ) ] - - - ( 4 )
Wherein, a, b, c, d, e, f, g, i are fitting parameter;
Step 5: prepare surperficial functionally gradient material (FGM) Cross section polishing sample, along the depth direction that described specimen surface is different, combining nano indentation test, obtains a series of load-displacement response curve by predetermined depth; Obtain material hardness, maximum load load F and impression contact degree of depth h cvalue, and by described material hardness, maximum load load F and impression contact degree of depth h cvalue be updated in dimensionless correlation, the anti-micro-mechanical property parameter releasing surface graded material relevant position;
Step 6: by the micro-mechanical property parameter that obtains in described step 5 by plotted against depth, set up the micro-mechanical property gradient curve of surface graded material.
2. the thin Micro Mechanical Properties assessment measuring method of surface graded metal material according to claim 1, it is characterized in that, in described step 1, set up the limit element artificial module of nano indentation test, comprise: adopt two dimensional model to carry out modeling to measured and monitored the growth of standing timber material, utilize one dimension line segment to carry out modeling to pressure head, generate the initial solid model of nano indentation test; In view of the axial symmetry of model, get the limit element artificial module that 1/2nd of described initial solid model sets up nano indentation test.
3. the thin Micro Mechanical Properties assessment measuring method of surface graded metal material according to claim 1, it is characterized in that, described step 2 comprises: based on process of surface treatment and matrix material elastic modulus, estimates micro-mechanical property parameter (E, the σ of surperficial functionally gradient material (FGM) y, n), in conjunction with finite element model, generate some groups of load-displacement response curves, calculate relevant position Micromechanics parameter (F, S, h c).
4. the thin Micro Mechanical Properties assessment measuring method of surface graded metal material according to claim 1, it is characterized in that, described step 3 comprises:
Based on mathematics modeling, by pressure head loaded load F and pressure head with the impression between expecting of measuring and monitoring the growth of standing timber contact degree of depth h cbeing expressed as measures and monitor the growth of standing timber about pressure head and institute expects the function general equation of correlation parameter:
F=F(h,E,ν,E iiy,n,μ,θ) (5)
h c=h c(h,E,ν,E iiy,n,μ,θ) (6)
Wherein, ν for measure and monitor the growth of standing timber material Poisson ratio, E iand ν ibe respectively elastic modulus and the Poisson ratio of pressure head, the friction factor that μ is pressure head and institute's survey storeroom, θ is the half-angle angle of pressure head;
When not considering to be coupled between parameter, described function general equation is converted into dimensionless function:
F E h 2 = F ( h h , E E , v E 0 h 0 , E i E , v i E 0 h 0 , σ y E , n E 0 h 0 , μ E 0 h 0 , θ E 0 h 0 ) - - - ( 7 )
h c E h 2 = h c ( h h , E E , v E 0 h 0 , E i E , v i E 0 h 0 , σ y E , n E 0 h 0 , μ E 0 h 0 , θ E 0 h 0 ) - - - ( 8 )
Above-mentioned pressure head and institute measure and monitor the growth of standing timber expect parameter in, the dimension [h] only having the dimension of elastic modulus [E] and the degree of depth is independently, and other parameters all represent by the form of the exponent product of these two independent dimensions;
Omit the E in described dimensionless function i, ν iand μ, for the pressure head of a given angle θ, dimensionless functional relation is reduced to Non-di-mensional equation by application Π theorem further:
F Eh 2 = Π α [ σ y E , n ] - - - ( 1 )
h c h = Π β [ σ y E , n ] - - - ( 2 ) .
5. the thin Micro Mechanical Properties assessment measuring method of surface graded metal material according to claim 1, it is characterized in that, described step 5 comprises: prepare surperficial functionally gradient material (FGM) Cross section polishing sample, along the depth direction that specimen surface is different, combining nano indentation test, obtain a series of load-displacement response curve by predetermined depth, obtain material hardness, maximum load load F and impression contact degree of depth h cvalue, and be updated in described dimensionless correlation, the anti-micro-mechanical property parameter releasing surface graded material relevant position;
In described step 6, by the micro-mechanical property parameter that obtains in described step 5 by plotted against depth, obtain the mechanical performance gradient curve of its material.
6. a thin Micro Mechanical Properties assessment measurement mechanism for surface graded metal material, it is characterized in that, described thin Micro Mechanical Properties measuring method device comprises:
Unit set up by model, by two-dimentional modeling, gives material properties, stress and strain model, applying boundary condition etc., sets up the limit element artificial module of nano indentation test, and verify the accuracy of described limit element artificial module;
Trickle sight mechanics parameter computing unit, based on process of surface treatment and matrix material elastic modulus, estimates micro-mechanical property parameter (E, the σ of surperficial functionally gradient material (FGM) y, n), in conjunction with described in finite element model calculate described micro-mechanical property parameter corresponding Micro Mechanical Properties parameter (F, S, h c); Wherein, E for measure and monitor the growth of standing timber material elastic modulus, σ yfor measure and monitor the growth of standing timber material yield stress, n for measure and monitor the growth of standing timber material strain hardening exponent, F is the loaded load on nano indentation test compressing head, S for measure and monitor the growth of standing timber material hardness, h cfor pressure head with the impression between expecting of measuring and monitoring the growth of standing timber contact the degree of depth;
Non-di-mensional equation generation unit, based on mathematics modeling, to loaded load F and pressure head with the impression between expecting of measuring and monitoring the growth of standing timber contact degree of depth h ccarry out dimensional analysis, setting up measures and monitor the growth of standing timber about pressure head and institute expects the Non-di-mensional equation of correlation parameter:
F Eh 2 = Π α [ σ y E , n ] - - - ( 1 )
h c h = Π β [ σ y E , n ] - - - ( 2 )
Dimensionless correlation generation unit, according to described Non-di-mensional equation, in conjunction with the trickle sight mechanics parameter of material (E, σ that described trickle sight mechanics parameter computing unit is corresponding y, n, F, S, h c), set up dimensionless functional relation:
Π α = ( σ y E , n ) = ( a - bn ) ( σ y E ) [ c log ( σ y E ) - dn ] - - - ( 3 )
Π β = ( σ y E , n ) = e + fexp ( gn ) exp [ i ( σ y E ) ] - - - ( 4 )
Wherein, a, b, c, d, e, f, g, i are fitting parameter;
Mechanical property parameters generation unit, prepares surperficial functionally gradient material (FGM) Cross section polishing sample, along the depth direction that described specimen surface is different, combining nano indentation test, obtains a series of load-displacement response curve by predetermined depth; Obtain material hardness, maximum load load F and impression contact degree of depth h cvalue, and by material hardness, maximum load load F and impression contact degree of depth h cvalue be updated in dimensionless correlation, the anti-micro-mechanical property parameter releasing surface graded material relevant position;
Mechanical performance gradient curved unit, the micro-mechanical property parameter obtained by described mechanical property parameters generation unit, by plotted against depth, obtains the mechanical performance gradient curve of its material.
7. the thin Micro Mechanical Properties assessment measurement mechanism of surface graded metal material according to claim 6, it is characterized in that, described model set up unit specifically for: adopt two dimensional model modeling is carried out to measured and monitored the growth of standing timber material, utilize one dimension line segment to carry out modeling to pressure head, generate the initial solid model of nano indentation test; In view of the axial symmetry of model, get the limit element artificial module that 1/2nd of described initial solid model sets up nano indentation test.
8. the thin Micro Mechanical Properties assessment measurement mechanism of surface graded metal material according to claim 6, it is characterized in that, described trickle sight mechanics parameter computing unit specifically for: based on process of surface treatment and matrix material elastic modulus, estimate surperficial functionally gradient material (FGM) micro-mechanical property parameter (E, σ y, n), in conjunction with finite element model, generate some groups of load-displacement response curves, calculate relevant position Micromechanics parameter (F, S, h c).
9. the thin Micro Mechanical Properties assessment measurement mechanism of surface graded metal material according to claim 6, it is characterized in that, described Non-di-mensional equation generation unit comprises:
General equation generation module, for by pressure head loaded load F and pressure head with the impression between expecting of measuring and monitoring the growth of standing timber contact degree of depth h cbeing expressed as measures and monitor the growth of standing timber about pressure head and institute expects the function general equation of correlation parameter:
F=F(h,E,ν,Ei,νi,σ y,n,μ,θ) (5)
h c=h c(h,E,ν,Ei,ν iy,n,μ,θ) (6)
Wherein, ν for measure and monitor the growth of standing timber material Poisson ratio, E iand ν ibe respectively elastic modulus and the Poisson ratio of pressure head, the friction factor that μ is pressure head and institute's survey storeroom, θ is the half-angle angle of pressure head;
Dimensionless function generation module, for when not considering to be coupled between parameter, is converted into dimensionless function by described function general equation:
F E h 2 = F ( h h , E E , v E 0 h 0 , E i E , v i E 0 h 0 , σ y E , n E 0 h 0 , μ E 0 h 0 , θ E 0 h 0 ) - - - ( 7 )
h c E h 2 = h c ( h h , E E , v E 0 h 0 , E i E , v i E 0 h 0 , σ y E , n E 0 h 0 , μ E 0 h 0 , θ E 0 h 0 ) - - - ( 8 )
Above-mentioned pressure head and institute measure and monitor the growth of standing timber expect parameter in, the dimension [h] only having the dimension of elastic modulus [E] and the degree of depth is independently, and other parameters all represent by the form of the exponent product of these two independent dimensions;
Non-di-mensional equation generation module, for omitting the E in described dimensionless function i, ν iand μ, for the pressure head of a given angle θ, dimensionless functional relation is reduced to described Non-di-mensional equation by application Π theorem further:
F Eh 2 = Π α [ σ y E , n ] - - - ( 1 )
h c h = Π β [ σ y E , n ] - - - ( 2 ) .
10. the thin Micro Mechanical Properties assessment measurement mechanism of surface graded metal material according to claim 6, it is characterized in that, mechanical property parameters generation unit specifically for: prepare surperficial functionally gradient material (FGM) Cross section polishing sample, along the depth direction that specimen surface is different, combining nano indentation test, obtains a series of load-displacement response curve by predetermined depth; Obtain material hardness, maximum load load F and impression contact degree of depth h cvalue, and be updated in dimensionless correlation, the anti-micro-mechanical property parameter releasing surface graded material relevant position;
Described mechanical performance gradient curved unit specifically for: the micro-mechanical property parameter that described mechanical performance gradient curved unit generates is pressed plotted against depth, sets up surface graded material micro-mechanical property gradient curve.
CN201410599229.1A 2014-10-30 Microscopic mechanical property evaluation and measurement method and device for surface gradient metal material Expired - Fee Related CN104330298B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410599229.1A CN104330298B (en) 2014-10-30 Microscopic mechanical property evaluation and measurement method and device for surface gradient metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410599229.1A CN104330298B (en) 2014-10-30 Microscopic mechanical property evaluation and measurement method and device for surface gradient metal material

Publications (2)

Publication Number Publication Date
CN104330298A true CN104330298A (en) 2015-02-04
CN104330298B CN104330298B (en) 2017-01-04

Family

ID=

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181510A (en) * 2015-10-10 2015-12-23 中国飞机强度研究所 Calculation method of gradient material macro equivalent elastic modulus
CN104330298B (en) * 2014-10-30 2017-01-04 北京理工大学 Microscopic mechanical property evaluation and measurement method and device for surface gradient metal material
CN106407614A (en) * 2016-11-08 2017-02-15 武汉大学 Method for acquiring weld seam structure mechanical parameters in combination with nanoindentation and finite elements
CN106769570A (en) * 2016-11-22 2017-05-31 银邦金属复合材料股份有限公司 A kind of detection method of composite constituent element layer hardness
CN106841029A (en) * 2017-04-24 2017-06-13 长春师范大学 A kind of method for determining material friction coefficient
CN107631949A (en) * 2017-09-11 2018-01-26 西北工业大学 A kind of plate Anisotropic Plastic parameter identification method based on single cone press-in
CN107941588A (en) * 2017-11-15 2018-04-20 北京工业大学 Calcified bone mechanical property tests method based on nano impress and nano impress
CN108918308A (en) * 2018-05-16 2018-11-30 太原理工大学 A kind of quantitatively characterizing method of titanium alloy surface gradient modified layer Elastoplastic Performances in Simulation parameter
CN108984885A (en) * 2018-07-05 2018-12-11 中国船舶工业集团公司第七0八研究所 A kind of loading deck plate design method based under Permanent deformability
CN109060539A (en) * 2018-09-20 2018-12-21 西南石油大学 A kind of rock micro-meter scale elasticity modulus and yield strength acquisition methods
CN109932262A (en) * 2019-04-12 2019-06-25 中国原子能科学研究院 Method for measuring mechanical properties of materials at different depths
CN108645704B (en) * 2018-03-05 2020-07-28 上海交通大学 A method for inversion and calibration of microscopic constitutive parameters of metallic materials based on nanoindentation and finite element simulation
CN111735728A (en) * 2020-05-22 2020-10-02 扬州市舜意机械有限公司 Method and device for identifying mechanical property of vibration damping coating
CN111855458A (en) * 2020-07-23 2020-10-30 西北工业大学 A method for solving the constitutive relation of porous materials based on nanoindentation theory
CN112016229A (en) * 2020-08-28 2020-12-01 合肥工业大学 Mechanical property testing method of metal matrix composite material matrix
CN112179769A (en) * 2020-09-29 2021-01-05 西南石油大学 A method for evaluating elastic modulus of shale based on micro-nano indentation experiment of cuttings
CN115046817A (en) * 2022-04-29 2022-09-13 北京理工大学 Micro-nano mechanical testing method for anisotropy of two-dimensional functional material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062038A1 (en) * 1999-04-13 2000-10-19 White Kenneth W Determination of adhesion strength of hvof coating by spherical indentation
CN1533500A (en) * 2001-07-23 2004-09-29 �һ Ball indenter utilizing FEA solutions for property evaluation
CN101063646A (en) * 2006-04-24 2007-10-31 香港理工大学 Method for determining Young's modulus and Poisson's ratio of a material or tissue by indentation testing
KR20110124574A (en) * 2010-05-11 2011-11-17 서강대학교산학협력단 Evaluation method of residual stress of material
CN103091185A (en) * 2011-10-31 2013-05-08 湘潭大学 Process for characterizing elastoplasticity of metal material through indentation method
CN103970969A (en) * 2014-05-30 2014-08-06 哈尔滨工业大学 Method for simulating biaxial test of braided composite material and determining material performance parameters by using finite element method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062038A1 (en) * 1999-04-13 2000-10-19 White Kenneth W Determination of adhesion strength of hvof coating by spherical indentation
CN1533500A (en) * 2001-07-23 2004-09-29 �һ Ball indenter utilizing FEA solutions for property evaluation
CN101063646A (en) * 2006-04-24 2007-10-31 香港理工大学 Method for determining Young's modulus and Poisson's ratio of a material or tissue by indentation testing
KR20110124574A (en) * 2010-05-11 2011-11-17 서강대학교산학협력단 Evaluation method of residual stress of material
CN103091185A (en) * 2011-10-31 2013-05-08 湘潭大学 Process for characterizing elastoplasticity of metal material through indentation method
CN103970969A (en) * 2014-05-30 2014-08-06 哈尔滨工业大学 Method for simulating biaxial test of braided composite material and determining material performance parameters by using finite element method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.K. BHATTACHARYA ET AL.: "Finete element simulation of indentation experiments", 《INTERNATIONAL JOURNAL OF SOLIDS STRUCTURES》 *
尚帅华 等: "W/Al双层膜系的纳米压痕实验及有限元仿真", 《电子元件与材料》 *
陈晓明 等: "脆性材料的纳米压痕实验研究及有限元仿真", 《科技通报》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330298B (en) * 2014-10-30 2017-01-04 北京理工大学 Microscopic mechanical property evaluation and measurement method and device for surface gradient metal material
CN105181510A (en) * 2015-10-10 2015-12-23 中国飞机强度研究所 Calculation method of gradient material macro equivalent elastic modulus
CN105181510B (en) * 2015-10-10 2018-06-05 中国飞机强度研究所 A kind of computational methods of functionally gradient material (FGM) macro equivalent elasticity modulus
CN106407614A (en) * 2016-11-08 2017-02-15 武汉大学 Method for acquiring weld seam structure mechanical parameters in combination with nanoindentation and finite elements
CN106769570A (en) * 2016-11-22 2017-05-31 银邦金属复合材料股份有限公司 A kind of detection method of composite constituent element layer hardness
CN106841029A (en) * 2017-04-24 2017-06-13 长春师范大学 A kind of method for determining material friction coefficient
CN106841029B (en) * 2017-04-24 2019-08-23 长春师范大学 A method of measurement material friction coefficient
CN107631949A (en) * 2017-09-11 2018-01-26 西北工业大学 A kind of plate Anisotropic Plastic parameter identification method based on single cone press-in
CN107631949B (en) * 2017-09-11 2019-12-20 西北工业大学 Single-cone press-in-based plate anisotropic plastic parameter identification method
CN107941588A (en) * 2017-11-15 2018-04-20 北京工业大学 Calcified bone mechanical property tests method based on nano impress and nano impress
CN108645704B (en) * 2018-03-05 2020-07-28 上海交通大学 A method for inversion and calibration of microscopic constitutive parameters of metallic materials based on nanoindentation and finite element simulation
CN108918308A (en) * 2018-05-16 2018-11-30 太原理工大学 A kind of quantitatively characterizing method of titanium alloy surface gradient modified layer Elastoplastic Performances in Simulation parameter
CN108984885A (en) * 2018-07-05 2018-12-11 中国船舶工业集团公司第七0八研究所 A kind of loading deck plate design method based under Permanent deformability
CN109060539A (en) * 2018-09-20 2018-12-21 西南石油大学 A kind of rock micro-meter scale elasticity modulus and yield strength acquisition methods
CN109060539B (en) * 2018-09-20 2021-08-24 西南石油大学 A method for obtaining micron-scale elastic modulus and yield strength of rock
CN109932262A (en) * 2019-04-12 2019-06-25 中国原子能科学研究院 Method for measuring mechanical properties of materials at different depths
CN109932262B (en) * 2019-04-12 2020-11-10 中国原子能科学研究院 Method for measuring mechanical properties of materials at different depths
CN111735728A (en) * 2020-05-22 2020-10-02 扬州市舜意机械有限公司 Method and device for identifying mechanical property of vibration damping coating
CN111735728B (en) * 2020-05-22 2023-03-31 扬州市舜意机械有限公司 Method and device for identifying mechanical property of vibration damping coating
CN111855458A (en) * 2020-07-23 2020-10-30 西北工业大学 A method for solving the constitutive relation of porous materials based on nanoindentation theory
CN112016229A (en) * 2020-08-28 2020-12-01 合肥工业大学 Mechanical property testing method of metal matrix composite material matrix
CN112179769A (en) * 2020-09-29 2021-01-05 西南石油大学 A method for evaluating elastic modulus of shale based on micro-nano indentation experiment of cuttings
CN115046817A (en) * 2022-04-29 2022-09-13 北京理工大学 Micro-nano mechanical testing method for anisotropy of two-dimensional functional material

Similar Documents

Publication Publication Date Title
CN109299568B (en) Inverse method of constitutive model of welded joints based on nanoindentation test
CN104655505B (en) Instrumented-ball-pressing-technology-based residual stress detection method
CN105675420A (en) Determination method of material's uniaxial stress-strain relation through spherical indentation prediction
CN107631949B (en) Single-cone press-in-based plate anisotropic plastic parameter identification method
Wang et al. On the determination of the anisotropic plasticity of metal materials by using instrumented indentation
Wu et al. Identification of anisotropic plasticity properties of materials using spherical indentation imprint mapping
CN104198313A (en) Residual stress detection method based on instrumented indentation technology
Shedbale et al. Evaluation of mechanical properties using spherical ball indentation and coupled finite element–element-free galerkin approach
CN110068502B (en) Conglomerate strength determination method and device
CN111094932A (en) Determining rock properties
Yong et al. Plastic characterization of metals by combining nanoindentation test and finite element simulation
JP2013088365A (en) Mechanical characteristic creation system considering parameter related to volume change caused by plasticity
CN105606463A (en) Comprehensive structural surface shearing strength evaluation method for rock mass based on mean value function
CN104122205B (en) A kind of method utilizing impression uplift capacity to measure residual stress
Liu et al. Material characterization based on instrumented and simulated indentation tests
CN104330298B (en) Microscopic mechanical property evaluation and measurement method and device for surface gradient metal material
JP2003279458A (en) Material constant evaluation device by micro hardness measurement method
Sivaram et al. Qualitative Study on Pile-up Effect on Hardness Test by Nano-Indentation
CN104330298A (en) Method and device for evaluating and measuring mesomechanics/micromechanics performance of surface gradient metal material
Dell’Isola et al. Estimating fatigue related damage in alloys under block-type non-symmetrical low-cycle loading
JP2019144765A (en) Maximum tensile stress estimation method and maximum tensile stress estimation device for columnar honeycomb structure
CN104077444A (en) Analysis method of indentation data
Gandhi et al. Performance analysis of spherical indentation process during loading and unloading-a contact mechanics approach
Zanarini ESPI measurements in structural dynamics: fatigue life assessment
CN110926982A (en) Method for approximately obtaining metal elastic-plastic parameters based on Vickers indenter indentation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170104

Termination date: 20171030

CF01 Termination of patent right due to non-payment of annual fee