CN104311824B - Magnetic polymer based on polymine and preparation method thereof - Google Patents
Magnetic polymer based on polymine and preparation method thereof Download PDFInfo
- Publication number
- CN104311824B CN104311824B CN201410534892.3A CN201410534892A CN104311824B CN 104311824 B CN104311824 B CN 104311824B CN 201410534892 A CN201410534892 A CN 201410534892A CN 104311824 B CN104311824 B CN 104311824B
- Authority
- CN
- China
- Prior art keywords
- magnetic
- magnetic polymer
- polyethyleneimine
- polymer
- stir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 57
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 229920002873 Polyethylenimine Polymers 0.000 claims abstract description 37
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 9
- 238000001179 sorption measurement Methods 0.000 claims abstract description 5
- 239000011358 absorbing material Substances 0.000 claims abstract description 4
- 238000000926 separation method Methods 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- 238000003756 stirring Methods 0.000 claims description 24
- 239000007787 solid Substances 0.000 claims description 22
- 238000005956 quaternization reaction Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 14
- 239000013067 intermediate product Substances 0.000 claims description 12
- 239000000047 product Substances 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 239000002244 precipitate Substances 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical group [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 8
- 239000003456 ion exchange resin Substances 0.000 claims description 8
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 8
- 239000000706 filtrate Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 4
- 238000010189 synthetic method Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 11
- 150000001450 anions Chemical class 0.000 abstract description 6
- 238000005342 ion exchange Methods 0.000 abstract description 5
- 150000003242 quaternary ammonium salts Chemical class 0.000 abstract description 4
- 239000000376 reactant Substances 0.000 abstract description 3
- 230000002194 synthesizing effect Effects 0.000 abstract description 3
- 229910001507 metal halide Inorganic materials 0.000 abstract description 2
- 150000005309 metal halides Chemical class 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 description 13
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 6
- 238000000921 elemental analysis Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000005307 ferromagnetism Effects 0.000 description 3
- 230000005408 paramagnetism Effects 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012637 gene transfection Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- -1 quaternary ammonium salt cation Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
本发明涉及基于聚乙烯亚胺的磁性聚合物及其制备方法;利用线性和支化聚乙烯亚胺为大分子反应物,后修饰合成磁性聚合物的方法。通过将聚乙烯亚胺季铵化,离子交换,然后用四卤合铁负离子取代原有的负离子合成具有磁性基元的主链型磁性聚合物。聚合物所用PEI的分子量在600Da~1000kDa;Fe/N为0.25~0.85。将不同链结构以及分子量的聚乙烯亚胺与碘甲烷反应生成季铵盐,季铵盐经过离子交换后与金属卤化物反应合成含有磁性基元的聚合物。该方法具有成本低、工艺简便、反应条件温和操作步骤简单等优点。该磁性聚合物在磁性膜材料、电磁器件、吸波材料以及CO2分离与吸附等方面有潜在的应用。
The invention relates to a magnetic polymer based on polyethyleneimine and a preparation method thereof; a method for post-modifying and synthesizing the magnetic polymer by using linear and branched polyethyleneimine as a macromolecular reactant. The main chain type magnetic polymer with magnetic elements is synthesized by quaternizing polyethyleneimine, ion exchange, and then replacing the original anion with tetrahalide ferric anion. The molecular weight of PEI used in the polymer is 600Da~1000kDa; Fe/N is 0.25~0.85. Polyethyleneimines of different chain structures and molecular weights are reacted with methyl iodide to form quaternary ammonium salts, and after ion exchange, the quaternary ammonium salts are reacted with metal halides to synthesize polymers containing magnetic elements. The method has the advantages of low cost, simple process, mild reaction conditions and simple operation steps. The magnetic polymer has potential applications in magnetic film materials, electromagnetic devices, wave-absorbing materials, and CO2 separation and adsorption.
Description
技术领域technical field
本发明涉及一类磁性聚合物及其合成方法,特别涉及基于聚乙烯亚胺的磁性聚合物及其制备方法;利用线性和支化聚乙烯亚胺(PEI)为大分子反应物,后修饰合成磁性聚合物的方法。The present invention relates to a class of magnetic polymers and their synthesis methods, in particular to polyethyleneimine-based magnetic polymers and their preparation methods; linear and branched polyethyleneimines (PEI) are used as macromolecular reactants for post-modification synthesis Magnetic polymer approach.
背景技术Background technique
聚乙烯亚胺(PEI)作为氨基密度最高的大分子,具有独特的理化性质,因此引起了大量研究者对它的研究兴趣。Boussif等(Boussifetal.,ProceedingsoftheNationalAcademyofSciences,92(16),7297-7301.)发现PEI可以作为基因转染试剂。Beyth等(Beythetal.Biomaterials27(2006)3995–4002.)将交联季铵化的PEI混入医用树脂中,对其抗菌作用进行了研究。Hu(Huetal.,TheJournalofPhysicalChemistryB,2005,109(10):4285-4289.)等采用PEI修饰碳纳米管并以此为基底诱导神经元细胞生长。Son等(Sonetal.,MicroporousandMesoporousMaterials,113(1),31-40.)将PEI植入多孔硅材料中,探索了其对CO2的吸附效率。Vinogradov等(Vinogradovetal.,MendeleevCommunications,19(4),222-223.)利用PEI作为结构导向剂合成了多孔CuO-Al2O3复合材料。如今,PEI已被广泛应用于基因转染、抗菌材料、CO2的吸附材料、多孔复合材料等多个领域。As the macromolecule with the highest density of amino groups, polyethyleneimine (PEI) has unique physical and chemical properties, so it has attracted a lot of researchers' interest in it. Boussif et al. (Boussif et al., Proceeding of the National Academy of Sciences, 92 (16), 7297-7301.) found that PEI can be used as a gene transfection reagent. Beyth et al. (Beythetal. Biomaterials 27 (2006) 3995-4002.) mixed cross-linked quaternized PEI into medical resin to study its antibacterial effect. Hu (Huetal., The Journal of Physical Chemistry B, 2005, 109(10): 4285-4289.) et al. used PEI to modify carbon nanotubes and use them as a substrate to induce neuronal cell growth. Son et al. (Sonetal., Microporous and Mesoporous Materials, 113(1), 31-40.) implanted PEI into porous silicon materials and explored its CO2 adsorption efficiency. Vinogradov et al. (Vinogradov et al., Mendeleev Communications, 19(4), 222-223.) synthesized porous CuO-Al2O3 composites using PEI as a structure-directing agent. Today, PEI has been widely used in gene transfection, antibacterial materials, CO2 adsorption materials, porous composite materials and other fields.
但是,直到目前为止,还未有人利用PEI进行修饰合成磁性材料。近年来,磁性高分子材料在信息工业以及生物医学工程等领域展现出独特的优势。特别在信息存储材料、磁分离、吸波材料、磁共振成像以及药物控制释放等方面具有诱人的应用前景,是当前研究的热点课题之一。现有的磁性聚合物材料大致分为两类:一类是掺入无机磁性粒子的磁性复合材料;另一类是主侧链上带有磁性基团的磁性高分子。前者存在相容性差的问题,后者往往工艺复杂,成本高。制备工艺简单、成本相对低廉且磁性能可控的磁性高分子合成方法尚属空白。本专利通过对PEI季铵化,离子交换,复合铁盐,第一次合成并表征了基于PEI的磁性大分子。However, until now, no one has used PEI to modify and synthesize magnetic materials. In recent years, magnetic polymer materials have shown unique advantages in the fields of information industry and biomedical engineering. Especially in information storage materials, magnetic separation, wave-absorbing materials, magnetic resonance imaging, and controlled release of drugs, it has attractive application prospects and is one of the hot topics in current research. The existing magnetic polymer materials are roughly divided into two categories: one is magnetic composite materials mixed with inorganic magnetic particles; the other is magnetic polymers with magnetic groups on the main side chain. The former has the problem of poor compatibility, while the latter is often complicated in process and high in cost. The synthesis method of magnetic polymer with simple preparation process, relatively low cost and controllable magnetic properties is still blank. This patent synthesizes and characterizes a PEI-based magnetic macromolecule for the first time through quaternization of PEI, ion exchange, and complex iron salt.
与本专利相关的文献分别是:2004年,日本的Hyashi等(S.Hayashietal.,ChemistryLetters,2004,33,1590-1591.)首次合成并报道了由季铵盐阳离子与四氯合铁阴离子离子构成的磁性离子液体小分子。2011年,西班牙的等(M.etal.,PolymerChemistry,2011,2,1275-1278.)首次报道了含四卤合铁阴离子的聚离子液体的制备,通过后修饰方法对聚合物进行季铵化以及阴离子交换,之后复合四卤合铁负离子从而制备出磁性聚合物。The documents related to this patent are: In 2004, Hyashi et al. (S.Hayashietal., Chemistry Letters, 2004, 33, 1590-1591.) of Japan synthesized and reported for the first time that it was composed of quaternary ammonium salt cation and ferric tetrachloride anion ion. magnetic ionic liquid small molecules. In 2011, Spain's etc. (M. etal., Polymer Chemistry, 2011, 2, 1275-1278.) first reported the preparation of polyionic liquids containing tetrahalide ferric anions. The polymer was quaternized and anion exchanged by post-modification methods, and then compounded with tetrahalide Iron negative ions to prepare magnetic polymers.
发明内容Contents of the invention
本发明的目的是提供一系列基于聚乙烯亚胺的磁性聚合物及其制备方法。The object of the present invention is to provide a series of polyethyleneimine-based magnetic polymers and their preparation methods.
本发明解决技术问题所采用的技术方案:The technical solution adopted by the present invention to solve technical problems:
一种基于聚乙烯亚胺的磁性聚合物,它是具有以下化学结构通式:A magnetic polymer based on polyethyleneimine, which has the following general chemical structure:
其中合成A、B所用PEI的分子量在在600Da~1000kDa;Fe/N为0.25~0.85。The molecular weight of PEI used in the synthesis of A and B is 600Da~1000kDa; Fe/N is 0.25~0.85.
本发明的聚合物的合成方法,步骤如下:The synthetic method of polymer of the present invention, step is as follows:
(1)将分子量在在600Da~1000kDa聚乙烯亚胺溶解在无水乙醇中,按N原子与碘甲烷摩尔比1:0.6~10滴加到碘甲烷中;在20~50℃下搅拌反应结束,离心得到固体溶于水,在乙醇中沉淀,离心,真空干燥,得到中间产物a;(1) Dissolve polyethyleneimine with a molecular weight of 600Da to 1000kDa in absolute ethanol, and add it dropwise to methyl iodide at a molar ratio of N atom to methyl iodide of 1:0.6 to 10; stir the reaction at 20 to 50°C to complete , centrifuged to obtain a solid that was dissolved in water, precipitated in ethanol, centrifuged, and vacuum-dried to obtain an intermediate product a;
(2)将中间产物a溶于水中,向反应体系中加入相对于N原子过量的氯离子交换树脂,搅拌反应结束,过滤,将滤液旋蒸,真空干燥得到中间产物b;(2) Dissolving the intermediate product a in water, adding an excessive amount of chlorine ion exchange resin relative to the N atoms to the reaction system, stirring the reaction to complete, filtering, rotating the filtrate, and vacuum drying to obtain the intermediate product b;
(3)将固体b溶于甲醇中,加入与季铵化单元等当量的FeCl3·6H2O,搅拌反应结束,旋蒸,将产物在乙醚中洗涤沉淀,离心,真空干燥得到目标产物磁性聚合物。(3) Dissolve solid b in methanol, add FeCl 3 6H 2 O equivalent to the quaternization unit, stir and react, spin evaporate, wash and precipitate the product in ether, centrifuge, and vacuum dry to obtain the target product magnetic polymer.
本发明的磁性聚合物的合成方法,利用线性和支化聚乙烯亚胺为大分子反应物,后修饰合成磁性聚合物的方法。其本身的制备通过将聚乙烯亚胺季铵化,离子交换,然后用四卤合铁负离子取代原有的负离子合成具有磁性基元的主链型磁性聚合物。通过将不同链结构以及分子量的聚乙烯亚胺与碘甲烷反应生成季铵盐,季铵盐经过离子交换后与金属卤化物反应合成含有磁性基元的聚合物。通过这种方法制备出带有线性以及支化结构的主链型不同分子量的磁性聚合物。提供了一种新型、可行、高效的磁性聚合物的合成方法,该方法具有工艺简便、成本低、反应条件温和的特点。得到的磁性聚合物可以用做磁性膜材料、吸波材料以及CO2分离与吸附材料,较之以前的材料分别具有成本低,磁性大,以及稳定性强的特点。The synthesis method of the magnetic polymer of the present invention utilizes linear and branched polyethyleneimine as a macromolecular reactant, and post-modifies the method for synthesizing the magnetic polymer. Its preparation is through the quaternization of polyethyleneimine, ion exchange, and then replacing the original anion with tetrahalide ferric anion to synthesize a main chain type magnetic polymer with magnetic elements. Polyethyleneimines of different chain structures and molecular weights are reacted with methyl iodide to form quaternary ammonium salts, and after ion exchange, the quaternary ammonium salts react with metal halides to synthesize polymers containing magnetic elements. Main chain type magnetic polymers with different molecular weights with linear and branched structures were prepared by this method. A novel, feasible and efficient method for synthesizing magnetic polymers is provided, and the method has the characteristics of simple process, low cost and mild reaction conditions. The obtained magnetic polymer can be used as a magnetic film material, a wave absorbing material, and a CO 2 separation and adsorption material. Compared with the previous materials, it has the characteristics of low cost, high magnetism, and strong stability.
附图说明Description of drawings
图1实施例1聚合物1b的核磁图谱;The nuclear magnetic spectrum of Fig. 1 embodiment 1 polymer 1b;
图2实施例1磁性聚合物A1的拉曼图谱;The Raman spectrum of Fig. 2 embodiment 1 magnetic polymer A 1 ;
图3实施例1磁性聚合物A1的超导量子干涉图谱;The superconducting quantum interference spectrum of Fig. 3 embodiment 1 magnetic polymer A 1 ;
图4实施例2磁性聚合物A2的超导量子干涉图谱。Fig. 4 is the superconducting quantum interference spectrum of magnetic polymer A 2 in Example 2.
图5实施例3磁性聚合物A3的超导量子干涉图谱。Fig. 5 is the superconducting quantum interference spectrum of magnetic polymer A 3 in Example 3.
图6实施例4磁性聚合物B1的超导量子干涉图谱。Fig. 6 is the superconducting quantum interference spectrum of magnetic polymer B 1 in Example 4.
图7实施例5磁性聚合物B2的超导量子干涉图谱。Fig. 7 is the superconducting quantum interference spectrum of magnetic polymer B 2 in Example 5.
图8实施例6磁性聚合物B3的超导量子干涉图谱。Fig. 8 is the superconducting quantum interference spectrum of the magnetic polymer B3 in Example 6.
具体实施方式detailed description
通过下述实例有助于进一步理解本发明,但并不限制本发明。The following examples help to further understand the present invention, but do not limit the present invention.
实施例1Example 1
磁性聚合物A1的合成:Synthesis of Magnetic Polymer A1:
(1)将分子量600Da的线性PEI(270.8mg,6.3mmol)溶解在5ml无水乙醇中,滴加到碘甲烷(4ml,64.2mmol)中。在42℃下搅拌60h,反应结束后离心得到黄色固体溶于水,在乙醇中沉淀,离心,真空干燥,得到中间产物1a。(1) Dissolve linear PEI (270.8 mg, 6.3 mmol) with a molecular weight of 600 Da in 5 ml of absolute ethanol, and add dropwise into iodomethane (4 ml, 64.2 mmol). Stir at 42° C. for 60 h, centrifuge after the reaction to obtain a yellow solid which is dissolved in water, precipitate in ethanol, centrifuge, and vacuum-dry to obtain the intermediate product 1a.
(2)将1a(146.0mg,1.0mmol)溶于水中,向体系中加入4g氯离子交换树脂搅拌反应8h。过滤,将滤液旋蒸,真空干燥得到淡黄色固体1b,由表1元素分析得季铵化转化率为66%。如图1所示为1b的核磁氢谱,1HNMR(500Hz,D2O)化学位移δ:3.2-3.6(多重峰,与季铵化单元相连的-CH2-,-CH3),2.7-3.2(多重峰,与PEI单元相连的-CH2-)。(2) Dissolve 1a (146.0 mg, 1.0 mmol) in water, add 4 g of chloride ion exchange resin to the system and stir for 8 h. After filtration, the filtrate was rotary evaporated and dried in vacuo to obtain light yellow solid 1b. According to the elemental analysis in Table 1, the quaternization conversion rate was 66%. As shown in Figure 1, the H NMR spectrum of 1b, 1 HNMR (500Hz, D 2 O) chemical shift δ: 3.2-3.6 (multiple peaks, -CH 2 -, -CH 3 connected to the quaternization unit), 2.7 -3.2 (Multiplet, -CH2- attached to PEI unit).
(3)将1b(83.2mg,1.0mmol)以及与季铵化单元等当量的FeCl3·6H2O(170.4mg,0.633mmol)溶于5ml甲醇,搅拌16h,悬蒸,产物用无水乙醚洗涤,离心得到褐色固体,真空干燥得到磁性聚合物A1。图2所示为磁性聚合物A1的拉曼图谱。拉曼图谱中334cm-1处为FeCl4 -离子中Fe-Cl的吸收峰,与文献(S.Hayashietal.,ChemistryLetters,2004,33,1590-1591.)相符。如图3所示磁性聚合物A1的超导量子干涉图谱为一条过原点的直线,说明其具有顺磁性。(3) Dissolve 1b (83.2mg, 1.0mmol) and FeCl 3 6H 2 O (170.4mg, 0.633mmol) equivalent to the quaternization unit in 5ml of methanol, stir for 16h, suspend and steam, and distill the product with anhydrous ether Washing, centrifugation to obtain a brown solid, and vacuum drying to obtain Magnetic Polymer A 1 . Figure 2 shows the Raman spectrum of magnetic polymer A1. The Raman spectrum at 334cm -1 is the absorption peak of Fe-Cl in FeCl 4 -ion , which is consistent with the literature (S. Hayashi et al., Chemistry Letters, 2004, 33, 1590-1591.). As shown in Figure 3 , the superconducting quantum interference spectrum of magnetic polymer A1 is a straight line passing through the origin, indicating that it has paramagnetism.
实施例2Example 2
磁性聚合物A2的合成:Synthesis of Magnetic Polymer A2 :
(1)将分子量1000kDa的线性PEI(268.7mg,6.2mmol)溶解在5ml无水乙醇中,滴加到碘甲烷(3.9ml,62.6mmol)中。在50℃下搅拌100h,反应结束后离心得到黄色固体溶于水,在乙醇中沉淀,离心,真空干燥,得到中间产物2a。(1) Dissolve linear PEI (268.7 mg, 6.2 mmol) with a molecular weight of 1000 kDa in 5 ml of absolute ethanol, and add dropwise into iodomethane (3.9 ml, 62.6 mmol). Stir at 50° C. for 100 h, centrifuge after the reaction to obtain a yellow solid which is dissolved in water, precipitate in ethanol, centrifuge, and vacuum-dry to obtain the intermediate product 2a.
(2)将2a(175.6mg,1.0mmol)溶于水中,向体系中加入4g氯离子交换树脂搅拌反应12h。过滤,将滤液旋蒸,真空干燥得到淡黄色固体2b,由表1元素分析得季铵化转化率为85%。(2) Dissolve 2a (175.6mg, 1.0mmol) in water, add 4g of chloride ion exchange resin to the system and stir for 12h. After filtration, the filtrate was rotary evaporated and dried in vacuo to obtain light yellow solid 2b. According to the elemental analysis in Table 1, the quaternization conversion rate was 85%.
(3)将2b(83.2mg,1.0mmol)以及与季铵化单元等当量的FeCl3·6H2O(170.4mg,0.633mmol)溶于5ml甲醇,搅拌24h,悬蒸,产物用无水乙醚洗涤,离心得到褐色固体,真空干燥得到磁性聚合物A2。如图4所示磁性聚合物A2的超导量子干涉图谱为一条过原点的直线,说明其具有顺磁性。(3) Dissolve 2b (83.2mg, 1.0mmol) and FeCl 3 6H 2 O (170.4mg, 0.633mmol) equivalent to the quaternization unit in 5ml of methanol, stir for 24h, and steam the product with anhydrous ether Wash and centrifuge to obtain a brown solid, and dry in vacuum to obtain Magnetic Polymer A 2 . As shown in Figure 4, the superconducting quantum interference spectrum of the magnetic polymer A 2 is a straight line passing through the origin, indicating that it has paramagnetism.
实施例3Example 3
磁性聚合物A3的合成:Synthesis of Magnetic Polymer A3:
(1)将分子量10kDa的线性PEI(268.7mg,6.2mmol)溶解在5ml无水乙醇中,滴加到碘甲烷(0.23ml,0.37mmol)中。在20℃下搅拌1h,反应结束后离心得到黄色固体溶于水,在乙醇中沉淀,离心,真空干燥,得到中间产物3a。(1) Linear PEI (268.7mg, 6.2mmol) with a molecular weight of 10kDa was dissolved in 5ml of absolute ethanol, and added dropwise to iodomethane (0.23ml, 0.37mmol). Stirring at 20° C. for 1 h, after the reaction was completed, centrifuged to obtain a yellow solid which was dissolved in water, precipitated in ethanol, centrifuged, and dried in vacuo to obtain the intermediate product 3a.
(2)将3a(82.1mg,1.0mmol)溶于水中,向体系中加入4g氯离子交换树脂搅拌反应12h。过滤,将滤液旋蒸,真空干燥得到淡黄色固体3b,由表1元素分析得季铵化转化率为25%。(2) Dissolve 3a (82.1mg, 1.0mmol) in water, add 4g of chloride ion exchange resin to the system and stir for 12h. After filtration, the filtrate was rotary evaporated and dried in vacuo to obtain light yellow solid 3b. According to the elemental analysis in Table 1, the quaternization conversion rate was 25%.
(3)将3b(59.1mg,1.0mmol)以及与季铵化单元等当量的FeCl3·6H2O(170.4mg,0.633mmol)溶于5ml甲醇,搅拌24h,悬蒸,产物用无水乙醚洗涤,离心得到褐色固体,真空干燥得到磁性聚合物A3。如图5所示磁性聚合物A3的超导量子干涉图谱为一条过原点的直线,说明其具有顺磁性。(3) Dissolve 3b (59.1mg, 1.0mmol) and FeCl 3 6H 2 O (170.4mg, 0.633mmol) equivalent to the quaternization unit in 5ml of methanol, stir for 24h, suspend and steam, and the product is distilled with anhydrous diethyl ether Washing, centrifugation to obtain a brown solid, and vacuum drying to obtain magnetic polymer A 3 . As shown in Figure 5 , the superconducting quantum interference spectrum of the magnetic polymer A3 is a straight line passing through the origin, indicating that it has paramagnetism.
实施例4Example 4
磁性聚合物B1的合成:Synthesis of Magnetic Polymer B1:
(1)将分子量0.18kDa的支链PEI(344.3mg,8.0mmol)溶解在5ml无水乙醇中,缓慢滴加到碘甲烷(2.5ml,40.1mmol)中。在40℃下搅拌48h,反应结束后离心得到黄色固体溶于水,在乙醇中沉淀,离心,真空干燥,得到中间产物4a。(1) Dissolve branched-chain PEI (344.3 mg, 8.0 mmol) with a molecular weight of 0.18 kDa in 5 ml of absolute ethanol, and slowly dropwise add it into iodomethane (2.5 ml, 40.1 mmol). Stirring at 40° C. for 48 h, after the reaction was completed, centrifuged to obtain a yellow solid which was dissolved in water, precipitated in ethanol, centrifuged, and dried in vacuum to obtain the intermediate product 4a.
(2)将4a(114.8mg,1.0mmol)溶于水中,向体系中加入4g氯离子交换树脂搅拌反应12h。过滤,将溶液旋蒸,真空干燥得到淡黄色固体4b,由表1元素分析得季铵化转化率为46%。(3)将4b(72.2mg,1.0mmol)以及与季铵化单元等当量的FeCl3·6H2O(124.4mg,0.46mmol)溶于5ml甲醇,搅拌16h,悬蒸,产物用无水乙醚洗涤沉淀得到黄褐色固体,真空干燥得到磁性聚合物B1。如图6所示磁性聚合物B1的超导量子干涉图谱放大后有一条磁滞回线,说明其具有铁磁性。(2) Dissolve 4a (114.8mg, 1.0mmol) in water, add 4g of chloride ion exchange resin to the system and stir for 12h. After filtration, the solution was rotary evaporated, and vacuum dried to obtain light yellow solid 4b. According to the elemental analysis in Table 1, the quaternization conversion rate was 46%. (3) Dissolve 4b (72.2mg, 1.0mmol) and FeCl 3 6H 2 O (124.4mg, 0.46mmol) equivalent to the quaternization unit in 5ml of methanol, stir for 16h, suspend and steam, and the product is distilled with anhydrous ether The precipitate was washed to obtain a tan solid, which was dried in vacuo to obtain Magnetic Polymer B 1 . As shown in Figure 6, the enlarged superconducting quantum interference spectrum of magnetic polymer B 1 has a hysteresis loop, indicating that it has ferromagnetism.
实施例5Example 5
磁性聚合物B2的合成:Synthesis of Magnetic Polymer B2 :
(1)将分子量10kDa的支链PEI(258.1mg,6.0mmol)溶解在5ml无水乙醇中,缓慢滴加到碘甲烷(3.0ml,60.0mmol)中。在40℃下搅拌60h,反应结束后离心得到黄色固体溶于水,在乙醇中沉淀,离心,真空干燥,得到中间产物5a。(1) Dissolve branched PEI (258.1 mg, 6.0 mmol) with a molecular weight of 10 kDa in 5 ml of absolute ethanol, and slowly dropwise add it into iodomethane (3.0 ml, 60.0 mmol). Stir at 40° C. for 60 h, centrifuge after the reaction to obtain a yellow solid which is dissolved in water, precipitate in ethanol, centrifuge, and vacuum-dry to obtain intermediate product 5a.
(2)将5a(139.8mg,1.0mmol)溶于水中,向体系中加入5g氯离子交换树脂搅拌反应12h。过滤,将溶液旋蒸,真空干燥得到淡黄色固体5b,由表1元素分析得季铵化转化率为62%。(2) Dissolve 5a (139.8mg, 1.0mmol) in water, add 5g of chloride ion exchange resin to the system and stir for 12h. After filtration, the solution was rotary evaporated, and dried in vacuum to obtain light yellow solid 5b. According to the elemental analysis in Table 1, the quaternization conversion rate was 62%.
(3)将5b(83.0mg,1.0mmol)以及与季铵化单元等当量的FeCl3·6H2O(124.4mg,0.46mmol)溶于5ml甲醇,搅拌16h,悬蒸,产物用无水乙醚洗涤沉淀得到黄褐色固体,真空干燥得到磁性聚合物B2。如图7所示磁性聚合物B2的超导量子干涉图谱放大后有一条磁滞回线,说明其具有铁磁性。(3) Dissolve 5b (83.0mg, 1.0mmol) and FeCl 3 6H 2 O (124.4mg, 0.46mmol) equivalent to the quaternization unit in 5ml of methanol, stir for 16h, suspend and steam, and the product is distilled with anhydrous ether The precipitate was washed to obtain a tan solid, which was dried in vacuum to obtain the magnetic polymer B 2 . As shown in Figure 7, the superconducting quantum interference spectrum of magnetic polymer B 2 has a hysteresis loop after zooming in, indicating that it has ferromagnetism.
实施例6Example 6
磁性聚合物B3的合成:Synthesis of Magnetic Polymer B3 :
(1)将分子量100kDa的支链PEI(266.5mg,6.2mmol)溶解在5ml无水乙醇中,缓慢滴加到碘甲烷(2.5ml,40.1mmol)中。在50℃下搅拌72h,反应结束后离心得到黄色固体溶于水,在乙醇中沉淀,离心,真空干燥,得到中间产物6a。(1) Dissolve branched PEI (266.5 mg, 6.2 mmol) with a molecular weight of 100 kDa in 5 ml of absolute ethanol, and slowly dropwise add it into iodomethane (2.5 ml, 40.1 mmol). Stir at 50° C. for 72 h, centrifuge after the reaction to obtain a yellow solid which is dissolved in water, precipitate in ethanol, centrifuge, and dry in vacuo to obtain intermediate product 6a.
(2)将6a(153.7mg,1.0mmol)溶于水中,向体系中加入4g氯离子交换树脂搅拌反应12h。过滤,将溶液旋蒸,真空干燥得到淡黄色固体6b,由表1元素分析得季铵化转化率为71%。(2) Dissolve 6a (153.7mg, 1.0mmol) in water, add 4g of chloride ion exchange resin to the system and stir for 12h. After filtration, the solution was rotary evaporated, and vacuum dried to obtain a light yellow solid 6b. According to the elemental analysis in Table 1, the quaternization conversion rate was 71%.
(3)将6b(88.8mg,1.0mmol)以及与季铵化单元等当量的FeCl3·6H2O(124.4mg,0.46mmol)溶于5ml甲醇,搅拌16h,悬蒸,产物用无水乙醚洗涤沉淀得到黄褐色固体,真空干燥得到磁性聚合物B3。如图8所示磁性聚合物B3的超导量子干涉图谱放大后有一条磁滞回线,说明其具有铁磁性。(3) Dissolve 6b (88.8mg, 1.0mmol) and FeCl 3 6H 2 O (124.4mg, 0.46mmol) equivalent to the quaternization unit in 5ml of methanol, stir for 16h, suspend and distill the product with anhydrous diethyl ether The precipitate was washed to obtain a tan solid, which was dried in vacuo to obtain the magnetic polymer B 3 . As shown in Figure 8, the superconducting quantum interference spectrum of magnetic polymer B3 has a hysteresis loop after zooming in, indicating that it has ferromagnetism.
表1Table 1
以上对本发明做了示范性的描述,并非限制性的,本发明并不局限于实施例中所描述的技术,权限由权利要求所限定,基于本技术领域人员依据本发明所能够变化、重组等方法得到的与本发明相关的技术,都在本发明的保护范围之内。The above is an exemplary description of the present invention, which is not restrictive. The present invention is not limited to the technology described in the embodiments, and the authority is defined by the claims, based on the changes, reorganizations, etc. The technologies related to the present invention obtained by the method are all within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410534892.3A CN104311824B (en) | 2014-10-11 | 2014-10-11 | Magnetic polymer based on polymine and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410534892.3A CN104311824B (en) | 2014-10-11 | 2014-10-11 | Magnetic polymer based on polymine and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104311824A CN104311824A (en) | 2015-01-28 |
CN104311824B true CN104311824B (en) | 2016-05-11 |
Family
ID=52367151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410534892.3A Expired - Fee Related CN104311824B (en) | 2014-10-11 | 2014-10-11 | Magnetic polymer based on polymine and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104311824B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106146835B (en) * | 2016-07-13 | 2018-10-23 | 北京化工大学 | A kind of high molecular quaternary Antibacterial agent preparation method and application |
CN107163247A (en) * | 2017-05-25 | 2017-09-15 | 南京工业大学 | Preparation method of linear polyamide |
CN113248706B (en) * | 2021-04-20 | 2022-07-26 | 西北工业大学 | Porous organic polymer with specific function and pore structure and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101781437A (en) * | 2010-01-12 | 2010-07-21 | 南京大学 | Magnetic acrylic acid series strongly basic anion exchange microballoon resin and preparation method thereof |
CN102327768A (en) * | 2011-08-16 | 2012-01-25 | 湖南大学 | Imido magnetic nano-adsorbent as well as preparation method and application thereof |
CN103992309A (en) * | 2014-05-30 | 2014-08-20 | 天津大学 | Side chain type magnetic monomer and polymer and controllable synthesis method thereof |
CN104003926A (en) * | 2014-05-30 | 2014-08-27 | 天津大学 | Alkyl ammonium salt-based side chain type magnetic monomer and polymer as well as preparation method and application thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014127357A1 (en) * | 2013-02-15 | 2014-08-21 | The Regents Of The University Of California | Supramolecular magnetic nanoparticles |
-
2014
- 2014-10-11 CN CN201410534892.3A patent/CN104311824B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101781437A (en) * | 2010-01-12 | 2010-07-21 | 南京大学 | Magnetic acrylic acid series strongly basic anion exchange microballoon resin and preparation method thereof |
CN102327768A (en) * | 2011-08-16 | 2012-01-25 | 湖南大学 | Imido magnetic nano-adsorbent as well as preparation method and application thereof |
CN103992309A (en) * | 2014-05-30 | 2014-08-20 | 天津大学 | Side chain type magnetic monomer and polymer and controllable synthesis method thereof |
CN104003926A (en) * | 2014-05-30 | 2014-08-27 | 天津大学 | Alkyl ammonium salt-based side chain type magnetic monomer and polymer as well as preparation method and application thereof |
Non-Patent Citations (3)
Title |
---|
"Discovery of a Magnetic Ionic Liquid [bmim]FeCl4";Satoshi Hayashi et al;《Chemistry Letters》;20041113;第33卷(第12期);第1590-1591页 * |
"Enhancement on physical properties of flame retarded ethylene-vinyl acetate copolymer/ferric pyrophosphate composites through electron beam irradiation";Bibo Wang et al;《Compositea:Part B》;20110903(第43期);第641-646页 * |
"Unique properties of polyaniline in the presence of applied magnetic field and ferric chloride";Shengqi Li et al;《Materials Chemistry and Physics》;20100612(第124期);第168-172页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104311824A (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Solvent-controlled morphology of amino-functionalized bimetal metal–organic frameworks for asymmetric supercapacitors | |
Kandambeth et al. | Self-templated chemically stable hollow spherical covalent organic framework | |
Wang et al. | Nanoscale fluorescent metal–organic framework@ microporous organic polymer composites for enhanced intracellular uptake and bioimaging | |
Su et al. | A combination of “thiol− ene” click chemistry and surface initiated atom transfer radical polymerization: Fabrication of boronic acid functionalized magnetic graphene oxide composite for enrichment of glycoproteins | |
Deng et al. | Thermoresponsive graphene oxide‐PNIPAM nanocomposites with controllable grafting polymer chains via moderate in situ SET–LRP | |
CN105694051B (en) | Metal organic frame cross linking membrane based on click chemistry and preparation method and application | |
Zhu et al. | Fully crosslinked poly [cyclotriphosphazene‐co‐(4, 4′‐sulfonyldiphenol)] microspheres via precipitation polymerization and their superior thermal properties | |
CN103920462B (en) | There is the preparation method of the metal-organic framework nano-particle material of meso-hole structure | |
Qiao et al. | Unlocking synthesis of polyhedral oligomeric silsesquioxane-based three-dimensional polycubane covalent organic frameworks | |
Maslekar et al. | Mechanistic aspects of the functionalization of graphene oxide with ethylene diamine: implications for energy storage applications | |
Du et al. | Hard-and-Soft Integration Strategy for Preparation of Exceptionally Stable Zr (Hf)-UiO-66 via Thiol–Ene Click Chemistry | |
Mahdavi et al. | Grafting of sulfonated monomer onto an amino‐silane functionalized 2‐aminoterephthalate metal− organic framework via surface‐initiated redox polymerization: proton‐conducting solid electrolytes | |
Cao et al. | The synthesis of magnetic lysozyme‐imprinted polymers by means of distillation–precipitation polymerization for selective protein enrichment | |
Abbas et al. | Morphology control of novel cross-linked ferrocenedimethanol derivative cyclophosphazenes: From microspheres to nanotubes and their enhanced physicochemical performances | |
CN104311824B (en) | Magnetic polymer based on polymine and preparation method thereof | |
US9842679B2 (en) | POSS-containing in-situ composite nanogel with magnetic responsiveness and method for preparing the same | |
Mallakpour et al. | Dispersion of surface-modified nano-Fe3O4 with poly (vinyl alcohol) in chiral poly (amide-imide) bearing pyromellitoyl-bis-l-phenylalanine segments | |
CN104003926B (en) | Based on the side chain type magnetic monomer of alkylammonium salt, polymer and its preparation method and application | |
Liang et al. | Surface β-Cyclodextrin polymer coated Fe3O4 magnetic nanoparticles: synthesis, characterization and application on efficient adsorption of malachite green | |
Wu et al. | A facile strategy to fabricate hollow spherical polyaniline and its application to dyes removal | |
da Costa Júnior et al. | A self-assembly of graphene oxide@ Fe3O4/metallo-phthalocyanine nanohybrid materials: synthesis, characterization, dielectric and thermal properties | |
McHale et al. | Synthesis of Prussian blue coordination polymer nanocubes via confinement of the polymerization field using miniemulsion periphery polymerization (MEPP) | |
CN103992309B (en) | Side chain type magnetic monomer, polymer and its controllable synthesis method | |
CN104497234A (en) | Preparation method of magnetic hybrid material with UCST (utmost critical solution temperature) | |
Gupta et al. | Interfacial polymerization of polyanthranilic acid: morphology controlled synthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160511 Termination date: 20211011 |