[go: up one dir, main page]

CN104313494B - 一种超临界锅炉用钢sa-335p92的冶炼方法 - Google Patents

一种超临界锅炉用钢sa-335p92的冶炼方法 Download PDF

Info

Publication number
CN104313494B
CN104313494B CN201410633977.7A CN201410633977A CN104313494B CN 104313494 B CN104313494 B CN 104313494B CN 201410633977 A CN201410633977 A CN 201410633977A CN 104313494 B CN104313494 B CN 104313494B
Authority
CN
China
Prior art keywords
steel
smelting process
carbon
vacuum
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410633977.7A
Other languages
English (en)
Other versions
CN104313494A (zh
Inventor
司兴奎
刘殿山
秦士东
王成业
周庆光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongyu Heavy Industry Co Ltd
Original Assignee
Tongyu Heavy Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongyu Heavy Industry Co Ltd filed Critical Tongyu Heavy Industry Co Ltd
Priority to CN201410633977.7A priority Critical patent/CN104313494B/zh
Publication of CN104313494A publication Critical patent/CN104313494A/zh
Application granted granted Critical
Publication of CN104313494B publication Critical patent/CN104313494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明公开了一种超临界锅炉用钢SA-335P92的冶炼方法,该方法包括(1)电炉熔炼,获取碳重量含量≤0.03%,温度≥1600℃的钢液;(2)钢包精炼,(2-1)脱氧,(2-2)调整成分;(2-3)将步骤(2-2)得到的合金溶液加入步骤(2-1)得到的钢液在LF炉中调整成分;步骤(2)中的LF炉采用超高功率石墨电极;(3)真空脱气;(4)调整氮含量;(5)浇注。本发明在钢包精炼尽量不采用含碳的材料,避免碳在精炼过程进入钢液,尽可能的减少钢包精炼过程中增碳量,从而在钢包精炼后不需要脱碳和再次精炼,相对于现有技术减少两个工序。

Description

一种超临界锅炉用钢SA-335P92的冶炼方法
技术领域
本发明涉及一种超临界锅炉用钢SA-335P92的冶炼方法。
背景技术
超超临界锅炉用钢SA-335P92包含以下重量百分比的元素:碳0.07-0.13%;硅≤0.50%;锰0.30-0.60%;磷≤0.020%;硫≤0.010%;铬8.50-9.50%;钼0.30-0.60%;钒0.15-0.25%;铌0.04-0.09%;镍≤0.40%;铝≤0.020%;硼0.001-0.006%;钨1.50-2.00%;锆≤0.01%;钛≤0.01%;氮0.030-0.070%;其余为铁及不可避免的杂质。目前,该钢种传统的冶炼工艺由以下工序步骤组成:
步骤一:电炉熔炼、吹氧脱碳;步骤二:LF精炼、调整成分温度;步骤三:VOD真空吹氧脱碳;步骤四:LF再次精炼、调整成分和温度;步骤五:VD真空脱气;步骤六:调整氮含量;步骤七:浇注。
由于钢种合金含量高而碳含量非常低,因此在精炼之后需要真空吹氧以降低碳含量,碳含量降低的同时合金必然会有部分烧损,VOD之后又需回LF精炼调整成分,两次LF精炼会大大增加电耗、合金消耗,影响冶炼效率和生产进度顺行,造成冶炼成本大幅度提高。
发明内容
本发明要解决的技术问题是:提供一种工艺简单的超临界锅炉用钢SA-335P92的冶炼方法。
为了解决上述技术问题,本发明超临界锅炉用钢SA-335P92包含以下重量百分比的元素:碳0.07-0.13%;硅≤0.50%;锰0.30-0.60%;磷≤0.020%;硫≤0.010%;铬8.50-9.50%;钼0.30-0.60%;钒0.15-0.25%;铌0.04-0.09%;镍≤0.40%;铝≤0.020%;硼0.001-0.006%;钨1.50-2.00%;锆≤0.01%;钛≤0.01%;氮0.030-0.070%;其余为铁及不可避免的杂质,该锅炉用钢的冶炼方法包括以下步骤:
(1)电炉熔炼:在电炉中加入生铁/铁水、废钢和造渣材料熔炼,获取碳重量含量≤0.03%,温度≥1600℃的钢液;
(2)钢包精炼:(2-1)脱氧:在LF炉中,采用不含碳的脱氧剂对钢液脱氧,(2-2)调整成分:将用于调节钢液成份的合金用非含碳的加热炉熔化成合金溶液;(2-3)将步骤(2-2)得到的合金溶液加入步骤(2-1)得到的钢液在LF炉中调整成分;步骤(2)中的LF炉采用超高功率石墨电极;
(3)真空脱气;
(4)调整氮含量;
(5)浇注。
为了提高真空脱气效果,所述的步骤(3)真空脱气:将精炼后的钢液倒掉占总重30-50%的精炼渣后进入真空脱气罐,真空脱气前加入硅钙线,在压强小于133Pa条件下真空脱气20-30分钟,真空脱气时从炉底向钢液吹氩气或氮气。
为了进一步提高真空脱气效果,所述的步骤(3)真空脱气,真空度≤133Pa,氩气或氮气流量为3-5Nm3/h。
为了在步骤(4)便于调整氮含量,所述步骤(3)真空脱气后温度为1590-1640℃,铬重量含量为8.0-9.0%。
为了有效的调整氮含量,所述的步骤(4)调整氮含量:真空脱气后通过加入氮化铬合金调整钢液中氮含量,加入后经过10-30分钟软吹达到出钢温度后出钢。
所述步骤(5)浇注:待所有成分调整到位并且温度在1540-1580℃时浇注。
所述的生铁/铁水加入重量占总原料的50%以上。
本发明的有益效果是:本发明在钢包精炼尽量不采用含碳的材料,避免碳在精炼过程进入钢液,尽可能的减少钢包精炼过程中增碳量,从而在钢包精炼后不需要脱碳和再次精炼,相对于现有技术减少两个工序,本发明工艺简单、降低了消耗、提高了生产效率、节约了成本,便于实施和推广。
具体实施方式
实施例1:一种超临界锅炉用钢SA-335P92的冶炼方法,包括以下步骤:
(1)电炉熔炼:在电炉中加入生铁/铁水、废钢和造渣材料熔炼,生铁/铁水重量占总原材料的55%,控制电炉出钢碳重量含量为0.02%,电炉出钢温度1650℃,采用偏心炉底出钢的方式获取钢液;
(2)钢包精炼:(2-1)脱氧:在LF炉中,采用硅粉对钢液脱氧,(2-2)调整成分:将用于调节钢液成份的合金用电阻丝加热炉熔化成合金溶液;(2-3)将步骤(2-2)得到的合金溶液加入步骤(2-1)得到的钢液在LF炉中调整成分;步骤(2)中的LF炉采用超高功率石墨电极;
(3)真空脱气:将精炼后的钢液倒掉30%的精炼渣后进入真空脱气罐,真空脱气前在钢液中加入硅钙线,在压强100Pa、氩气流量4.0Nm3/h的条件下真空脱气21分钟,氩气从罐底吹入,真空脱气后钢液温度为1600℃,控制铬重量含量为8.50%。
(4)调整氮含量:真空脱气后通过加入氮化铬合金调整钢液中氮含量,加入后经过15分钟软吹到钢液过热度降到50℃,调整氮重量含量到0.050%。
(5)浇注:浇注冷却脱模后即为生产锅炉用的锻造用钢锭,钢锭熔炼成分为(重量百分比):碳0.10%;硅0.30%;锰0.45%;磷≤0.020%;硫≤0.010%;铬9.00%;钼0.40%;钒0.20%;铌0.06%;镍≤0.40%;铝≤0.020%;硼0.003%;钨1.70%;锆≤0.01%;钛≤0.01%;氮0.050%;其余为铁及不可避免的杂质。
实施例2:一种超临界锅炉用钢SA-335P92的冶炼方法,包括以下步骤:
(1)电炉熔炼:在电炉中加入生铁/铁水、废钢和造渣材料熔炼,生铁/铁水重量占总原材料的58%,获取碳重量含量为0.023%、温度为1660℃的钢液;
(2)钢包精炼:(2-1)脱氧:在LF炉中,采用硅钙粉对钢液脱氧,(2-2)调整成分:将用于调节钢液成份的合金用电阻丝加热炉熔化成合金溶液;(2-3)将步骤(2-2)得到的合金溶液加入步骤(2-1)得到的钢液在LF炉中调整成分;步骤(2)中的LF炉采用超高功率石墨电极;
(3)真空脱气:将精炼后的钢液倒掉40%的精炼渣后进入真空脱气罐,真空脱气前在钢液中加入硅钙线,在压强90Pa、氩气流量3.8Nm3/h的条件下真空脱气23分钟,氩气从罐底吹入,真空脱气后钢液温度为1595℃,控制铬重量含量为8.20%。
(4)调整氮含量:真空脱气后通过加入氮化铬合金调整钢液中氮含量,加入后经过17分钟软吹到钢液过热度降到48℃,调整氮重量含量到0.045%。
(5)浇注:冷却脱模后即为生产锅炉用的锻造用钢锭。钢锭熔炼成分为(重量百分比):碳0.11%;硅0.35%;锰0.40%;磷≤0.012%;硫≤0.010%;铬8.70%;钼0.35%;钒0.19%;铌0.07%;镍≤0.40%;铝≤0.020%;硼0.004%;钨1.7%;锆≤0.01%;钛≤0.01%;氮0.045%;其余为铁及不可避免的杂质。
实施例3:一种超临界锅炉用钢SA-335P92的冶炼方法,包括以下步骤:
(1)电炉熔炼:在电炉中加入生铁/铁水、废钢和造渣材料熔炼,生铁/铁水重量占总原材料的53%,获取碳重量含量为0.018%、温度为1635℃的钢液。
(2)钢包精炼:(2-1)脱氧:在LF炉中,采用硅粉和硅钙粉对钢液脱氧,(2-2)调整成分:将用于调节钢液成份的合金用电阻丝加热炉熔化成合金溶液;合金用电阻丝加热炉也可采用其它非含炭的加热炉,比如不能是石墨电极加热炉,(2-3)将步骤(2-2)得到的合金溶液加入步骤(2-1)得到的钢液在LF炉中调整成分;步骤(2)中的LF炉采用超高功率石墨电极。
(3)真空脱气:将精炼后的钢液倒掉50%的精炼渣后进入真空脱气罐,真空脱气前在钢液中加入硅钙线,在压强95Pa、氮气流量3.5Nm3/h的条件下真空脱气26分钟,氮气从罐底吹入,真空脱气后钢液温度为1610℃,控制铬重量含量为8.10%。
(4)调整氮含量:真空脱气后通过加入氮化铬合金调整钢液中氮含量,加入后经过25分钟软吹到钢液过热度降到54℃,调整氮重量含量到0.055%。
(5)浇注:冷却脱模后即为生产锅炉用的锻造用钢锭。钢锭熔炼成分为(重量百分比):碳0.09%;硅≤0.50%;锰0.50%;磷≤0.020%;硫≤0.010%;铬8.60%;钼0.38%;钒0.20%;铌0.06%;镍≤0.40%;铝≤0.020%;硼0.004%;钨1.90%;锆≤0.01%;钛≤0.01%;氮0.06%;其余为铁及不可避免的杂质。
上述各实施例中:步骤(2)中用于调节成份的合金可以是硅铁、锰铁、铬铁和钨铁等合金,这是根据实际需求来确定合金,如何确定调节钢液成份的合金是本领域的常规技术手段。生铁/铁水表示生铁和铁水中一者或二者。

Claims (7)

1.一种超临界锅炉用钢SA-335P92的冶炼方法,该超临界锅炉用钢SA-335P92包含以下重量百分比的元素:碳0.07-0.13%;硅≤0.50%;锰0.30-0.60%;磷≤0.020%;硫≤0.010%;铬8.50-9.50%;钼0.30-0.60%;钒0.15-0.25%;铌0.04-0.09%;镍≤0.40%;铝≤0.020%;硼0.001-0.006%;钨1.50-2.00%;锆≤0.01%;钛≤0.01%;氮0.030-0.070%;其余为铁及不可避免的杂质,其特征在于:该锅炉用钢的冶炼方法包括以下步骤:
(1)电炉熔炼:在电炉中加入生铁/铁水、废钢和造渣材料熔炼,获取碳重量含量≤0.03%,温度≥1600℃的钢液;
(2)钢包精炼:(2-1)脱氧:在LF炉中,采用不含碳的脱氧剂对钢液脱氧,(2-2)调整成分:将用于调节钢液成份的合金用非含碳的加热炉熔化成合金溶液;(2-3)将步骤(2-2)得到的合金溶液加入步骤(2-1)得到的钢液在LF炉中调整成分;步骤(2)中的LF炉采用超高功率石墨电极;
(3)真空脱气;
(4)调整氮含量;
(5)浇注。
2.根据权利要求1所述的冶炼方法,其特征在于:所述的步骤(3)真空脱气:将精炼后的钢液倒掉占总重30-50%的精炼渣后进入真空脱气罐,真空脱气前加入硅钙线,在压强小于133Pa条件下真空脱气20-30分钟,真空脱气时从炉底向钢液吹氩气或氮气。
3.根据权利要求2所述的冶炼方法,其特征在于:所述的步骤(3)真空脱气,真空度≤133Pa,氩气或氮气流量为3-5Nm3/h。
4.根据权利要求3所述的冶炼方法,其特征在于:所述步骤(3)真空脱气后温度为1590-1640℃,铬重量含量为8.0-9.0%。
5.根据权利要求4所述的冶炼方法,其特征在于:所述的步骤(4)调整氮含量:真空脱气后通过加入氮化铬合金调整钢液中氮含量,加入后经过10-30分钟软吹达到出钢温度后出钢。
6.根据权利要求5所述的冶炼方法,其特征在于:所述步骤(5)浇注:待所有成分调整到位并且温度在1540-1580℃时浇注。
7.根据权利要求1-6中任何一项所述的冶炼方法,其特征在于:所述的生铁/铁水加入重量占总原料的50%以上。
CN201410633977.7A 2014-11-12 2014-11-12 一种超临界锅炉用钢sa-335p92的冶炼方法 Active CN104313494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410633977.7A CN104313494B (zh) 2014-11-12 2014-11-12 一种超临界锅炉用钢sa-335p92的冶炼方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410633977.7A CN104313494B (zh) 2014-11-12 2014-11-12 一种超临界锅炉用钢sa-335p92的冶炼方法

Publications (2)

Publication Number Publication Date
CN104313494A CN104313494A (zh) 2015-01-28
CN104313494B true CN104313494B (zh) 2016-05-25

Family

ID=52368800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410633977.7A Active CN104313494B (zh) 2014-11-12 2014-11-12 一种超临界锅炉用钢sa-335p92的冶炼方法

Country Status (1)

Country Link
CN (1) CN104313494B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651754B (zh) * 2015-02-05 2017-05-17 山东钢铁股份有限公司 一种高压锅炉管用低合金钢及其制备方法
CN109207845A (zh) * 2017-06-30 2019-01-15 宝钢特钢有限公司 一种超超临界耐热钢板及其制造方法
CN107604229A (zh) * 2017-09-19 2018-01-19 安徽恒利增材制造科技有限公司 一种高强度铁基合金及其制备方法
CN107604260A (zh) * 2017-09-19 2018-01-19 安徽恒利增材制造科技有限公司 一种铁基合金及其制备方法
CN115044823B (zh) * 2022-06-28 2023-05-30 江苏永钢集团有限公司 一种超超临界高压锅炉钢p92连铸大圆坯的生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210122A1 (en) * 1985-07-09 1987-01-28 Mitsubishi Jukogyo Kabushiki Kaisha Steam turbine rotor for high temperature and method for manufacturing same
CN1509342A (zh) * 2001-04-04 2004-06-30 V&M������˾ 高温下使用的钢和钢管
CN102011063A (zh) * 2010-10-19 2011-04-13 钢铁研究总院 一种无铁素体大口径厚壁耐热钢管材料
CN102321850A (zh) * 2011-10-13 2012-01-18 中核苏阀横店机械有限公司 一种适用于火电机组的超级临界高合金钢
CN104043672A (zh) * 2014-04-10 2014-09-17 内蒙古北方重工业集团有限公司 超超临界机组高品质p92大口径厚壁无缝钢管制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509664B2 (ja) * 2003-07-30 2010-07-21 株式会社東芝 蒸気タービン発電設備

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210122A1 (en) * 1985-07-09 1987-01-28 Mitsubishi Jukogyo Kabushiki Kaisha Steam turbine rotor for high temperature and method for manufacturing same
CN1509342A (zh) * 2001-04-04 2004-06-30 V&M������˾ 高温下使用的钢和钢管
CN102011063A (zh) * 2010-10-19 2011-04-13 钢铁研究总院 一种无铁素体大口径厚壁耐热钢管材料
CN102321850A (zh) * 2011-10-13 2012-01-18 中核苏阀横店机械有限公司 一种适用于火电机组的超级临界高合金钢
CN104043672A (zh) * 2014-04-10 2014-09-17 内蒙古北方重工业集团有限公司 超超临界机组高品质p92大口径厚壁无缝钢管制造方法

Also Published As

Publication number Publication date
CN104313494A (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
CN104313494B (zh) 一种超临界锅炉用钢sa-335p92的冶炼方法
CN105177215B (zh) 一种高铝合金结构圆钢的高效生产工艺
JP7507895B2 (ja) 極地用鋼の超高リン溶銑低コスト製錬方法
CN105063474B (zh) 一种焊丝用钢的电炉冶炼方法
CN104120332A (zh) 高强度高韧性球墨铸铁600-10及其生产工艺
CN104278130A (zh) 一种lf炉渣碱度快速调整工艺
CN101993973A (zh) 一种生产高纯度纯铁的方法
CN106350631A (zh) 一种非晶态软磁材料用工业纯铁的生产方法
CN102888550A (zh) 一种高纯洁度高氮双相不锈钢的冶炼方法
CN104525919A (zh) 一种超超临界汽轮机叶片钢电渣重熔钢锭的制造方法
CN103725955B (zh) 一种压力容器用钢13MnNiMoR钢板及其生产方法
CN108546880A (zh) 钎钢BG22SiMnNi2CrMoA及其制备方法
CN102477474B (zh) 一种真空感应炉冶炼钢水的加硫方法
CN103614593A (zh) 一种具有良好热加工性的耐热合金及其制备方法
CN105132621A (zh) 一种低硅不含铝焊丝用钢的冶炼工艺
CN103540856B (zh) 一种3Cr17NiMoV不锈钢带钢及制备方法
CN102936636A (zh) 一种含硼中碳低合金钢tdc66t-1的生产方法
CN106381441B (zh) 一种10Cr11Co3W3NiMoVNbNB低碳低硅低铝高硼钢冶炼方法
CN105344949B (zh) 一种钢铁熔炼‑模铸新工艺
CN101948979B (zh) 一种生产工业纯铁的方法
CN107604127B (zh) 利用真空脱碳炉冶炼沉淀硬化钢的工艺
CN113846263B (zh) 一种无δ铁素体的高韧性耐热钢及制备方法
CN101948980B (zh) 一种生产工业纯铁的方法
CN103710645A (zh) 易切屑3Cr17NiMo模具钢及其制造方法
CN102051434B (zh) 冶炼硅钢的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Smelting method of steel SA-335P92 for supercritical boiler

Effective date of registration: 20190227

Granted publication date: 20160525

Pledgee: Yucheng Branch of Agricultural Bank of China Ltd.

Pledgor: TONGYU HEAVY INDUSTRY Co.,Ltd.

Registration number: 2019990000162

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20210304

Granted publication date: 20160525

Pledgee: Yucheng Branch of Agricultural Bank of China Ltd.

Pledgor: TONGYU HEAVY INDUSTRY Co.,Ltd.

Registration number: 2019990000162

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A smelting method of SA-335P92 steel for supercritical boiler

Effective date of registration: 20210304

Granted publication date: 20160525

Pledgee: Yucheng Branch of Agricultural Bank of China Ltd.

Pledgor: TONGYU HEAVY INDUSTRY Co.,Ltd.

Registration number: Y2021990000216

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20230320

Granted publication date: 20160525

Pledgee: Yucheng Branch of Agricultural Bank of China Ltd.

Pledgor: TONGYU HEAVY INDUSTRY Co.,Ltd.

Registration number: Y2021990000216

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Smelting Method of SA-335P92 Steel for Supercritical Boilers

Effective date of registration: 20230323

Granted publication date: 20160525

Pledgee: Yucheng Branch of Agricultural Bank of China Ltd.

Pledgor: TONGYU HEAVY INDUSTRY Co.,Ltd.

Registration number: Y2023980035948

PE01 Entry into force of the registration of the contract for pledge of patent right