CN104310948B - A kind of three D print the preparation method of rapid shaping inorganic powder materials - Google Patents
A kind of three D print the preparation method of rapid shaping inorganic powder materials Download PDFInfo
- Publication number
- CN104310948B CN104310948B CN201410458299.5A CN201410458299A CN104310948B CN 104310948 B CN104310948 B CN 104310948B CN 201410458299 A CN201410458299 A CN 201410458299A CN 104310948 B CN104310948 B CN 104310948B
- Authority
- CN
- China
- Prior art keywords
- inorganic powder
- powder material
- rapid prototyping
- preparation
- add
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000843 powder Substances 0.000 title claims abstract description 125
- 239000000463 material Substances 0.000 title claims abstract description 120
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 238000007493 shaping process Methods 0.000 title abstract 3
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000004831 Hot glue Substances 0.000 claims abstract description 14
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000010146 3D printing Methods 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004927 clay Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 25
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 239000011230 binding agent Substances 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000002203 pretreatment Methods 0.000 abstract 2
- 239000007921 spray Substances 0.000 abstract 1
- 238000000465 moulding Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 239000004677 Nylon Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000012778 molding material Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000000110 selective laser sintering Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Abstract
Description
技术领域 technical field
本发明涉及一种三D打印无机粉末快速成型材料的制备方法,属于快速成型的材料领域,特别涉及一种用于三D打印快速成型无机粉末材料的制备工艺。 The invention relates to a method for preparing a 3D printing inorganic powder rapid prototyping material, which belongs to the field of rapid prototyping materials, and in particular to a preparation process for a 3D printing rapid prototyping inorganic powder material.
背景技术 Background technique
三维打印(ThreeDimonsionPrinting,简称三DP)是一种快速成型技术,可将计算机设计的三维模型数据分为层片模型数据,将特定原材料一层一层堆积成型直至完成整个实体的构建。三DP成型具有成本低、工作过程无污染、成型速度快等优点。 Three Dimonsion Printing (Three Dimonsion Printing, referred to as Three DP) is a rapid prototyping technology that can divide the three-dimensional model data designed by the computer into layer model data, and build specific raw materials layer by layer until the entire entity is constructed. Three-DP molding has the advantages of low cost, no pollution in the working process, and fast molding speed.
快速成形技术又称快速原型制造(RapidPrototypingManufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近年来制造领域的一个重大成果。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。 Rapid prototyping technology, also known as rapid prototyping manufacturing (RPM) technology, was born in the late 1980s. It is a high-tech manufacturing technology based on material accumulation method and is considered to be a major achievement in the manufacturing field in recent years. It integrates mechanical engineering, CAD, reverse engineering technology, layered manufacturing technology, numerical control technology, material science, and laser technology, and can automatically, directly, quickly and accurately transform design ideas into prototypes with certain functions or directly manufacture parts , so as to provide a high-efficiency and low-cost realization means for parts prototype production and verification of new design ideas. That is, rapid prototyping technology is to use the data of three-dimensional CAD to accumulate layers of materials into solid prototypes through rapid prototyping machines.
三D打印技术有三DP技术、FDM熔融层积成型技术、SLA立体平版印刷技术、SLS选区激光烧结、DLP激光成型技术和UV紫外线成型技术,技术不同所用材料则完全不同,与我们普通人和家庭所应用的最为普遍的是FDM三D打印技术,这种技术可以进入到家庭,操作简单,所用材料普遍易得,这种技术打印出产品也接近我们的生活用品,所用的材料主要是环保高分子材料,如:PLA、PCLPHAPBSPA ABSPCPS POM PVC,因为这种技术是一般是在桌面上打印,熔融的高分子材料所产生的气味或是分解产生有害物质直接与我们的人接触,容易造成安全问题。工业零件等需要有一定强度功能的制件可以选择相适应的材料。 3D printing technology includes three DP technology, FDM fusion lamination molding technology, SLA stereolithography technology, SLS selective laser sintering technology, DLP laser molding technology and UV ultraviolet molding technology. The materials used in different technologies are completely different, which are different from our ordinary people and families. The most common application is FDM 3D printing technology. This technology can be used in the home. It is easy to operate and the materials used are widely available. The products printed by this technology are also close to our daily necessities. The materials used are mainly environmentally friendly and high-quality. Molecular materials, such as: PLA, PCLPHAPBSPA ABSPCPS POM PVC, because this technology is generally printed on the desktop, the smell or decomposition of the molten polymer material produces harmful substances that come into direct contact with our people, which is likely to cause safety problems . Suitable materials can be selected for industrial parts and other parts that require a certain strength function.
在现有的成型材料领域中,由于SLS快速成型技术具有原料来源多样和零件的构建时间较短等优点,故在快速成型领域有着较广泛的应用。中国发明专利CN1379061A中公开了一种用于激光烧结成型制品的尼龙粉末材料,通过化学合成和工艺的改进,对尼龙粉末材料的表面进行处理,得到了烧结性能优良,成型制品强度高,韧性好的产品,简化了激光烧结尼龙材料的制备工艺,降低了成本。但SLS工艺存在着诸多不足严重限制了SLS的进一步应用和普及;从而也使基于SLS工艺成型材料使用受到限制。 In the field of existing molding materials, SLS rapid prototyping technology has a wide range of applications in the field of rapid prototyping because of its advantages such as diverse sources of raw materials and short construction time of parts. Chinese invention patent CN1379061A discloses a nylon powder material used for laser sintering molding products. Through chemical synthesis and process improvement, the surface of the nylon powder material is treated to obtain excellent sintering performance, high strength molding products, and good toughness. The product simplifies the preparation process of laser sintered nylon material and reduces the cost. However, there are many shortcomings in the SLS process that seriously limit the further application and popularization of SLS; thus, the use of molding materials based on the SLS process is also limited.
三DP工艺与SLS工艺类似,均采用粉末材料选区成型,所不同的是三DP工艺的粉末材料不是通过激光的层层烧结连接起来的,而是在喷头的作用下,用粘接剂(如硅胶)将零件的截面信息“印刷”在粉末材料上面。由于三DP是通过喷头喷洒粘接剂成型,避免了使用激光等复杂昂贵的烧结设备的使用成本,利于快速成型技术的使用和推广。中国发明专利CN102093646B中公开了一种用于三维打印快速成型材料的制备方法,是将粉末材料进行一系列的改性得到改性粉末材料A,使用时改性粉末材料A与粘接剂B配用。 The three-DP process is similar to the SLS process, both of which are formed by powder material selection. The difference is that the powder materials of the three-DP process are not connected by layer-by-layer laser sintering, but under the action of the nozzle, with an adhesive (such as Silica gel) "prints" the cross-sectional information of the part on the powder material. Since the three DPs are formed by spraying the adhesive through the nozzle, the cost of using complex and expensive sintering equipment such as lasers is avoided, which is conducive to the use and promotion of rapid prototyping technology. Chinese invention patent CN102093646B discloses a preparation method for three-dimensional printing rapid prototyping materials, which is to carry out a series of modifications on the powder material to obtain the modified powder material A, and the modified powder material A is mixed with the binder B during use. use.
由于三DP快速成型材料粉末的粒径较大,使薄壁零件不易成型,微小零件的成型精度不够高,表面存在较明显的粗糙感;此外,由于粘结剂不够牢固,存在着成型件强度低等不足。此外,当前市场上所售的三DP工艺成型材料基本被国外公司所垄断,售价高,严重制约三DP成型技术在我国的推广和普及。 Due to the large particle size of the three DP rapid prototyping material powder, it is difficult to form thin-walled parts, the forming accuracy of tiny parts is not high enough, and the surface has a more obvious roughness; Low and insufficient. In addition, the three-DP molding materials currently sold in the market are basically monopolized by foreign companies, and the price is high, which seriously restricts the promotion and popularization of the three-DP molding technology in my country.
本发明通过对粉末材料进行表面分散改性,得到超细粉末材料可达到微米级甚至亚微米级,而且粒径均一的粉末材料;从粉末改性的配方入手,得到的粉末无机材料在一定的温度和压力下可直接成型,不需要喷洒粘接剂,大大简化才做程序。所得到产品不仅强度高,也使薄壁微小零件的成型在三DP快速成型机上的实现成为可能;此外,本专利提供的方法简单,成本低。 In the present invention, the superfine powder material can reach the micron level or even the submicron level by performing surface dispersion modification on the powder material, and the powder material with uniform particle size is obtained; starting from the powder modification formula, the obtained powder inorganic material is It can be formed directly under temperature and pressure without spraying adhesive, which greatly simplifies the procedure. The obtained product not only has high strength, but also makes it possible to realize the molding of thin-walled tiny parts on a three-DP rapid prototyping machine; in addition, the method provided by this patent is simple and low in cost.
发明内容 Contents of the invention
本发明的目是提供一种三D打印快速成型无机粉末材料的制备方法,快速成型粉末不需要喷洒粘结剂可加热直接成型; The purpose of the present invention is to provide a preparation method of 3D printing rapid prototyping inorganic powder material, the rapid prototyping powder can be directly formed by heating without spraying binder;
本发明的目的通过以下技术方案实现。 The purpose of the present invention is achieved through the following technical solutions.
一种三D打印快速成型无机粉末材料的制备方法,特征在于该方法具有以下工艺步骤: A preparation method of 3D printing rapid prototyping inorganic powder material, characterized in that the method has the following process steps:
(1)无机粉末材料预处理:在研磨机中,按质量百分浓度加入乙烯基三乙氧基硅烷:8%~22%,加入无机粉末材料:78%~92%,各组分之和为百分之百,开启研磨机转速在200转/分钟,室温研磨4~6h,得到预处理无机粉末材料; (1) Inorganic powder material pretreatment: In the grinder, add vinyltriethoxysilane: 8%~22% according to mass percentage concentration, add inorganic powder material: 78%~92%, the sum of each component 100%, turn on the grinder at 200 rpm, and grind at room temperature for 4-6 hours to obtain pretreated inorganic powder materials;
(2)三D打印快速成型无机粉末材料的制备:在研磨机中,按质量百分浓度加入预处理无机粉末材料:85%~96%,加入EVA热熔胶粉:4%~15%,各组分之和为百分之百,开启研磨机转速在200转/分钟,室温研磨4~6h,所得到三D打印快速成型无机粉末材料,三D打印快速成型无机粉末材料的粒径在100~200nm范围内。 (2) Preparation of 3D printing rapid prototyping inorganic powder materials: In the grinder, add pretreated inorganic powder materials according to mass percentage concentration: 85%~96%, add EVA hot melt adhesive powder: 4%~15%, The sum of each component is 100%, turn on the grinder at a speed of 200 rpm, grind at room temperature for 4~6 hours, and obtain the 3D printing rapid prototyping inorganic powder material, the particle size of the 3D printing rapid prototyping inorganic powder material is 100~200nm within range.
在步骤(1)中所述的无机粉末材料为陶土、三氧化二铝、碳化硅、二氧化硅、玻璃粉,其粉末材料的粒径在100~150nm范围内。 The inorganic powder material described in step (1) is pottery clay, aluminum oxide, silicon carbide, silicon dioxide, glass powder, and the particle size of the powder material is within the range of 100-150 nm.
在步骤(1)中所述的无机粉末材料要在105~110℃范围内干燥2~3h。 The inorganic powder material described in step (1) should be dried at 105-110°C for 2-3 hours.
在步骤(1)中所述的乙烯基三乙氧基硅烷与无机粉末材料的质量比在1:8~10范围内最优。 The mass ratio of the vinyltriethoxysilane to the inorganic powder material in the step (1) is optimal in the range of 1:8~10.
在步骤(2)中所述的EVA热熔胶粉的粒径小于500nm。 The particle size of the EVA hot melt adhesive powder described in step (2) is less than 500nm.
在步骤(2)中所述的EVA热熔胶粉与预处理无机粉末材料的质量比在1:10~12.5范围最优。 The mass ratio of the EVA hot melt adhesive powder to the pretreated inorganic powder material in step (2) is optimal in the range of 1:10-12.5.
本发明所述的颗粒度测试方法是采用激光粒度仪测得的粒度当量直径尺寸。 The particle size test method of the present invention is the particle size equivalent diameter measured by a laser particle size analyzer.
本发明的另一目的是提供一种用于三D打印快速成型粉末材料在三维打印机上成型的应用,特点为:取快速成型粉末材料置于三维打印快速成型机上,在铺展均匀的快速成型粉末材料的水平平面X和Y方向上(X和Y方向分别代表水平面的横向和纵向),然后在平面竖直Z方向上下降一定高度。再对下一层进行快速成型粉末材料的铺展,如此重复,全部加料完成后,温度升到140~180℃范围内,压力在2MPa~6MPa的范围内可直接成型。 Another object of the present invention is to provide an application for 3D printing rapid prototyping powder material molding on a three-dimensional printer, characterized in that: take the rapid prototyping powder material and place it on the three-dimensional printing rapid prototyping machine, and spread the uniform rapid prototyping powder The material is placed in the X and Y directions of the horizontal plane (the X and Y directions represent the horizontal and vertical directions of the horizontal plane, respectively), and then descends to a certain height in the vertical Z direction of the plane. Then spread the rapid prototyping powder material on the next layer, and repeat this. After all the materials are added, the temperature rises to 140~180°C, and the pressure can be directly formed within the range of 2MPa~6MPa.
本发明与现有技术比较,具有如下优点及有益效果: Compared with the prior art, the present invention has the following advantages and beneficial effects:
(1)本发明获得三D打印快速成型粉末材料材料,在打印成型过程中不需要喷洒粘结剂,在温度升高到140~180℃,压力在2MPa~6MPa的范围内可直接成型,成型操作简单。 (1) The present invention obtains 3D printing rapid prototyping powder materials, which do not need to be sprayed with binders during the printing process, and can be directly molded when the temperature rises to 140~180°C and the pressure is within the range of 2MPa~6MPa. easy to use.
(2)本发明获得三D打印快速成型粉末材料,颗粒可达到亚微米级甚至纳米级,具有中位径粒小,粒度分布范围窄的特点,性质稳定;由这种快速成型粉末材料可以制造薄壁模型或微小零部件,制造出产品具有表面光泽度高,强度好,精度高等特点。 (2) The present invention obtains 3D printing rapid prototyping powder material, the particles can reach submicron or even nanometer level, and has the characteristics of small median diameter, narrow particle size distribution range, and stable properties; this rapid prototyping powder material can be manufactured Thin-walled models or tiny parts, the manufactured products have the characteristics of high surface gloss, good strength and high precision.
(3)本发明获得三D打印快速成型粉末材料,具有制备工艺简单,条件易于控制,生产成本低,易于工业化生产。 (3) The 3D printing rapid prototyping powder material obtained by the present invention has the advantages of simple preparation process, easy control of conditions, low production cost, and easy industrial production.
具体实施方式 detailed description
实施例1 Example 1
(1)无机粉末材料预处理:在研磨机中,分别加入乙烯基三乙氧基硅烷:15mL,加入无机粉末材料:85g,开启研磨机转速在200转/分钟,室温研磨5h,得到预处理无机粉末材料; (1) Pretreatment of inorganic powder materials: In the grinder, add vinyltriethoxysilane: 15mL, add inorganic powder materials: 85g, turn on the grinder at 200 rpm, and grind for 5 hours at room temperature to obtain pretreatment Inorganic powder materials;
(2)三D打印快速成型无机粉末材料的制备:在研磨机中,分别加入预处理无机粉末材料:90g,加入EVA热熔胶粉:10g,开启研磨机转速在200转/分钟,室温研磨5h,所得到三D打印快速成型无机粉末材料。 (2) Preparation of 3D printing rapid prototyping inorganic powder materials: In the grinder, add pretreated inorganic powder materials: 90g, add EVA hot melt adhesive powder: 10g, turn on the grinder at a speed of 200 rpm, and grind at room temperature 5h, the obtained 3D printing rapid prototyping inorganic powder material.
实施例2 Example 2
(1)无机粉末材料预处理:在研磨机中,分别加入乙烯基三乙氧基硅烷:10mL,加入无机粉末材料:90g,开启研磨机转速在200转/分钟,室温研磨6h,得到预处理无机粉末材料; (1) Pretreatment of inorganic powder materials: In the grinder, add vinyltriethoxysilane: 10mL, add inorganic powder materials: 90g, turn on the grinder at a speed of 200 rpm, and grind at room temperature for 6 hours to obtain pretreatment Inorganic powder materials;
(2)三D打印快速成型无机粉末材料的制备:在研磨机中,分别加入预处理无机粉末材料:85g,加入EVA热熔胶粉:15g,开启研磨机转速在200转/分钟,室温研磨4h,所得到三D打印快速成型无机粉末材料。 (2) Preparation of 3D printing rapid prototyping inorganic powder materials: In the grinder, add pretreated inorganic powder materials: 85g, add EVA hot melt adhesive powder: 15g, turn on the grinder at a speed of 200 rpm, and grind at room temperature 4h, the obtained 3D printing rapid prototyping inorganic powder material.
实施例3 Example 3
(1)无机粉末材料预处理:在研磨机中,分别加入乙烯基三乙氧基硅烷:20mL,加入无机粉末材料:80g,开启研磨机转速在200转/分钟,室温研磨4h,得到预处理无机粉末材料; (1) Pretreatment of inorganic powder materials: In the grinder, add vinyltriethoxysilane: 20mL, add inorganic powder materials: 80g, turn on the grinder at a speed of 200 rpm, and grind for 4 hours at room temperature to obtain pretreatment Inorganic powder materials;
(2)三D打印快速成型无机粉末材料的制备:在研磨机中,分别加入预处理无机粉末材料:95g,加入EVA热熔胶粉:5g,开启研磨机转速在200转/分钟,室温研磨6h,所得到三D打印快速成型无机粉末材料。 (2) Preparation of 3D printing rapid prototyping inorganic powder materials: In the grinder, add pretreated inorganic powder materials: 95g, add EVA hot melt adhesive powder: 5g, turn on the grinder at a speed of 200 rpm, and grind at room temperature 6h, the obtained 3D printing rapid prototyping inorganic powder material.
实施例4 Example 4
(1)无机粉末材料预处理:在研磨机中,分别加入乙烯基三乙氧基硅烷:8mL,加入无机粉末材料:92g,开启研磨机转速在200转/分钟,室温研磨6h,得到预处理无机粉末材料; (1) Pretreatment of inorganic powder materials: In the grinder, add vinyltriethoxysilane: 8mL, add inorganic powder materials: 92g, turn on the grinder at 200 rpm, and grind for 6 hours at room temperature to obtain pretreatment Inorganic powder materials;
(2)三D打印快速成型无机粉末材料的制备:在研磨机中,分别加入预处理无机粉末材料:87g,加入EVA热熔胶粉:13g,开启研磨机转速在200转/分钟,室温研磨5h,所得到三D打印快速成型无机粉末材料。 (2) Preparation of 3D printing rapid prototyping inorganic powder materials: In the grinder, add pretreated inorganic powder materials: 87g, add EVA hot melt adhesive powder: 13g, turn on the grinder at 200 rpm, and grind at room temperature 5h, the obtained 3D printing rapid prototyping inorganic powder material.
实施例5 Example 5
(1)无机粉末材料预处理:在研磨机中,分别加入乙烯基三乙氧基硅烷:22mL,加入无机粉末材料:78g,开启研磨机转速在200转/分钟,室温研磨4h,得到预处理无机粉末材料; (1) Pretreatment of inorganic powder materials: In the grinder, add vinyltriethoxysilane: 22mL, add inorganic powder materials: 78g, turn on the grinder at 200 rpm, and grind for 4 hours at room temperature to obtain pretreatment Inorganic powder materials;
(2)三D打印快速成型无机粉末材料的制备:在研磨机中,分别加入预处理无机粉末材料:92g,加入EVA热熔胶粉:7g,开启研磨机转速在200转/分钟,室温研磨6h,所得到三D打印快速成型无机粉末材料。 (2) Preparation of 3D printing rapid prototyping inorganic powder materials: In the grinder, add pretreated inorganic powder materials: 92g, add EVA hot melt adhesive powder: 7g, turn on the grinder at a speed of 200 rpm, and grind at room temperature 6h, the obtained 3D printing rapid prototyping inorganic powder material.
实施例6 Example 6
(1)无机粉末材料预处理:在研磨机中,分别加入乙烯基三乙氧基硅烷:10L,加入无机粉末材料:90kg,开启研磨机转速在200转/分钟,室温研磨5h,得到预处理无机粉末材料; (1) Inorganic powder material pretreatment: In the grinder, add vinyltriethoxysilane: 10L, add inorganic powder material: 90kg, turn on the grinder at 200 rpm, and grind for 5 hours at room temperature to obtain pretreatment Inorganic powder materials;
(2)三D打印快速成型无机粉末材料的制备:在研磨机中,分别加入预处理无机粉末材料:92kg,加入EVA热熔胶粉:8kg,开启研磨机转速在200转/分钟,室温研磨5h,所得到三D打印快速成型无机粉末材料。 (2) Preparation of 3D printing rapid prototyping inorganic powder materials: In the grinder, add pretreated inorganic powder materials: 92kg, add EVA hot melt adhesive powder: 8kg, turn on the grinder at a speed of 200 rpm, and grind at room temperature 5h, the obtained 3D printing rapid prototyping inorganic powder material.
实施例7 Example 7
(1)无机粉末材料预处理:在研磨机中,分别加入乙烯基三乙氧基硅烷:18mL,加入无机粉末材料:82g,开启研磨机转速在200转/分钟,室温研磨6h,得到预处理无机粉末材料; (1) Inorganic powder material pretreatment: In the grinder, add vinyltriethoxysilane: 18mL, add inorganic powder material: 82g, turn on the grinder at 200 rpm, and grind at room temperature for 6 hours to obtain pretreatment Inorganic powder materials;
(2)三D打印快速成型无机粉末材料的制备:在研磨机中,分别加入预处理无机粉末材料:96g,加入EVA热熔胶粉:4g,开启研磨机转速在200转/分钟,室温研磨6h,所得到三D打印快速成型无机粉末材料。 (2) Preparation of 3D printing rapid prototyping inorganic powder materials: In the grinder, add pretreated inorganic powder materials: 96g, add EVA hot melt adhesive powder: 4g, turn on the grinder at a speed of 200 rpm, and grind at room temperature 6h, the obtained 3D printing rapid prototyping inorganic powder material.
使用方法:取实施例中合成的快速成型无机粉末材料置于三维打印快速成型机上,在铺展均匀的快速成型粉末材料的水平平面X和Y方向上(X和Y方向分别代表水平面的横向和纵向),然后在平面竖直Z方向上下降一定高度。再对下一层进行快速成型粉末材料的铺展,如此重复,全部加料完成后,温度升到110~180℃范围内,压力在2MPa~6MPa的范围内可直接成型。得到的产品有较高的抗压性、光泽度好。 Method of use: take the rapid prototyping inorganic powder material synthesized in the embodiment and place it on the three-dimensional printing rapid prototyping machine, on the horizontal plane X and Y directions of the evenly spread rapid prototyping powder material (the X and Y directions represent the transverse and longitudinal directions of the horizontal plane respectively ), and then descend to a certain height in the vertical Z direction of the plane. Then spread the rapid prototyping powder material on the next layer, and repeat this. After all the materials are added, the temperature rises to 110~180°C, and the pressure can be directly formed within the range of 2MPa~6MPa. The obtained product has high pressure resistance and good gloss.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410458299.5A CN104310948B (en) | 2014-09-10 | 2014-09-10 | A kind of three D print the preparation method of rapid shaping inorganic powder materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410458299.5A CN104310948B (en) | 2014-09-10 | 2014-09-10 | A kind of three D print the preparation method of rapid shaping inorganic powder materials |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104310948A CN104310948A (en) | 2015-01-28 |
CN104310948B true CN104310948B (en) | 2016-01-20 |
Family
ID=52366299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410458299.5A Expired - Fee Related CN104310948B (en) | 2014-09-10 | 2014-09-10 | A kind of three D print the preparation method of rapid shaping inorganic powder materials |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104310948B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104893267A (en) * | 2015-05-29 | 2015-09-09 | 江苏浩宇电子科技有限公司 | 3D (Three-Dimensional) printing material with mosquito-repelling sensitization effect as well as preparation method and application thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104944962B (en) * | 2015-03-23 | 2017-08-15 | 济南大学 | A kind of preparation of laser sintering rapid forming silicon nitride ceramic powder |
CN104744050B (en) * | 2015-03-23 | 2016-08-03 | 济南大学 | A kind of preparation of rapid three dimensional printing forming boron nitride powder material |
CN104788081B (en) * | 2015-03-23 | 2016-11-09 | 济南大学 | A kind of preparation method of aluminum oxide powder 3D printing material |
CN105195679A (en) * | 2015-09-21 | 2015-12-30 | 济南大学 | Preparing method for fast forming epoxy resin coated sand used for 3D printing |
CN105924116A (en) * | 2016-05-05 | 2016-09-07 | 苏州奥茵三维打印科技有限公司 | Inorganic and organic compound modified fast-curing material |
CN106396620B (en) * | 2016-09-07 | 2018-12-28 | 济南大学 | A kind of preparation for 3DP technique rapid shaping black pottery powder body material |
CN107973528B (en) * | 2017-11-08 | 2020-10-30 | 沙河市远维电子科技有限公司 | Formula and preparation method of 3D printed colored glass product |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103936392B (en) * | 2014-03-13 | 2015-07-08 | 济南大学 | A kind of preparation method of 3D printing inorganic powder molding material |
CN103980592B (en) * | 2014-04-30 | 2016-02-24 | 中国科学院化学研究所 | A kind of high filler loading capacity micro nano powder/polymer composites for 3D printing and preparation method thereof and goods |
-
2014
- 2014-09-10 CN CN201410458299.5A patent/CN104310948B/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104893267A (en) * | 2015-05-29 | 2015-09-09 | 江苏浩宇电子科技有限公司 | 3D (Three-Dimensional) printing material with mosquito-repelling sensitization effect as well as preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104310948A (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104310948B (en) | A kind of three D print the preparation method of rapid shaping inorganic powder materials | |
CN103936392B (en) | A kind of preparation method of 3D printing inorganic powder molding material | |
CN103936428B (en) | A preparation method for three-dimensional printing rapid prototyping powder material | |
CN104725046B (en) | A kind of 3D prints the preparation of rapid shaping zirconium-aluminium ceramic powder material | |
CN104629161B (en) | A kind of low melting point 3D printing material and preparation method thereof | |
CN105130402B (en) | A kind of nano ceramic material and its 3D printing forming method for 3D printing | |
CN104744049B (en) | Preparation of a laser sintering 3D printing rapid prototyping silicon nitride powder material | |
CN104031304B (en) | A kind of ultraviolet light cross-linking polymer materials for 3D printing and its preparation method and application | |
CN103980705B (en) | The high-performance polyimide Moulding powder material that a kind of applicable 3D prints and 3D printing shaping method thereof | |
CN103980410B (en) | A kind of composition and method of making the same for 3D printing and goods | |
CN103817767A (en) | Method for manufacturing ceramic products with 3D printing technology | |
CN106348746A (en) | Preparation of laser-sintered 3D-printed YAG transparent ceramic powder | |
CN105645840A (en) | Ceramic material for 3D printing and manufacturing method thereof | |
CN104788102B (en) | Preparation method for nano-silicon nitride powder for laser sintering 3D printing technology | |
CN103980682A (en) | 3D printing polycaprolactone material and preparation method thereof | |
CN104291832B (en) | A kind of three D print the preparation method of rapid shaping nanometer titanium dioxide zirconia material | |
CN104399986A (en) | 3D printing method for preparing base metals and alloy components thereof | |
CN104291338B (en) | A kind of three D print the preparation method of rapid shaping nm-class silicon carbide material | |
CN104744050B (en) | A kind of preparation of rapid three dimensional printing forming boron nitride powder material | |
CN104446392A (en) | Calcium-doped inorganic nanocomposite material for 3D printing and preparation method of calcium-doped inorganic nanocomposite material | |
CN107963892A (en) | A kind of ink silicon-nitride-based ceramic powder 3D printing base substrate method and its forming method | |
CN104908143B (en) | Preparation method for laser sintering 3D (three-dimensional) printing rapid prototyping alumina powder | |
CN108017378A (en) | A kind of water-based alumina base 3D printing base substrate method and its forming method | |
CN106348745A (en) | Preparation method for rapidly forming YAG transparent ceramic powder material by 3DP (three-dimensional printing) technology | |
CN106316388A (en) | Preparation for laser sintering 3D (three-dimension) printing and molding barium titanate ceramics powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160120 Termination date: 20190910 |
|
CF01 | Termination of patent right due to non-payment of annual fee |