CN104320205B - Sparse DOA algorithm for estimating in Spatial Doppler domain - Google Patents
Sparse DOA algorithm for estimating in Spatial Doppler domain Download PDFInfo
- Publication number
- CN104320205B CN104320205B CN201410564367.6A CN201410564367A CN104320205B CN 104320205 B CN104320205 B CN 104320205B CN 201410564367 A CN201410564367 A CN 201410564367A CN 104320205 B CN104320205 B CN 104320205B
- Authority
- CN
- China
- Prior art keywords
- sparse
- signal
- domain
- doa
- doa estimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 abstract description 9
- 238000004458 analytical method Methods 0.000 abstract description 5
- 238000004088 simulation Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明涉及一种空间多普勒域中的稀疏DOA估计算法,包括以下步骤:(1)CS架构下的稀疏DOA估计算法;(2)信号强度ym扩展至稀疏角域和稀疏多普勒域;(3)在多普勒域的稀疏DOA估计算法。在压缩感知理论基础上,本发明对空间角域和多普勒域下的DOA估计进行了详细的分析和仿真,探讨了多路天线频谱感知的相关性能。在多普勒频域范围内对稀疏DOA进行估计,相比于以往在时间域内的估计结果使分辨率大大提高,且需要的信号元素也有所减少。
The invention relates to a sparse DOA estimation algorithm in the spatial Doppler domain, comprising the following steps: (1) a sparse DOA estimation algorithm under the CS architecture; (2) extending the signal strength y m to the sparse angle domain and sparse Doppler domain; (3) sparse DOA estimation algorithm in Doppler domain. On the basis of compressed sensing theory, the present invention conducts detailed analysis and simulation on DOA estimation in space angle domain and Doppler domain, and discusses the related performance of multi-antenna spectrum sensing. Estimating the sparse DOA in the Doppler frequency domain greatly improves the resolution compared with the previous estimation results in the time domain, and the required signal elements are also reduced.
Description
技术领域technical field
本发明涉及在稀疏角域以及稀疏多普勒域内,多天线阵列情况下的压缩频谱感知算法。The invention relates to a compressed spectrum sensing algorithm in the case of multi-antenna arrays in the sparse angle domain and the sparse Doppler domain.
背景技术Background technique
在过去的数年中对波达信号DOA(Direction Of Arrival)的估计方法已经被广泛应用于各个领域,例如雷达、海域交通、水声追踪以及无线通信领域等等。因此关于DOA估计的一些算法也随之应运而生,比较常见的主要有多路信号分类(Multiple SignalClassification,MUSIC)、最小方差无畸变响应(Minimum Variance DistortionlessResponse,MVDR)、最大似然方法(Maximum Likelihood)以及旋转不变的信号参数变化方法(Estimation of Signal Parameters via Rotational invariance techniques,ESPRIT)等。然而这些方法往往需要知道信号数目的先验信息,但是在当今非协作通信的环境下,无线设备以及服务器的数目都呈现爆炸性的增长,所以以上这些算法的实用性还有待改进。近几年压缩感知(Compressed-Sensing,CS)作为一项新型的研究方法和手段,能够使通过分析接收机处获取信号的内在稀疏特性,就可更好地改善信号的频谱感知性能。如果将CS技术应用于DOA估计中,同样可以很好地解决空间信号距离过近、快拍数较少的问题,并且还可以缓解一些参数估计方法所导致的限制,比如常见的相干信号和较大的样本支撑基等问题。In the past few years, the DOA (Direction Of Arrival) estimation method has been widely used in various fields, such as radar, sea traffic, underwater acoustic tracking, wireless communication and so on. Therefore, some algorithms for DOA estimation have emerged as the times require. The more common ones are Multiple Signal Classification (MUSIC), Minimum Variance Distortionless Response (MVDR), and Maximum Likelihood (Maximum Likelihood). ) and rotation-invariant signal parameter change method (Estimation of Signal Parameters via Rotational invariance techniques, ESPRIT), etc. However, these methods often need to know the prior information of the number of signals, but in today's non-cooperative communication environment, the number of wireless devices and servers has shown explosive growth, so the practicability of the above algorithms still needs to be improved. In recent years, Compressed-Sensing (CS), as a new research method and means, can better improve the spectrum sensing performance of the signal by analyzing the inherent sparse characteristics of the signal acquired at the receiver. If the CS technology is applied to DOA estimation, it can also solve the problem of too short spatial signal distance and few snapshots, and it can also alleviate the limitations caused by some parameter estimation methods, such as common coherent signals and comparative Large sample support base and other issues.
在CS理论支撑下对DOA的估计通常会涉及到两个问题,即空间信号谱估计以及阵列流型向量的选取。The estimation of DOA under the support of CS theory usually involves two problems, namely, the estimation of spatial signal spectrum and the selection of array flow pattern vector.
发明内容Contents of the invention
针对现有技术中的上述问题,本发明提出在稀疏角域以及稀疏多普勒域内,多天线阵列情况下的压缩频谱感知,利用接收信号的角度稀疏特性对DOA进行联合稀疏估计。在采样环节考虑频率的稀疏性,从而能有效减轻整个通信系统的负担。同时结合多普勒频移,对多路天线阵下的DOA进行估计。Aiming at the above-mentioned problems in the prior art, the present invention proposes compressed spectrum sensing in the case of multi-antenna arrays in the sparse angle domain and sparse Doppler domain, and performs joint sparse estimation of DOA by using the angle sparse characteristic of received signals. The sparseness of the frequency is considered in the sampling link, which can effectively reduce the burden of the entire communication system. At the same time, combined with the Doppler frequency shift, the DOA under the multi-channel antenna array is estimated.
本发明采取以下技术方案:空间多普勒域中的稀疏DOA估计算法,其特征在于,包括以下步骤:The present invention adopts following technical scheme: sparse DOA estimation algorithm in the spatial Doppler domain, it is characterized in that, comprises the following steps:
步骤一、CS架构下的稀疏DOA估计算法,Step 1, the sparse DOA estimation algorithm under the CS architecture,
(1)存在L个电磁平面波,其中,l=1,...L,表示未知信号方向θl的个数,表示投影方向;(1) There are L electromagnetic plane waves, Among them, l=1,...L, represents the number of unknown signal directions θ l , Indicates the projection direction;
(2)对于相同频率的窄带信号,其来波信号到达天线阵列后的信号强度m为天线阵元数,xm是天线阵元在x轴的位置,f是天线阵元的有效长度,nm是第m个天线上均值为零的加性高斯噪声样本;上式可变为y=A(θ)s+n,其中y=[y1,y2,...,yM]T∈CM×1,θ=[θ1,θ2,...,θL],A(θ)=[a(θ1),a(θ2),...,a(θL)]是M×L维的阵列流型矢量,s=[W1,W2,...,WL]T∈CL×1,n=[n1,n2,...,nM]T∈CM×1,展开可表示为 (2) For the narrowband signal of the same frequency, the signal strength of the incoming wave signal after reaching the antenna array m is the number of antenna array elements, x m is the position of the antenna array elements on the x-axis, f is the effective length of the antenna array elements, n m is the additive Gaussian noise sample with a mean value of zero on the mth antenna; the above formula is variable is y=A(θ)s+n, where y=[y 1 ,y 2 ,...,y M ] T ∈ C M×1 , θ=[θ 1 ,θ 2 ,...,θ L ], A(θ)=[a(θ 1 ),a(θ 2 ),...,a(θ L )] is an M×L-dimensional array flow pattern vector, s=[W 1 ,W 2 , ...,W L ] T ∈C L×1 , n=[n 1 ,n 2 ,...,n M ] T ∈C M×1 , the expansion can be expressed as
步骤二、将步骤一所述的信号强度ym扩展至稀疏角域和稀疏多普勒域,Step 2, extending the signal strength y m described in step 1 to the sparse angle domain and the sparse Doppler domain,
(1)将y=A(θ)s+n进行傅里叶变换,得到yf=Asf+nf,此时sf和yf是稀疏的;(1) Perform Fourier transform on y=A(θ)s+n to obtain y f =As f +n f , at this time s f and y f are sparse;
(2)对于K个非零信号,用ζ表示信号sf中每一行未知参数所对应的确定性功率值或能量值,得到DOA的估计进程如下:a)令L=k=1;b)当ζn≠0,并且θL=θk时,L=L+1;c)若k<K,那么k=k+1,同时返回至步骤b);否则退出DOA的计算过程;(2) For K non-zero signals, use ζ to represent the deterministic power value or energy value corresponding to each row of unknown parameters in the signal s f , and the DOA estimation process is as follows: a) let L=k=1; b) When ζ n ≠0, and θ L =θ k , L=L+1; c) if k<K, then k=k+1, and return to step b); otherwise, exit the calculation process of DOA;
(3)取信号yf的块状行信号,从每个行块中恢复出需要的稀疏信号,其中非零信号即所需要的DOA估计值;(3) Take the block row signal of signal y f , recover the required sparse signal from each row block, wherein the non-zero signal is the required DOA estimate;
步骤三、稀疏DOA估计算法,Step 3, sparse DOA estimation algorithm,
(1)对于来自远场的K个窄带信号,接收机处的信号s=[W1,W2,...,WL]T为稀疏矩阵,n=[n1,n2,...,nM]T为噪声矩阵,由于信号s中只有K行元素是不为零的,y=As+n=[y(t1),...,y(tM)]即通过搜寻y的联合稀疏来表示信号s的MMV问题。(1) For K narrowband signals from the far field, the signal at the receiver s=[W 1 ,W 2 ,...,W L ] T is a sparse matrix, n=[n 1 ,n 2 ,.. .,n M ] T is a noise matrix, since only K row elements in the signal s are non-zero, y=As+n=[y(t 1 ),...,y(t M )] is to search The joint sparsification of y to represent the MMV problem of signal s.
(2)MMV问题的目标函数为其中当p=2,q=0时,可写为 (2) The objective function of the MMV problem is in When p=2, q=0, it can be written as
(3)定义 可得:在有噪环境下,无噪声时,可得其中联合行稀疏矩阵为因此进一步转化为 (3) Definition Available: In noisy environments, When there is no noise, Available where the joint row sparse matrix is therefore is further transformed into
优选的,步骤三(3)中λ取值为0.5。Preferably, the value of λ in step three (3) is 0.5.
与现有技术相比,本发明具有以下优点和有益效果:在压缩感知理论基础上,本发明对空间角域和多普勒域下的DOA估计进行了详细的分析和仿真,探讨了多路天线频谱感知的相关性能。在多普勒频域范围内对稀疏DOA进行估计,相比于以往在时间域内的估计结果使分辨率大大提高,且需要的信号元素也有所减少。分析结果可知在采用的L2,0算法时,即使在信号个数有所增加时也能取得良好DOA估计性能在实际环境仿真中,相比于经典MUSIC算法,L2,0-DOA估计算法在不同噪声下的MSE结果基本趋于一致,说明L2,0估计算法对测试环境中的噪声干扰具有不敏感,有较高的鲁棒性。Compared with the prior art, the present invention has the following advantages and beneficial effects: On the basis of compressed sensing theory, the present invention conducts detailed analysis and simulation on the DOA estimation in the spatial angle domain and the Doppler domain, and discusses the multi-path Correlation performance of antenna spectrum sensing. Estimating the sparse DOA in the Doppler frequency domain greatly improves the resolution compared with the previous estimation results in the time domain, and the required signal elements are also reduced. The analysis results show that when the L2,0 algorithm is used, it can achieve good DOA estimation performance even when the number of signals increases. In the actual environment simulation, compared with the classic MUSIC algorithm, the L2,0-DOA estimation algorithm is different The MSE results under noise basically tend to be consistent, indicating that the L2,0 estimation algorithm is insensitive to noise interference in the test environment and has high robustness.
附图说明Description of drawings
图1为线型自适应天线阵列;Figure 1 is a linear adaptive antenna array;
图2为信源数为6的稀疏DOA功率谱图;Figure 2 is a sparse DOA power spectrum diagram with 6 sources;
图3为水平视角下的宽带DOA估计能量谱图;Fig. 3 is a broadband DOA estimated energy spectrum diagram under the horizontal viewing angle;
图4为空间任意观测角度下的宽带DOA估计能量谱图;Figure 4 is the energy spectrum diagram of broadband DOA estimation under any observation angle in space;
图5为SNR=-10dB时的DOA估计误差分析结果;Fig. 5 is the DOA estimation error analysis result when SNR=-10dB;
图6为SNR=-4dB时的DOA估计误差分析结果。Fig. 6 is the DOA estimation error analysis result when SNR=-4dB.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
本发明针对图1所示的线型天线阵列进行分析,具体包括以下操作步骤:The present invention analyzes the linear antenna array shown in Figure 1, specifically comprising the following steps:
步骤一:发送空间信号s,空间信号本身具有稀疏特性,不需再对其进行稀疏化。Step 1: Send the spatial signal s. The spatial signal itself has a sparse characteristic, and it is not necessary to be sparse.
步骤二:对于发送的空间信号s,在接收端得到相应的接收信号y=As+n,阵列流型矩阵A等价于压缩感知下的测量矩阵Φ(亦可认为是感知矩阵Θ),与测量矩阵Φ类似,阵列流型矩阵A也需要满足一定的条件,n是满足零均值,方差为σ2的加性白高斯噪声,信道满足高斯分布fσ(h)=exp(-h2/2σ2)。Step 2: For the sent spatial signal s, the corresponding received signal y=As+n is obtained at the receiving end, the array flow pattern matrix A is equivalent to the measurement matrix Φ under compressed sensing (also can be considered as the perception matrix Θ), and Similar to the measurement matrix Φ, the array flow pattern matrix A also needs to meet certain conditions. n is additive white Gaussian noise that satisfies zero mean and variance σ 2 , and the channel satisfies Gaussian distribution f σ (h)=exp(-h 2 / 2σ 2 ).
步骤三:将y=As+n进行傅里叶变换,得到其频域表示方式,在频域范围内,对信号进行检测、提取和恢复,其中恢复信号的过程主要是通过L2,0算法来实现的。Step 3: Perform Fourier transform on y=As+n to obtain its frequency domain representation, and in the frequency domain, detect, extract and recover the signal, and the process of recovering the signal is mainly through the L2,0 algorithm Achieved.
步骤四:设置带通滤波器组Hw是一个以模拟频率w为数字中心频率的窄带滤波器,通常取b=0.99,在缩小滤波器带宽的同时,还能够保证系统的稳定性。接着分析宽带下的DOA估计。Step 4: Set up the bandpass filter bank H w is a narrow-band filter with the analog frequency w as the digital center frequency, and usually takes b=0.99, which can ensure the stability of the system while narrowing the filter bandwidth. Then analyze DOA estimation under wideband.
步骤五:设定信噪比SNR阈值,分析不同SNR情况下的DOA估计功率谱密度。Step 5: Set the SNR threshold and analyze the DOA estimated power spectral density under different SNR conditions.
结合上述步骤中的实施方式,对本发明的有效性进行仿真验证如下:In conjunction with the implementation mode in the above-mentioned steps, the effectiveness of the present invention is simulated and verified as follows:
接收天线阵为均匀线阵,阵元数目为8,阵元间距为半波长,快拍数为100,噪声为加性白高斯噪声。图2给出了信源数为6的稀疏DOA估计图,采用L2,0-DOA的估计算法可以准确测得实际信道中的峰值位置,而且不产生其他峰值干扰,这对于接收机处获取具体信号并对其进行采样、量化、编码等是十分重要的,可以有效提高了整个系统处理有用信号的能力,节约了各项成本。图3表示的是在增设带通滤波器后的水平视角宽带DOA估计。在接收机处可以很明确地检测出在-10°,-30°以及30°处的信号,在其他角度位置处是没有检测到其它信号的,即基本不存在其他干扰。图4所示为在二维立体空间图中,除了能准确获取信号的位置外,还可以大致看出在确定角度上信号的大致分布情况,从而可以更好地对波达信号进行分析和讨论,其在实时DOA测试中是非常重要的。观察图5,当信噪为-10dB时,可以发现,信号的角度定位检测并不是很理想,存在较多的干扰信号以及误差较大,然而当SNR为-4dB时就能够准确地定位位于80°方位角处的信号为发射信号,降低了DOA估计的误差,如图6所示。The receiving antenna array is a uniform linear array, the number of array elements is 8, the spacing between array elements is half wavelength, the number of snapshots is 100, and the noise is additive white Gaussian noise. Figure 2 shows the sparse DOA estimation diagram with 6 sources. Using the L2,0-DOA estimation algorithm can accurately measure the peak position in the actual channel without causing other peak interference, which is very important for the receiver to obtain specific It is very important to sample, quantize, and encode the signal, which can effectively improve the ability of the entire system to process useful signals and save various costs. What Fig. 3 shows is the DOA estimation of horizontal viewing angle broadband after adding a band-pass filter. Signals at -10°, -30° and 30° can be clearly detected at the receiver, and no other signals are detected at other angle positions, that is, there is basically no other interference. Figure 4 shows that in the two-dimensional space map, in addition to accurately obtaining the position of the signal, you can also roughly see the approximate distribution of the signal at a certain angle, so that the wave-of-arrival signal can be better analyzed and discussed , which is very important in real-time DOA testing. Looking at Figure 5, when the signal-to-noise is -10dB, it can be found that the angle positioning detection of the signal is not very ideal, there are many interference signals and the error is large, but when the SNR is -4dB, it can accurately locate the position at 80 The signal at the azimuth angle of ° is the transmitted signal, which reduces the error of DOA estimation, as shown in Figure 6.
以上是本发明的较佳实施方式,但本发明的保护范围不限于此。任何熟悉本领域的技术人员在本发明所揭露的技术范围内,未经创造性劳动想到的变换或替换,都应涵盖在本发明的保护范围之内。因此本发明的保护范围应以权利要求所限定的保护范围为准。The above are preferred embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any transformation or substitution that is not thought of by any person skilled in the art within the technical scope disclosed in the present invention without creative work shall be covered by the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope defined in the claims.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410564367.6A CN104320205B (en) | 2014-10-21 | 2014-10-21 | Sparse DOA algorithm for estimating in Spatial Doppler domain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410564367.6A CN104320205B (en) | 2014-10-21 | 2014-10-21 | Sparse DOA algorithm for estimating in Spatial Doppler domain |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104320205A CN104320205A (en) | 2015-01-28 |
CN104320205B true CN104320205B (en) | 2017-10-27 |
Family
ID=52375393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410564367.6A Active CN104320205B (en) | 2014-10-21 | 2014-10-21 | Sparse DOA algorithm for estimating in Spatial Doppler domain |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104320205B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106154219A (en) * | 2015-04-22 | 2016-11-23 | 常熟海量声学设备科技有限公司 | A kind of new Acoustic Object direction estimation method |
CN115225178B (en) * | 2022-07-08 | 2023-08-11 | 西南交通大学 | A Realization Method of Doppler Effect Simulator Based on Frequency Domain Zero Reset |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1360804A (en) * | 1999-05-06 | 2002-07-24 | 塞-洛克公司 | Wireless location system |
CN103969629A (en) * | 2014-04-21 | 2014-08-06 | 河海大学 | Airborne radar clutter self-adaption restraining method based on main-lobe clutter registering |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103091661B (en) * | 2013-02-01 | 2014-09-10 | 西安科技大学 | Broadband signal arriving direction estimation method based on iteration spectral reconfiguration |
-
2014
- 2014-10-21 CN CN201410564367.6A patent/CN104320205B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1360804A (en) * | 1999-05-06 | 2002-07-24 | 塞-洛克公司 | Wireless location system |
CN103969629A (en) * | 2014-04-21 | 2014-08-06 | 河海大学 | Airborne radar clutter self-adaption restraining method based on main-lobe clutter registering |
Also Published As
Publication number | Publication date |
---|---|
CN104320205A (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106019214B (en) | Wide-band coherent signal source DOA estimation method | |
CN108828501B (en) | Method for real-time tracking and positioning of mobile sound source in indoor sound field environment | |
CN109188344A (en) | Based on mutually circulation correlation MUSIC algorithm information source number and arrival bearing's angular estimation method under impulse noise environment | |
CN110927660A (en) | Mixed signal direction of arrival estimation method based on co-prime array | |
CN109375153A (en) | A Dense Multipath Signal Angle Estimation Method Based on Impulse Response Compressed Sensing | |
Sharif et al. | Efficient wideband signal parameter estimation using a radon-ambiguity transform slice | |
CN109001706A (en) | Based on the maximized passive direct localization method of multiple radiant source targets of characteristic value | |
Hamdollahzadeh et al. | Moving target localization in bistatic forward scatter radars: Performance study and efficient estimators | |
CN109932679B (en) | A Maximum Likelihood Angular Resolution Estimation Method for Sensor Array Systems | |
CN107728104A (en) | A kind of improved satellite navigation interference direction-finding method | |
Marinho et al. | A signal adaptive array interpolation approach with reduced transformation bias for DOA estimation of highly correlated signals | |
CN108089146B (en) | A High-Resolution Broadband Direction of Arrival Estimation Method Robust to Estimated Angle Errors | |
CN104320205B (en) | Sparse DOA algorithm for estimating in Spatial Doppler domain | |
Tabassum et al. | CS based processing for high resolution GSM passive bistatic radar | |
Zoubir et al. | Robust generalised Capon algorithm for estimating the angular parameters of multiple incoherently distributed sources | |
JP6747688B2 (en) | Source estimation method and source estimation apparatus using the same | |
Jouny | Music DOA estimation with compressive sensing and/or compressive arrays | |
Chehri et al. | On the TOA estimation for UWB ranging in complex confined area | |
Ni et al. | Information-theoretic target localization with compressed measurement using FDA radar | |
Kumar et al. | Techniques of Direction of Arrival Estimation: A Review. | |
Ahmad et al. | Performance of MUSIC algorithm for DOA estimation | |
CN104459615A (en) | Coherent distributed wideband chirp information source orientation method | |
CN103792509A (en) | Two dimensional direction of arrival angle estimation method of electromagnetic signal | |
Miller et al. | A multi-sensor compressed sensing receiver: Performance bounds and simulated results | |
Liu et al. | Real-domain GMUSIC algorithm based on unitary-transform for low-angle estimation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190704 Address after: 650000 2 floor, 1 building, Donghua office, 19 Bailong Road, Kunming, Yunnan. Patentee after: YUNNAN BAOLI TIANTONG INSTRUMENT CO.,LTD. Address before: Room 602, Building No. 278 East Suzhou Avenue, Suzhou Industrial Park, Jiangsu Province Patentee before: Suzhou high Airlines intellectual property rights Operation Co.,Ltd. Effective date of registration: 20190704 Address after: Room 602, Building No. 278 East Suzhou Avenue, Suzhou Industrial Park, Jiangsu Province Patentee after: Suzhou high Airlines intellectual property rights Operation Co.,Ltd. Address before: 210044 Ning six road, Nanjing, Jiangsu Province, No. 219 Patentee before: Nanjing University of Information Science and Technology |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200928 Address after: Room 211, No.8, Tai'an Road, Taiping Xincheng Street office, Anning City, Kunming City, Yunnan Province Patentee after: Yunnan poly Tiantong underwater equipment Technology Co.,Ltd. Address before: 650000, No. 19, Bailong Road, Yunnan, Donghua, No. 1, building 2, Kunming Patentee before: YUNNAN BAOLI TIANTONG INSTRUMENT Co.,Ltd. |
|
TR01 | Transfer of patent right |