CN104294071A - A kind of low-temperature glass phase reinforced SiCp/Cu composite material and preparation method thereof - Google Patents
A kind of low-temperature glass phase reinforced SiCp/Cu composite material and preparation method thereof Download PDFInfo
- Publication number
- CN104294071A CN104294071A CN201410011383.2A CN201410011383A CN104294071A CN 104294071 A CN104294071 A CN 104294071A CN 201410011383 A CN201410011383 A CN 201410011383A CN 104294071 A CN104294071 A CN 104294071A
- Authority
- CN
- China
- Prior art keywords
- sic
- powder
- preparation
- temperature glass
- low temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 55
- 239000011521 glass Substances 0.000 title claims abstract description 53
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims abstract description 23
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 7
- 239000010949 copper Substances 0.000 claims description 70
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 70
- 239000000843 powder Substances 0.000 claims description 46
- 238000003756 stirring Methods 0.000 claims description 15
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 13
- 238000000227 grinding Methods 0.000 claims description 12
- 238000001354 calcination Methods 0.000 claims description 9
- 238000000967 suction filtration Methods 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910021431 alpha silicon carbide Inorganic materials 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 5
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical group [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 5
- 150000001879 copper Chemical class 0.000 claims description 4
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 238000006722 reduction reaction Methods 0.000 claims description 4
- 238000003980 solgel method Methods 0.000 claims description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims 4
- 229910021417 amorphous silicon Inorganic materials 0.000 claims 2
- 238000009413 insulation Methods 0.000 claims 2
- 238000010792 warming Methods 0.000 claims 2
- 238000000748 compression moulding Methods 0.000 claims 1
- 229960003280 cupric chloride Drugs 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000003746 solid phase reaction Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 230000002401 inhibitory effect Effects 0.000 abstract description 2
- 238000002844 melting Methods 0.000 abstract description 2
- 230000008018 melting Effects 0.000 abstract description 2
- 239000011156 metal matrix composite Substances 0.000 abstract description 2
- 239000000376 reactant Substances 0.000 abstract description 2
- 239000012071 phase Substances 0.000 abstract 7
- 239000007795 chemical reaction product Substances 0.000 abstract 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 53
- 239000000243 solution Substances 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 229910003465 moissanite Inorganic materials 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 238000010671 solid-state reaction Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000861 blow drying Methods 0.000 description 1
- 229910021360 copper silicide Inorganic materials 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Glass Compositions (AREA)
Abstract
本发明公开了一种低温玻璃相增强的SiCp/Cu复合材料及其制备方法,属于陶瓷增强金属基复合材料制备技术领域。SiCp/Cu复合材料的Cu基体中分散有由玻璃相包裹的SiC颗粒,玻璃相成分为SiO2和K2O,其中SiO2与K2O的摩尔比为2~6,所述SiC与玻璃相中SiO2及Cu的体积比为1:(0.2~1.2):(2~4)。一方面低温玻璃相在熔融时与SiC颗粒具有较好的界面润湿性,同时在复合材料烧结过程中Cu基体颗粒表面会形成一定量的Cu2O,参与界面玻璃相的形成,因此Cu基体和玻璃相结合良好;另一方面,界面玻璃相的引入可避免多个SiC颗粒团聚时的直接面接触,同时阻止界面固相反应中反应物原子的相互扩散,从而有效抑制界面固相反应产物生成,使复合材料获得良好的综合力学性能。
The invention discloses a low-temperature glass-phase reinforced SiCp /Cu composite material and a preparation method thereof, belonging to the technical field of preparation of ceramic-reinforced metal matrix composite materials. In the Cu matrix of the SiC p /Cu composite material, SiC particles wrapped by the glass phase are dispersed, and the glass phase components are SiO 2 and K 2 O, wherein the molar ratio of SiO 2 to K 2 O is 2-6, and the SiC and K 2 O The volume ratio of SiO 2 and Cu in the glass phase is 1:(0.2~1.2):(2~4). On the one hand, the low-temperature glass phase has good interfacial wettability with SiC particles during melting, and at the same time, a certain amount of Cu 2 O will be formed on the surface of the Cu matrix particles during the sintering process of the composite material, which will participate in the formation of the interface glass phase, so the Cu matrix On the other hand, the introduction of the interface glass phase can avoid direct surface contact when multiple SiC particles are agglomerated, and at the same time prevent the interdiffusion of reactant atoms in the interfacial solid phase reaction, thereby effectively inhibiting the interfacial solid phase reaction products Formation, so that the composite material can obtain good comprehensive mechanical properties.
Description
技术领域technical field
本发明具体涉及一种低温玻璃相增强的SiCp/Cu复合材料,以及该复合材料的制备方法,属于陶瓷增强金属基复合材料制备技术领域。The invention specifically relates to a low-temperature glass-phase reinforced SiCp /Cu composite material and a preparation method of the composite material, belonging to the technical field of preparation of ceramic-reinforced metal matrix composite materials.
背景技术Background technique
碳化硅颗粒增强铜基复合材料,综合了铜基体和碳化硅增强颗粒各自的优点,协同互补,综合优良的导电、导热以及耐磨损等性能,并且有原料成本低廉、制备工艺简单等优点。SiCp/Cu复合材料很有可能成为新一代结构-功能一体化的高性能材料,并在航空航天、电子封装等领域扮演重要角色,是一种具有广阔应用前景的新型材料。但是由于SiC和Cu晶格类型的差异,导致熔融Cu和SiC两相之间存在不润湿、分散均匀性差等一系列问题,并且在复合材料烧结过程中容易发生界面反应,严重影响了SiCp/Cu复合材料综合性能的提升。目前,有大量关于陶瓷-金属复合材料的界面改性的文献研究,以改善碳化硅颗粒增强相与金属基体的界面结合和分散均匀性,但综合性能提高较为有限。Silicon carbide particle-reinforced copper-based composite material combines the respective advantages of copper matrix and silicon carbide-reinforced particles, synergistically complements each other, combines excellent electrical conductivity, thermal conductivity, and wear resistance, and has the advantages of low raw material cost and simple preparation process. SiC p /Cu composite material is likely to become a new generation of structure-function integrated high-performance materials, and play an important role in aerospace, electronic packaging and other fields. It is a new type of material with broad application prospects. However, due to the difference in the lattice types of SiC and Cu, there are a series of problems such as non-wetting and poor dispersion uniformity between the molten Cu and SiC phases, and interfacial reactions are prone to occur during the sintering process of the composite material, which seriously affects the SiC p /Cu composite performance improvement. At present, there are a large number of literature studies on the interface modification of ceramic-metal composites to improve the interface bonding and dispersion uniformity of the silicon carbide particle reinforcement phase and the metal matrix, but the overall performance improvement is relatively limited.
发明内容Contents of the invention
本发明的目的是提供一种低温玻璃相增强的SiCp/Cu复合材料。The purpose of the present invention is to provide a SiC p /Cu composite material reinforced by low temperature glass phase.
同时,本发明还提供一种低温玻璃相增强的SiCp/Cu复合材料的制备方法。At the same time, the invention also provides a preparation method of SiCp /Cu composite material reinforced by low-temperature glass phase.
为了实现以上目的,本发明所采用的技术方案是:In order to achieve the above object, the technical solution adopted in the present invention is:
一种低温玻璃相增强的SiCp/Cu复合材料,在Cu基体中分散有由玻璃相包裹的SiC颗粒。A SiCp /Cu composite material reinforced by a low-temperature glass phase, in which SiC particles wrapped by a glass phase are dispersed in a Cu matrix.
所述玻璃相成分为SiO2和K2O,SiO2与K2O的摩尔比为2~6。The glass phase components are SiO 2 and K 2 O, and the molar ratio of SiO 2 to K 2 O is 2-6.
所述的SiC与玻璃相中SiO2及Cu的体积比为1:(0.2~1.2):(2~4)。The volume ratio of SiC to SiO 2 and Cu in the glass phase is 1:(0.2-1.2):(2-4).
所述SiC颗粒的尺寸为3~20μm。The size of the SiC particles is 3-20 μm.
一种低温玻璃相增强的SiCp/Cu复合材料的制备方法,包括以下步骤:A kind of preparation method of SiCp /Cu composite material reinforced by low-temperature glass phase, comprises the following steps:
(1)采用溶胶-凝胶法制备由非晶态SiO2包裹SiC的复合凝胶体,抽滤、干燥后研磨得到由非晶态SiO2包裹SiC的粉体;(1) The composite gel body of SiC wrapped by amorphous SiO 2 was prepared by sol-gel method, and the powder of SiC wrapped by amorphous SiO 2 was obtained by suction filtration, drying and grinding;
(2)将步骤(1)的粉体与K2CO3·1/2H2O研磨混合,压片成型后煅烧生成玻璃相,研磨、过筛后得到由玻璃相包裹SiC的粉体;(2) Grinding and mixing the powder in step (1) with K 2 CO 3 1/2H 2 O, pressing into tablets and calcining to form a glass phase, grinding and sieving to obtain a powder of SiC wrapped in the glass phase;
(3)利用置换还原反应在步骤(2)的粉体颗粒表面包裹Cu颗粒,抽滤、干燥后过筛即得SiCp/Cu复合粉体;(3) Coating Cu particles on the surface of the powder particles in step (2) by means of displacement reduction reaction, suction filtration, drying and sieving to obtain SiC p /Cu composite powder;
(4)取步骤(3)的复合粉体,利用真空热压烧结法制备低温玻璃相增强的SiCp/Cu复合材料。(4) Take the composite powder in step (3), and prepare SiC p /Cu composite material reinforced by low temperature glass phase by vacuum hot pressing sintering method.
所述步骤(1)中的溶胶-凝胶法为:将正硅酸乙酯(TEOS)、α-SiC分散于乙醇溶液中,调节溶液pH值为2~3,在30~60℃下充分搅拌,使正硅酸乙酯完全水解形成SiO2溶胶,再调节溶液pH值为8~11,搅拌即得复合凝胶体。在酸性条件下搅拌的时间为2~6小时,碱性条件下搅拌的时间为0.1~1小时。The sol-gel method in the step (1) is as follows: disperse tetraethyl orthosilicate (TEOS) and α-SiC in ethanol solution, adjust the pH of the solution to 2-3, fully Stir to completely hydrolyze the tetraethyl orthosilicate to form a SiO 2 sol, then adjust the pH value of the solution to 8-11, and stir to obtain a composite gel. The stirring time under acidic conditions is 2-6 hours, and the stirring time under alkaline conditions is 0.1-1 hour.
所述步骤(1)中真空抽滤后,在75~85℃条件下鼓风干燥1.5~2.5小时即可。In the step (1), after vacuum filtration, air blast drying is performed at 75-85° C. for 1.5-2.5 hours.
所述步骤(2)中步骤(1)的粉体中SiO2与K2CO3·1/2H2O的摩尔比为2~6。The molar ratio of SiO 2 to K 2 CO 3 ·1/2H 2 O in the powder in step (1) in the step (2) is 2-6.
所述步骤(2)中压片成型的压力为5~20MPa。The pressure for tablet forming in the step (2) is 5-20 MPa.
所述步骤(2)中煅烧的温度为750~800℃,煅烧时间为1~4小时。The calcining temperature in the step (2) is 750-800° C., and the calcining time is 1-4 hours.
所述步骤(2)中过筛为过200目筛。The sieving in the step (2) is to pass through a 200-mesh sieve.
所述步骤(3)中的置换还原反应为:将步骤(2)的粉体分散于可溶性铜盐溶液中,0~10℃下边搅拌边加入含有还原性金属粉末的悬浊液,置换出铜。The replacement and reduction reaction in the step (3) is: disperse the powder in the step (2) in the soluble copper salt solution, add the suspension containing the reducing metal powder while stirring at 0-10°C, and replace the copper .
所述的可溶性铜盐为硫酸铜、氯化铜或硝酸铜。The soluble copper salt is copper sulfate, copper chloride or copper nitrate.
所述的还原性金属粉末优选为锌粉或铁粉。The reducing metal powder is preferably zinc powder or iron powder.
所述步骤(3)中抽滤后,在75~85℃条件下真空干燥5~7小时,过120目筛,过筛次数至少为3次。After suction filtration in the step (3), vacuum-dry at 75-85°C for 5-7 hours, pass through a 120-mesh sieve, and pass through a sieve at least three times.
所述步骤(4)中的真空热压烧结法为:将步骤(3)的复合粉体在常温、5~15MPa压力下预压,升温至550~650℃保温保压10~30分钟,再升压至20~40MPa,升温至700~800℃保温保压0.5~2小时,随炉温冷却后脱模即可。The vacuum hot-pressing sintering method in the step (4) is: pre-press the composite powder in the step (3) at room temperature and a pressure of 5-15 MPa, raise the temperature to 550-650°C for 10-30 minutes, and then Boost the pressure to 20-40MPa, raise the temperature to 700-800°C and hold the pressure for 0.5-2 hours, then release the mold after cooling with the furnace temperature.
本发明的有益效果:Beneficial effects of the present invention:
本发明采用三步包裹法制备SiCp/Cu复合粉体,再真空热压烧结制备复合材料,通过在SiC颗粒表面包裹低温玻璃相作为界面层,能有效改善SiCp/Cu复合材料界面结合特性,控制界面反应。一方面低温玻璃相在熔融时与SiC颗粒具有较好的界面润湿性,同时在复合材料烧结过程中Cu基体颗粒表面会形成一定量的Cu2O,参与界面玻璃相的形成,因此Cu基体和玻璃相结合良好;另一方面,界面玻璃相的引入可以避免多个SiC颗粒团聚时的直接面接触,同时阻止界面固相反应中反应物原子的相互扩散,从而有效抑制其界面固相反应产物——脆性铜硅化物的生成,使复合材料获得良好的综合力学性能。The invention uses a three-step wrapping method to prepare SiCp /Cu composite powder, and then vacuum hot-pressing sinters to prepare composite materials. By wrapping the low-temperature glass phase on the surface of SiC particles as an interface layer, the interface bonding characteristics of SiCp /Cu composite materials can be effectively improved. , which controls the interface response. On the one hand, the low-temperature glass phase has good interfacial wettability with SiC particles during melting, and at the same time, a certain amount of Cu 2 O will be formed on the surface of the Cu matrix particles during the sintering process of the composite material, which will participate in the formation of the interface glass phase, so the Cu matrix On the other hand, the introduction of the interface glass phase can avoid direct surface contact when multiple SiC particles are agglomerated, and at the same time prevent the interdiffusion of reactant atoms in the interfacial solid-state reaction, thereby effectively inhibiting its interfacial solid-state reaction The product - the formation of brittle copper silicides, enables the composite material to obtain good comprehensive mechanical properties.
附图说明Description of drawings
图1为本发明实施例1中SiC颗粒表面包裹SiO2(a)和玻璃相(b)的XRD图谱;Fig. 1 is the XRD pattern of SiO 2 (a) and glass phase (b) wrapped on the surface of SiC particles in Example 1 of the present invention;
图2为实施例1中SiC颗粒经过不同包裹步骤的SEM图;Fig. 2 is the SEM picture of SiC particle in embodiment 1 through different wrapping steps;
图3为实施例1中SiCp/Cu复合材料的断面SEM图;Fig. 3 is the cross-sectional SEM figure of SiCp /Cu composite material in embodiment 1;
图4为实施例1中SiCp/Cu复合材料的XRD图谱。FIG. 4 is the XRD pattern of the SiC p /Cu composite material in Example 1.
具体实施方式Detailed ways
下述实施例仅对本发明作进一步详细说明,但不构成对本发明的任何限制。The following examples only illustrate the present invention in further detail, but do not constitute any limitation to the present invention.
实施例1Example 1
本实施例中低温玻璃相增强的SiCp/Cu复合材料,在Cu基体中分散有由玻璃相包裹的SiC颗粒,其中SiC、SiO2、Cu三者的体积比为1:0.6:3,玻璃相中SiO2与K2O的摩尔比为3,SiC颗粒的尺寸为10μm。The SiC p /Cu composite material reinforced by low temperature glass phase in this example has SiC particles wrapped by glass phase dispersed in the Cu matrix, wherein the volume ratio of SiC, SiO 2 and Cu is 1:0.6:3, and the glass The molar ratio of SiO2 to K2O in the phase is 3, and the size of SiC particles is 10 μm.
本实施例中低温玻璃相增强的SiCp/Cu复合材料的制备方法,包括以下步骤:The preparation method of the SiCp /Cu composite material reinforced by the low-temperature glass phase in this embodiment comprises the following steps:
(1)按照酯、醇、水三者的体积比为23:35:3,将正硅酸乙酯(TEOS)、α-SiC分散于乙醇溶液中,用柠檬酸调节溶液pH值为2,在45℃条件下磁力搅拌3小时,使正硅酸乙酯完全水解为SiO2形成溶胶,再用氨水调节溶液pH值为8,继续磁力搅拌0.1小时得到复合凝胶体,真空抽滤,在80℃条件下鼓风干燥2小时,研磨即得由非晶态SiO2包裹SiC的粉体;(1) According to the volume ratio of ester, alcohol and water as 23:35:3, disperse tetraethyl orthosilicate (TEOS) and α-SiC in ethanol solution, adjust the pH of the solution to 2 with citric acid, Stir magnetically at 45°C for 3 hours to completely hydrolyze tetraethyl orthosilicate into SiO 2 to form a sol, then adjust the pH of the solution to 8 with ammonia water, continue magnetically stirring for 0.1 hour to obtain a composite gel, vacuum filter, and Blast drying at 80°C for 2 hours, and grinding to obtain SiC powder coated with amorphous SiO 2 ;
(2)将步骤(1)的粉体与K2CO3·1/2H2O研磨混合,粉体中SiO2与K2CO3·1/2H2O的摩尔比为3,10MPa压力压片成型,在750℃温度下煅烧4小时生成玻璃相,研磨碎粉,过200目筛后得到由玻璃相包括SiC的粉体;(2) Grinding and mixing the powder in step (1) with K 2 CO 3 ·1/2H 2 O, the molar ratio of SiO 2 and K 2 CO 3 ·1/2H 2 O in the powder is 3, and the pressure is 10MPa Forming a sheet, calcining at 750°C for 4 hours to generate a glass phase, grinding the powder, and passing through a 200-mesh sieve to obtain a powder consisting of a glass phase including SiC;
(3)将步骤(2)的粉体分散于硫酸铜溶液中,0℃下边搅拌边滴加含有还原性锌粉的悬浊液,置换出铜,并利用旋转沉淀在步骤(2)的粉体颗粒表面包裹Cu颗粒,抽滤,在80℃条件下真空干燥6小时,过3次120目筛,得到SiCp/Cu复合粉体;(3) Disperse the powder in step (2) in the copper sulfate solution, add the suspension containing reducing zinc powder dropwise while stirring at 0°C, replace the copper, and use the rotation to precipitate the powder in step (2) Coating Cu particles on the surface of the bulk particles, suction filtration, vacuum drying at 80°C for 6 hours, and passing through a 120-mesh sieve three times to obtain SiC p /Cu composite powder;
(4)将步骤(3)的复合粉体在常温、10MPa压力下预压,以20℃/min升温至600℃,保温保压20分钟,再升压至30MPa,升温至750℃保温保压1小时,随炉温冷却后脱模即得SiCp/Cu复合材料。(4) Pre-press the composite powder in step (3) at room temperature and 10MPa pressure, raise the temperature to 600°C at 20°C/min, keep the temperature and pressure for 20 minutes, then increase the pressure to 30MPa, and heat up to 750°C for heat preservation and pressure After 1 hour, the SiC p /Cu composite material was obtained after demolding after cooling with the furnace temperature.
本实施例中SiC颗粒表面包裹SiO2(a)和玻璃相(b)的XRD图谱见图1;SiC颗粒经过不同包裹步骤的SEM图见图2,图2中(a)原始SiC,(b)非晶SiO2包裹的SiC,(c)玻璃相包裹的SiC,(d)SiCp/Cu;SiCp/Cu复合材料的断面SEM图见图3;SiCp/Cu复合材料的XRD图谱见图4。In this example, the XRD patterns of SiO 2 (a) and glass phase (b) coated on the surface of SiC particles are shown in Figure 1; ) SiC wrapped in amorphous SiO 2 , (c) SiC wrapped in glass phase, (d) SiC p /Cu; the cross-sectional SEM image of the SiC p /Cu composite is shown in Figure 3; the XRD pattern of the SiC p /Cu composite is shown in Figure 4.
从图3中可以看出,本实施例制备的SiCp/Cu复合材料组织均匀、致密度高。气孔率为0.99~2.22%,维氏硬度为1.93~2.07GPa,抗弯强度为228~242MPa。It can be seen from FIG. 3 that the SiC p /Cu composite material prepared in this example has uniform structure and high density. The porosity is 0.99-2.22%, the Vickers hardness is 1.93-2.07GPa, and the bending strength is 228-242MPa.
实施例2Example 2
本实施例中低温玻璃相增强的SiCp/Cu复合材料,在Cu基体中分散有由玻璃相包裹的SiC颗粒,其中SiC、SiO2、Cu三者的体积比为1:0.2:2,玻璃相中SiO2与K2O的摩尔比为2,SiC颗粒的尺寸为10μm。The SiC p /Cu composite material reinforced by low temperature glass phase in this example has SiC particles wrapped by glass phase dispersed in the Cu matrix, wherein the volume ratio of SiC, SiO 2 and Cu is 1:0.2:2, and the glass The molar ratio of SiO2 to K2O in the phase is 2, and the size of SiC particles is 10 μm.
本实施例中低温玻璃相增强的SiCp/Cu复合材料的制备方法,包括以下步骤:The preparation method of the SiCp /Cu composite material reinforced by the low-temperature glass phase in this embodiment comprises the following steps:
(1)按照酯、醇、水三者的体积比为23:35:3,将正硅酸乙酯(TEOS)、α-SiC分散于乙醇溶液中,用柠檬酸调节溶液pH值为2,在30℃下磁力搅拌6小时,使正硅酸乙酯完全水解为SiO2形成溶胶,再用氨水调节溶液pH值为9,继续磁力搅拌1小时得到复合凝胶体,真空抽滤,在75℃条件下鼓风干燥2.5小时,研磨即得由非晶态SiO2包裹SiC的粉体;(1) According to the volume ratio of ester, alcohol and water as 23:35:3, disperse tetraethyl orthosilicate (TEOS) and α-SiC in ethanol solution, adjust the pH of the solution to 2 with citric acid, Stir magnetically at 30°C for 6 hours to completely hydrolyze tetraethyl orthosilicate to SiO 2 to form a sol, then adjust the pH value of the solution to 9 with ammonia water, continue magnetic stirring for 1 hour to obtain a composite gel, and vacuum filter it at 75 Blast drying at ℃ for 2.5 hours, and grinding to obtain SiC powder coated with amorphous SiO 2 ;
(2)将步骤(1)的粉体与K2CO3·1/2H2O研磨混合,粉体中SiO2与K2CO3·1/2H2O的摩尔比为2,10MPa压力压片成型,在800℃温度下煅烧1小时生成玻璃相,研磨碎粉,过200目筛后得到由玻璃相包括SiC的粉体;(2) Grinding and mixing the powder in step (1) with K 2 CO 3 ·1/2H 2 O, the molar ratio of SiO 2 and K 2 CO 3 ·1/2H 2 O in the powder is 2, and the pressure is 10MPa Forming a sheet, calcining at 800°C for 1 hour to generate a glass phase, grinding the powder, and passing through a 200-mesh sieve to obtain a powder consisting of a glass phase including SiC;
(3)将步骤(2)的粉体分散于硫酸铜溶液中,10℃下边搅拌边滴加含有还原性锌粉的悬浊液,置换出铜,并利用旋转沉淀在步骤(2)的粉体颗粒表面包裹Cu颗粒,抽滤,在75℃条件下真空干燥7小时,过3次120目筛,得到SiCp/Cu复合粉体;(3) Disperse the powder in step (2) in the copper sulfate solution, add the suspension containing reducing zinc powder dropwise while stirring at 10°C, replace the copper, and use the rotation to precipitate the powder in step (2) Coating Cu particles on the surface of the bulk particles, suction filtration, vacuum drying at 75°C for 7 hours, and passing through a 120-mesh sieve three times to obtain SiC p /Cu composite powder;
(4)将步骤(3)的复合粉体在常温、15MPa压力下预压,以20℃/min升温至550℃,保温保压30分钟,再升压至40MPa,升温至800℃保温保压0.5小时,随炉温冷却后脱模即得SiCp/Cu复合材料。(4) Pre-press the composite powder in step (3) at room temperature and 15MPa pressure, raise the temperature to 550°C at 20°C/min, keep the temperature and pressure for 30 minutes, then increase the pressure to 40MPa, and raise the temperature to 800°C for heat preservation and pressure After 0.5 hours, the SiC p /Cu composite material is obtained after demolding after cooling with the furnace temperature.
本实施例中SiCp/Cu复合材料的气孔率为2.41~4.74%,维氏硬度为1.66~1.88GPa,抗弯强度为220~235MPa。In this embodiment, the porosity of the SiC p /Cu composite material is 2.41-4.74%, the Vickers hardness is 1.66-1.88 GPa, and the bending strength is 220-235 MPa.
实施例3Example 3
本实施例中低温玻璃相增强的SiCp/Cu复合材料,在Cu基体中分散有由玻璃相包裹的SiC颗粒,其中SiC、SiO2、Cu三者的体积比为1:1.2:4,玻璃相中SiO2与K2O的摩尔比为6,SiC颗粒的尺寸为10μm。In this example, the SiCp /Cu composite material reinforced by the low-temperature glass phase is dispersed in the Cu matrix with SiC particles wrapped by the glass phase, wherein the volume ratio of SiC, SiO 2 , and Cu is 1:1.2:4, and the glass The molar ratio of SiO2 to K2O in the phase is 6, and the size of the SiC particles is 10 μm.
本实施例中低温玻璃相增强的SiCp/Cu复合材料的制备方法,包括以下步骤:The preparation method of the SiCp /Cu composite material reinforced by the low-temperature glass phase in this embodiment comprises the following steps:
(1)按照酯、醇、水三者的体积比为23:35:3,将正硅酸乙酯(TEOS)、α-SiC分散于乙醇溶液中,用柠檬酸调节溶液pH值为3,在60℃下磁力搅拌2小时,使正硅酸乙酯完全水解为SiO2形成溶胶,再用氨水调节溶液pH值为11,继续磁力搅拌2小时得到复合凝胶体,真空抽滤,在85℃条件下鼓风干燥1.5小时,研磨即得由非晶态SiO2包裹SiC的粉体;(1) According to the volume ratio of ester, alcohol and water as 23:35:3, disperse tetraethyl orthosilicate (TEOS) and α-SiC in ethanol solution, adjust the pH of the solution to 3 with citric acid, Stir magnetically at 60°C for 2 hours to completely hydrolyze tetraethyl orthosilicate into SiO 2 to form a sol, then adjust the pH value of the solution to 11 with ammonia water, continue magnetic stirring for 2 hours to obtain a composite gel, vacuum filter, and obtain a composite gel at 85 Blow drying at ℃ for 1.5 hours, and grind to obtain SiC powder wrapped with amorphous SiO 2 ;
(2)将步骤(1)的粉体与K2CO3·1/2H2O研磨混合,粉体中SiO2与K2CO3·1/2H2O的摩尔比为6,20MPa压力压片成型,在760℃温度下煅烧3小时生成玻璃相,研磨碎粉,过200目筛后得到由玻璃相包括SiC的粉体;(2) Grinding and mixing the powder in step (1) with K 2 CO 3 ·1/2H 2 O, the molar ratio of SiO 2 and K 2 CO 3 ·1/2H 2 O in the powder is 6, and the pressure is 20MPa Forming a sheet, calcining at 760°C for 3 hours to generate a glass phase, grinding the powder, and passing through a 200-mesh sieve to obtain a powder consisting of a glass phase including SiC;
(3)将步骤(2)的粉体分散于硫酸铜溶液中,5℃下边搅拌边滴加含有还原性锌粉的悬浊液,置换出铜,并利用旋转沉淀在步骤(2)的粉体颗粒表面包裹Cu颗粒,抽滤,在85℃条件下真空干燥5小时,过3次120目筛,得到SiCp/Cu复合粉体;(3) Disperse the powder in step (2) in the copper sulfate solution, add the suspension containing reducing zinc powder dropwise while stirring at 5°C, replace the copper, and use the rotation to precipitate the powder in step (2) Coating Cu particles on the surface of the bulk particles, suction filtration, vacuum drying at 85°C for 5 hours, and passing through a 120-mesh sieve three times to obtain SiC p /Cu composite powder;
(4)将步骤(3)的复合粉体在常温、5MPa压力下预压,以20℃/min升温至650℃,保温保压10分钟,再升压至20MPa,升温至700℃保温保压2小时,随炉温冷却后脱模即得SiCp/Cu复合材料。(4) Pre-press the composite powder in step (3) at room temperature and 5MPa pressure, raise the temperature to 650°C at 20°C/min, keep the temperature and pressure for 10 minutes, then increase the pressure to 20MPa, and heat up to 700°C for heat preservation and pressure After 2 hours, the SiC p /Cu composite material was obtained after demolding after cooling with the furnace temperature.
本实施例中SiCp/Cu复合材料的气孔率为4.46~6.15%,维氏硬度为1.58~1.69GPa,抗弯强度为172~186MPa。The porosity of the SiC p /Cu composite material in this embodiment is 4.46-6.15%, the Vickers hardness is 1.58-1.69 GPa, and the bending strength is 172-186 MPa.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410011383.2A CN104294071B (en) | 2014-01-09 | 2014-01-09 | A kind of low-temperature glass phase reinforced SiCp/Cu composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410011383.2A CN104294071B (en) | 2014-01-09 | 2014-01-09 | A kind of low-temperature glass phase reinforced SiCp/Cu composite material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104294071A true CN104294071A (en) | 2015-01-21 |
CN104294071B CN104294071B (en) | 2016-08-17 |
Family
ID=52314017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410011383.2A Active CN104294071B (en) | 2014-01-09 | 2014-01-09 | A kind of low-temperature glass phase reinforced SiCp/Cu composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104294071B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107326320A (en) * | 2017-05-09 | 2017-11-07 | 华南理工大学 | A kind of high body point SiCp/Al and bismuthate glass composite and preparation method thereof |
CN109022886A (en) * | 2018-09-27 | 2018-12-18 | 太原科技大学 | A kind of SiCPEnhance the preparation method of Cu-base composites |
CN110396616A (en) * | 2018-04-25 | 2019-11-01 | 比亚迪股份有限公司 | A kind of composite material and preparation method and application |
CN112916867A (en) * | 2021-01-13 | 2021-06-08 | 中国科学院金属研究所 | Photocuring 3D printing nanoparticle reinforced metal piece and preparation method thereof |
CN113186416A (en) * | 2020-01-14 | 2021-07-30 | 郑州航空工业管理学院 | SiC reinforced copper-based composite material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1563460A (en) * | 2004-03-26 | 2005-01-12 | 哈尔滨工业大学 | SiC/Cu composite materrial and preparation material |
CN1986491A (en) * | 2005-12-23 | 2007-06-27 | 中国科学院金属研究所 | High heat conductivity and high strength dense heterogeneous foamed SiC/Cu material and its preparing method |
-
2014
- 2014-01-09 CN CN201410011383.2A patent/CN104294071B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1563460A (en) * | 2004-03-26 | 2005-01-12 | 哈尔滨工业大学 | SiC/Cu composite materrial and preparation material |
CN1986491A (en) * | 2005-12-23 | 2007-06-27 | 中国科学院金属研究所 | High heat conductivity and high strength dense heterogeneous foamed SiC/Cu material and its preparing method |
Non-Patent Citations (2)
Title |
---|
王海龙: "烧结工艺对SiC/Cu–Al 复合材料的力学性能及断裂行为的影响", 《硅酸盐学报》, vol. 34, no. 11, 30 November 2006 (2006-11-30) * |
王鹏辉: "Cu/SiC复合材料非晶相界面设计与性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, no. 11, 15 November 2013 (2013-11-15) * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107326320A (en) * | 2017-05-09 | 2017-11-07 | 华南理工大学 | A kind of high body point SiCp/Al and bismuthate glass composite and preparation method thereof |
CN110396616A (en) * | 2018-04-25 | 2019-11-01 | 比亚迪股份有限公司 | A kind of composite material and preparation method and application |
CN109022886A (en) * | 2018-09-27 | 2018-12-18 | 太原科技大学 | A kind of SiCPEnhance the preparation method of Cu-base composites |
CN113186416A (en) * | 2020-01-14 | 2021-07-30 | 郑州航空工业管理学院 | SiC reinforced copper-based composite material and preparation method thereof |
CN112916867A (en) * | 2021-01-13 | 2021-06-08 | 中国科学院金属研究所 | Photocuring 3D printing nanoparticle reinforced metal piece and preparation method thereof |
CN112916867B (en) * | 2021-01-13 | 2022-01-11 | 中国科学院金属研究所 | A kind of photocuring 3D printing nanoparticle reinforced metal part and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104294071B (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104294071B (en) | A kind of low-temperature glass phase reinforced SiCp/Cu composite material and preparation method thereof | |
CN100500896C (en) | A kind of method for preparing superfine grain tungsten-copper alloy and tungsten-copper alloy thereof | |
WO2020135582A1 (en) | Aerogel-reinforced metal matrix composite material, preparation method and application thereof | |
CN106521230B (en) | A kind of graphite flakes/carbon/carbon-copper composite material of vertical orientation heat transmission and preparation method thereof | |
CN104313459B (en) | A kind of Ni wraps up SiC composite granule and strengthens iron base composite material and preparation method thereof | |
CN101768706A (en) | Preparation method of diamond particle reinforced copper-based composite material parts with high volume fraction | |
CN108580893A (en) | A kind of preparation method of copper/graphene composite material | |
CN105568024A (en) | Preparation method for nano ceramic reinforced metal-matrix composite | |
CN104726734A (en) | Preparation method of silicon carbide reinforced aluminum base composite material | |
CN1994968A (en) | Preparation technology for recrystallizing carborundum product | |
CN105272269A (en) | Preparation method of Si3N4/h-BN nano-composite ceramics | |
CN111363942B (en) | Preparation method of rare earth oxide @ graphene nanosheet/aluminum-based blank | |
CN105921753A (en) | Method for preparing near-net-shape parts with complex shapes from diamond-copper composite material | |
CN103938011A (en) | Graphene/metal-based composite material with heat conduction anisotropy and electric conduction anisotropy and preparation method thereof | |
CN103302294B (en) | A kind of powder metallurgic method prepares the method for nanometer Cu@SiC/Cu based composites | |
CN103803972A (en) | A large-size bulk La2Zr2O7 ceramic material and its hot-pressing sintering preparation process | |
CN103014492A (en) | A kind of preparation method of Mo2FeB2 base thermal spraying alloy powder | |
CN107573079B (en) | Boron nitride-based ceramic side sealing plate material for strip continuous casting and preparation method and application thereof | |
CN101747048B (en) | Preparation method of Nb2AlC bulk ceramics | |
CN104014764B (en) | A kind of aluminum alloy low-pressure casting preparation method of ceramic sprue bushing | |
CN104131194B (en) | A kind of preparation method of microporous aluminum or aluminum alloy | |
CN106747435B (en) | Preparation method of a temperature-stable core-shell structure microwave dielectric ceramic | |
CN104230344A (en) | Low-temperature sintering preparation method of AlN ceramic added with multi-element sintering aid | |
CN105543535B (en) | Al4SiC4 and Cr synergistically strengthened mesh/spherical copper material and its preparation method | |
CN104294077B (en) | A kind of SiC/Cu composite and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |