[go: up one dir, main page]

CN104292096A - Method for preparing p-benzoquinone compound through selective catalytic oxidation of phenol compound - Google Patents

Method for preparing p-benzoquinone compound through selective catalytic oxidation of phenol compound Download PDF

Info

Publication number
CN104292096A
CN104292096A CN201410452657.1A CN201410452657A CN104292096A CN 104292096 A CN104292096 A CN 104292096A CN 201410452657 A CN201410452657 A CN 201410452657A CN 104292096 A CN104292096 A CN 104292096A
Authority
CN
China
Prior art keywords
phenol
aromatic
group
benzoquinone
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410452657.1A
Other languages
Chinese (zh)
Inventor
安增建
万晓波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Original Assignee
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Institute of Bioenergy and Bioprocess Technology of CAS filed Critical Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority to CN201410452657.1A priority Critical patent/CN104292096A/en
Publication of CN104292096A publication Critical patent/CN104292096A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • C07C46/06Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring
    • C07C46/08Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring with molecular oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种选择催化氧化苯酚化合物制备对苯醌化合物的方法,其特点是:以苯酚化合物作为原料,在液体介质中使用氧气或含氧气体作为氧化剂,在过渡金属化合物主催化剂和星状分子助催化剂作用下,在温和条件下高选择性制备对苯醌化合物的方法。The invention provides a method for preparing p-benzoquinone compound by selective catalytic oxidation of phenol compound. A method for preparing p-benzoquinone compounds with high selectivity under mild conditions under the action of molecular cocatalysts.

Description

一种选择催化氧化苯酚化合物制备对苯醌化合物的方法A kind of method that selective catalytic oxidation phenol compound prepares p-benzoquinone compound

   the

相关申请的交叉参考 Cross References to Related Applications

该申请是题为“一种对苯醌化合物的制备方法” (申请号:201410443854.7,2014年9月3日递交)和题为“一种苯酚化合物直接氧化制备对苯醌化合物的方法” (申请号:201410449008.6,2014年9月5日递交)的中国专利的扩展和补充,并且前者具有对后者的优先权。 The applications are entitled "A Preparation Method for P-Benzoquinone Compounds" (Application No.: 201410443854.7, submitted on September 3, 2014) and "A Method for Preparing P-Benzoquinone Compounds by Direct Oxidation of Phenol Compounds" (Application No. No.: 201410449008.6, submitted on September 5, 2014), the extension and supplement of the Chinese patent, and the former has priority over the latter.

   the

技术领域 technical field

本发明涉及一种选择催化氧化苯酚化合物制备对苯醌化合物的方法,具体地说是涉及一种可以在含氧气氛下高选择性催化苯酚化合物制备对苯醌化合物的催化剂。  The invention relates to a method for selectively catalytically oxidizing phenol compounds to prepare p-benzoquinone compounds, in particular to a catalyst capable of highly selectively catalyzing phenol compounds to prepare p-benzoquinone compounds in an oxygen-containing atmosphere. the

   the

背景技术 Background technique

对苯醌化合物是合成农药、染料、橡胶、塑料、精细化学品的重要原料、中间体和助剂,主要用于显影剂、染料、橡胶防老剂和高分子单体阻聚剂、抗氧化剂等相关领域。  P-benzoquinone compounds are important raw materials, intermediates and auxiliary agents for the synthesis of pesticides, dyes, rubber, plastics, and fine chemicals. They are mainly used in developers, dyes, rubber antioxidants, polymer monomer polymerization inhibitors, and antioxidants. Related areas. the

由于对苯醌化合物的重要性,各种合成路线被相继开发出来。苯胺氧化法是最早实现工业化的工艺,即苯胺在硫酸介质中经二氧化锰等高价金属盐氧化成对苯醌,然后经过汽提工艺分离得到对苯醌产品。但是,这种工艺原料成本过高,并且存在严重的污染问题。  Due to the importance of p-benzoquinone compounds, various synthetic routes have been developed successively. The aniline oxidation method is the earliest process to achieve industrialization, that is, aniline is oxidized into p-benzoquinone by manganese dioxide and other high-valent metal salts in sulfuric acid medium, and then separated by steam stripping to obtain p-benzoquinone products. However, the raw material cost of this process is too high, and there are serious pollution problems. the

作为一种可能的替代工艺,使用氧气氧化苯酚制备对苯醌的方法被开发出来。例如:文章(苯酚催化氧化制对苯二酚的两步法工艺,胡玉才等,化学反应工程与工艺,2006,22(6):544-548)报道了使用硝酸铜与硝酸钠(摩尔比=1:3)作为催化剂,在催化剂与苯酚质量比为1:2的条件下可以将苯酚氧化为对苯醌;文章(氧气直接催化氧化苯酚合成对苯醌,宋伟等,精细石油化工,2008,25(3):55-58)报道了使用氯化铜与氯化锂(摩尔比=1:3)作为催化剂,在催化剂与苯酚质量比为1:2的条件下将苯酚氧化为对苯醌。CN102336643A和CN102351656B也公开了类似技术。但是,以上方法需要几乎化学计量的催化剂,催化剂用量过大。  As a possible alternative process, the preparation of p-benzoquinone by oxidation of phenol with oxygen was developed. For example: the article (Two-step Process for Preparation of Hydroquinone by Catalytic Oxidation of Phenol, Hu Yucai et al., Chemical Reaction Engineering and Technology, 2006, 22 (6): 544-548) reported the use of copper nitrate and sodium nitrate (molar ratio = 1:3) As a catalyst, phenol can be oxidized to p-benzoquinone under the condition that the mass ratio of catalyst to phenol is 1:2; the article (Oxygen direct catalytic oxidation of phenol to synthesize p-benzoquinone, Song Wei et al., Fine Petrochemical Industry, 2008 , 25(3):55-58) reported the oxidation of phenol to p-benzene using copper chloride and lithium chloride (molar ratio = 1:3) as a catalyst under the condition that the mass ratio of catalyst to phenol was 1:2. quinone. CN102336643A and CN102351656B also disclose similar technologies. However, the above method requires almost stoichiometric catalyst, and the amount of catalyst used is too large. the

CN1918101A公开了一种制备苯醌和对苯二酚的方法,在含铜催化剂与苯酚类化合物的摩尔当量不超过0.1,并在烷烃腈、芳族腈或有机酰胺类促进剂作用下合成苯醌类化合物。但是,这种技术路线在溶剂中加入了促进剂。  CN1918101A discloses a method for preparing benzoquinone and hydroquinone, the molar equivalent of copper-containing catalyst and phenolic compound is not more than 0.1, and benzoquinone is synthesized under the action of alkane nitrile, aromatic nitrile or organic amide accelerator class of compounds. However, this technical route adds an accelerator to the solvent. the

因此,开发一种成本较低的对苯醌化合物催化氧化方法成为本领域的迫切需要。  Therefore, it is an urgent need in this field to develop a method for catalytic oxidation of p-benzoquinone compounds with lower cost. the

   the

发明内容 Contents of the invention

本发明在此公开了一种选择催化氧化苯酚化合物制备对苯醌化合物的方法,该方法包括:将苯酚化合物加入液态介质中,在催化计量的过渡金属化合物主催化剂和星状分子助催化剂存在下,使用氧气或含氧气体作为氧化剂高选择性制备对苯醌化合物的工艺。  The present invention hereby discloses a method for preparing p-benzoquinone compound by selective catalytic oxidation of phenol compound, the method comprising: adding the phenol compound into a liquid medium, in the presence of catalytically metered transition metal compound main catalyst and star molecular co-catalyst , a process for preparing p-benzoquinone compounds with high selectivity using oxygen or oxygen-containing gas as an oxidizing agent. the

本发明所使用的苯酚化合物具有以下结构式:  The phenol compound used in the present invention has the following structural formula:

其中R1,R2,R3和R4独立的选自氢、烃基基团,四者可以相同或者不同,其中烃基基团选自包含1至约8个碳原子的直链或支链烷烃基团、包含1至约8个碳原子的直链或支链烷氧基基团、包含约6至约12个碳原子的烯烃或芳香族基团。优选的,烷基是含1至4个碳原子的烷基,烷氧基是含1至4个碳原子的烷氧基,芳香族基是含6至12个碳原子的苯基、萘基或联苯基。更优选的,苯酚化合物可以是苯酚、α-萘酚、2(3或5或6)-甲基(乙基、异丙基或叔丁基)苯酚、2-苯基苯酚、2-苄基苯酚、2-乙烯基苯酚、2,6(2,3、2,5或3,5)-二甲基(乙基、异丙基或叔丁基)苯酚、2,3,5(2,3,6、2,5,6或3,5,6)-三甲基(乙基、异丙基或叔丁基)苯酚、2,3,4,5-四甲基苯酚或上述苯酚化合物的混合物。 Wherein R 1 , R 2 , R 3 and R 4 are independently selected from hydrogen, hydrocarbyl groups, the four may be the same or different, wherein the hydrocarbyl groups are selected from straight-chain or branched alkanes containing 1 to about 8 carbon atoms radicals, straight or branched chain alkoxy groups containing 1 to about 8 carbon atoms, alkene or aromatic groups containing about 6 to about 12 carbon atoms. Preferably, the alkyl group is an alkyl group containing 1 to 4 carbon atoms, the alkoxy group is an alkoxy group containing 1 to 4 carbon atoms, and the aromatic group is a phenyl group or a naphthyl group containing 6 to 12 carbon atoms. or biphenyl. More preferably, the phenolic compound can be phenol, α-naphthol, 2 (3 or 5 or 6)-methyl (ethyl, isopropyl or tert-butyl) phenol, 2-phenylphenol, 2-benzyl Phenol, 2-vinylphenol, 2,6(2,3, 2,5 or 3,5)-dimethyl(ethyl, isopropyl or tert-butyl)phenol, 2,3,5(2, 3,6, 2,5,6 or 3,5,6)-trimethyl(ethyl, isopropyl or tert-butyl)phenol, 2,3,4,5-tetramethylphenol or the aforementioned phenolic compounds mixture.

本发明所述的过渡金属化合物主催化剂选自V、Mn、Fe、Co、Ni、Cu、Rh、Ce、Ag、Pt、Pd中的一种或几种的组合,可以是金属的卤化物、硫酸盐、(亚)硝酸盐、(卤代)脂肪酸盐、(卤代)芳香酸盐、琥珀酸盐、席夫碱络合物、酞菁络合物。优选的,合适的过渡金属化合物可以选自V、Mn、Fe、Co、Ce、Cu、Ag中的一种或几种的组合,过渡金属化合物的无水或水合形式都可以作为催化剂。  The transition metal compound procatalyst of the present invention is selected from one or more combinations of V, Mn, Fe, Co, Ni, Cu, Rh, Ce, Ag, Pt, Pd, and can be a metal halide, Sulfates, (nitrites), (halogenated) fatty acid salts, (halogenated) aromatic salts, succinates, Schiff base complexes, phthalocyanine complexes. Preferably, a suitable transition metal compound can be selected from one or a combination of V, Mn, Fe, Co, Ce, Cu, Ag, and the anhydrous or hydrated form of the transition metal compound can be used as a catalyst. the

本发明所述的星状分子助催化剂可以用以下结构式表示:  The star-shaped molecular co-catalyst of the present invention can be represented by the following structural formula:

其中R独立的选自含杂原子芳香族环、C、P、Si、N,所述的含杂原子芳香族环可以是吡啶基、吡咯基、吲哚基、异喹啉基、喹啉基,R1,R2和R3独立的选自氢和烃基基团,且其中至少一个为烃基基团,三者可以相同或不同,烃基基团可以是包含6至约16个碳原子的(取代)芳香族基团或(取代)烷基芳香族基团、包含约4至约14个碳原子的含杂原子芳香族基团或包含1至约10个碳原子的(取代)直链或支链烷烃基团。进一步地,所述的(取代)芳香族基团或(取代)烷基芳香族基团选自包含6至10个碳原子的基团,含杂原子(取代)芳香族基团是包含4至10个碳原子的基团,(取代)烷烃基团包含1至8个碳原子的直链或支链基团。优选地,但非限定的例子包括,烷烃基团可以是C1-C8的直链或支链烷基,芳香族基团或烷基芳香族基团可以是苯基、萘基、蒽基、联苯基、苯甲基、苯乙基、苄基、(邻/间/对)二甲苯基、(邻/间/对)二乙苯基、(邻/间/偏)三甲苯基、(邻/间/对)三乙苯基,含杂原子芳香族环可以是吡咯基、吲哚基、吡啶基、喹啉基、异喹啉基。 Wherein R is independently selected from heteroatom-containing aromatic rings, C, P, Si, N, and the heteroatom-containing aromatic rings can be pyridyl, pyrrolyl, indolyl, isoquinolyl, quinolinyl , R 1 , R 2 and R 3 are independently selected from hydrogen and hydrocarbyl groups, and at least one of them is a hydrocarbyl group, and the three may be the same or different, and the hydrocarbyl groups may contain 6 to about 16 carbon atoms ( substituted) aromatic groups or (substituted) alkylaromatic groups, heteroatom-containing aromatic groups containing about 4 to about 14 carbon atoms or (substituted) straight chain or Branched chain alkane groups. Further, the (substituted) aromatic group or (substituted) alkylaromatic group is selected from groups containing 6 to 10 carbon atoms, and the heteroatom-containing (substituted) aromatic group contains 4 to 10 carbon atoms. A group of 10 carbon atoms, a (substituted) alkane group, a straight or branched chain group containing 1 to 8 carbon atoms. Preferred, but non-limiting examples include, the alkane group may be C 1 -C 8 straight or branched chain alkyl, the aromatic or alkylaromatic group may be phenyl, naphthyl, anthracenyl , biphenyl, benzyl, phenethyl, benzyl, (o/m/p) xylyl, (o/m/p) diethylphenyl, (o/m/p) trimethylphenyl, (o/m/p) triethylphenyl, heteroatom-containing aromatic ring can be pyrrolyl, indolyl, pyridyl, quinolinyl, isoquinolyl.

本发明所述的反应介质为液体,可以是含有1-3个碳原子的卤代烷烃,包含约2至约8个碳原子的烷烃腈、芳族腈、卤代芳香族化合物或有机酰胺,或含有1至8个碳原子的直链、支链或环状有机醇,或者前述溶剂的组合。  The reaction medium of the present invention is a liquid, which can be a halogenated alkane containing 1-3 carbon atoms, an alkane nitrile, an aromatic nitrile, a halogenated aromatic compound or an organic amide containing about 2 to about 8 carbon atoms, or A linear, branched or cyclic organic alcohol containing 1 to 8 carbon atoms, or a combination of the aforementioned solvents. the

为了实现上述发明的目的,本发明采用以下操作步骤:将苯酚化合物、主催化剂、助催化剂和溶剂充分混合后,加入高压反应釜,关闭反应装置并充入含氧气体达到指定压力,在特定温度下反应一定时间后冷却至室温,排气并测定对苯醌和未反应完的苯酚化合物的量。其中,催化剂用量、主催化剂与助催化剂的摩尔比、反应温度、反应时间及氧气压力都对反应结果存在重要影响,这些因素也是本制备方法涉及的技术内容。  In order to achieve the purpose of the above invention, the present invention adopts the following operation steps: after fully mixing the phenol compound, main catalyst, cocatalyst and solvent, add the high-pressure reactor, close the reaction device and fill it with oxygen-containing gas to reach the specified pressure. Cool down to room temperature after reacting for a certain period of time, exhaust and measure the amount of p-benzoquinone and unreacted phenol compound. Among them, the amount of catalyst, the molar ratio of main catalyst and co-catalyst, reaction temperature, reaction time and oxygen pressure all have important influence on the reaction result, and these factors are also the technical contents involved in the preparation method. the

其中,本发明所用的过渡金属化合物主催化剂与苯酚化合物的摩尔之比在0.01-0.5,优选地,摩尔之比在0.01-0.2。进一步地,本发明所用的星状分子助催化剂与过渡金属化合物主催化剂的摩尔之比在10-0.1,优选地,摩尔之比在2-0.2。  Wherein, the molar ratio of the transition metal compound procatalyst used in the present invention to the phenol compound is 0.01-0.5, preferably, the molar ratio is 0.01-0.2. Further, the molar ratio of the star molecule co-catalyst to the transition metal compound main catalyst used in the present invention is 10-0.1, preferably, the molar ratio is 2-0.2. the

本发明中,所述的苯酚化合物与溶剂的质量比在1-30%的范围内进行反应。  In the present invention, the mass ratio of the phenol compound to the solvent is reacted in the range of 1-30%. the

本发明的特征之一是反应条件温和,本发明所用的反应温度通常在20-120oC,优选地,温度为30-80 oC。  One of the characteristics of the present invention is mild reaction conditions, the reaction temperature used in the present invention is usually 20-120 o C, preferably, the temperature is 30-80 oC .

本发明使用的氧气可以是纯氧,也可以使用含有氧气的混合气,混合气体可以是氮气、氩气、氦气、氖气、或上述气体的组合。进一步地,本发明所用的反应气体为纯氧时,压力通常在1-120atm,优选地,压力为1-80atm。  The oxygen used in the present invention can be pure oxygen, or a mixed gas containing oxygen can be used, and the mixed gas can be nitrogen, argon, helium, neon, or a combination of the above gases. Further, when the reaction gas used in the present invention is pure oxygen, the pressure is usually 1-120 atm, preferably, the pressure is 1-80 atm. the

本发明所用的反应时间通常在10分钟至5小时,优选地,时间为30分钟至3小时。  The reaction time used in the present invention is usually 10 minutes to 5 hours, preferably, the reaction time is 30 minutes to 3 hours. the

另外,本方法的特征之一在于对苯醌类产物的选择性高,没有观察到其它邻苯醌类产物,催化剂的专一催化能力强。  In addition, one of the characteristics of the method is that the selectivity to benzoquinone products is high, no other o-benzoquinone products are observed, and the specific catalytic ability of the catalyst is strong. the

在反应釜中发生如下反应过程:  The following reaction process takes place in the reactor:

具体实施方式 Detailed ways

下面结合实施例,对本发明的具体实施方式作进一步详细描述。通过下述实施例将有助于理解本发明,但不以任何形式限制本发明的技术方案。  Below in conjunction with the examples, the specific implementation of the present invention will be further described in detail. The following examples will help to understand the present invention, but do not limit the technical solution of the present invention in any form. the

   the

实施例1: Example 1:

在250mL反应釜中加入六水合硝酸钴(2.91g,10.0mmol)、三苯基膦(2.62g,10mmol)、苯酚(9.4g,100mmol)和DMF(94.0g,100mL),混合均匀后,关闭反应釜并充入20atm氧气,搅拌并加热至60oC,反应1小时后冷却至室温,排气后取出混合物进行分析,得到剩余苯酚:7.4g,对苯醌:1.9g。 Add cobalt nitrate hexahydrate (2.91g, 10.0mmol), triphenylphosphine (2.62g, 10mmol), phenol (9.4g, 100mmol) and DMF (94.0g, 100mL) into a 250mL reactor, mix well, and close The reactor was filled with 20atm oxygen, stirred and heated to 60 o C, cooled to room temperature after 1 hour of reaction, and the mixture was taken out after exhaust for analysis, and the remaining phenol: 7.4g, p-benzoquinone: 1.9g.

   the

实施例2-8: Embodiment 2-8:

将实施例1中的六水合硝酸钴用其它过渡金属化合物代替,对结果的影响如下表所示: 项目 主催化剂 (g, mmol) 苯酚 (g) 对苯醌 (g) 1. -- 9.3 0 2. 硝酸钒(1.82, 10) 8.3 0.6 3. 三氯化铁(1.62, 10) 8.6 0.6 4. 乙酸锰(1.73, 10) 5.7 3.4 5. 三氯化钌(2.07, 10) 5.1 4.0 6. 四水硫酸铈(4.04, 10) 6.8 2.3 7. 氯化钯(1.77, 10) 7.2 2.0 The cobalt nitrate hexahydrate in Example 1 is replaced with other transition metal compounds, and the impact on the results is shown in the following table: project Main catalyst (g, mmol) Phenol (g) p-Benzoquinone (g) 1. -- 9.3 0 2. Vanadium nitrate (1.82, 10) 8.3 0.6 3. Ferric chloride (1.62, 10) 8.6 0.6 4. Manganese acetate (1.73, 10) 5.7 3.4 5. Ruthenium trichloride (2.07, 10) 5.1 4.0 6. Cerium sulfate tetrahydrate (4.04, 10) 6.8 2.3 7. Palladium chloride (1.77, 10) 7.2 2.0

实施例9-17: Examples 9-17:

将实施例1中的三苯基膦用不同的星状化合物代替,对结果的影响如下表所示: 项目 助催化剂 (g, mmol) 苯酚 (g) 对苯醌 (g) 1.         -- 8.7 0.4 2.         三苯胺(2.45, 10) 8.2 0.9 3.         三乙胺(1.01, 10) 8.5 0.6 4.         三辛胺(3.53, 10) 8.6 0.5 5.         二苄胺(1.97, 10) 8.1 1.1 6.         三甲基氯硅烷(1.08, 10) 8.3 0.6 7.         异丙基吡啶(1.21, 10) 6.2 2.5 8.         甲基喹啉(1.4, 10) 6.5 2.5 9.         二苯基-2-吡啶基膦(2.63, 10) 7.6 1.6 The triphenylphosphine in Example 1 is replaced with different star compounds, and the impact on the results is shown in the following table: project Cocatalyst (g, mmol) Phenol (g) p-Benzoquinone (g) 1. -- 8.7 0.4 2. Triphenylamine (2.45, 10) 8.2 0.9 3. Triethylamine (1.01, 10) 8.5 0.6 4. Trioctylamine (3.53, 10) 8.6 0.5 5. Dibenzylamine (1.97, 10) 8.1 1.1 6. Chlorotrimethylsilane (1.08, 10) 8.3 0.6 7. Isopropylpyridine (1.21, 10) 6.2 2.5 8. Methylquinoline (1.4, 10) 6.5 2.5 9. Diphenyl-2-pyridylphosphine (2.63, 10) 7.6 1.6

实施例18-23: Examples 18-23:

将实施例1中的苯酚浓度、催化剂摩尔比进行改变,对反应结果的影响如下表所示: The phenol concentration in embodiment 1, catalyst molar ratio are changed, and the impact on reaction result is shown in the table below:

实施例24-30: Examples 24-30:

将实施例1中的DMF用其它溶剂代替,对反应结果的影响如下表所示: 项目 溶剂 (g, mL) 苯酚 (g) 对苯醌 (g) 1.         二氯甲烷(130.1, 100) 8.6 0.5 2.         乙腈(78.5, 100) 6.2 3.9 3.         苯腈(197.0, 100) 6.9 2.4 4.         氯苯(110.3, 100) 8.8 0.4 5.         甲醇(78.5, 100) 8.5 0.7 6.         异丙醇(77.8, 100) 7.9 1.3 7.         辛醇(83, 100) 8.1 1.1 The DMF among the embodiment 1 is replaced with other solvents, and the impact on reaction result is shown in the table below: project Solvent (g, mL) Phenol (g) p-Benzoquinone (g) 1. Dichloromethane (130.1, 100) 8.6 0.5 2. Acetonitrile (78.5, 100) 6.2 3.9 3. Benzonitrile (197.0, 100) 6.9 2.4 4. Chlorobenzene (110.3, 100) 8.8 0.4 5. Methanol (78.5, 100) 8.5 0.7 6. Isopropanol (77.8, 100) 7.9 1.3 7. Octanol (83, 100) 8.1 1.1

实施例31-33: Examples 31-33:

将实施例1中的氧气压力及组分进行改变,对反应结果的影响如下表所示: 项目 气体(atm) 苯酚 (g) 对苯醌 (g) 1.         O2 (1) 9.3 0.1 2.         O2 (120) 5.9 3.2 3.         空气(100) 7.9 2.2 The oxygen pressure and components in Example 1 are changed, and the impact on the reaction result is shown in the table below: project gas (atm) Phenol (g) p-Benzoquinone (g) 1. O 2 (1) 9.3 0.1 2. O 2 (120) 5.9 3.2 3. air (100) 7.9 2.2

实施例34-36: Examples 34-36:

将实施例1中的温度进行改变,对反应结果的影响如下表所示: 项目 温度(oC) 苯酚 (g) 对苯醌 (g) 1. 20 9.3 0.1 2. 80 6.9 2.3 3. 120 5.8 3.4 The temperature in Example 1 is changed, and the impact on the reaction result is shown in the table below: project temperature ( ° C) Phenol (g) p-Benzoquinone (g) 1. 20 9.3 0.1 2. 80 6.9 2.3 3. 120 5.8 3.4

实施例37-40: Examples 37-40:

将实施例1中的苯酚用其它苯酚化合物取代,反应结果如下表所示: The phenol in embodiment 1 is substituted with other phenol compounds, and reaction result is as shown in the table below:

因篇幅限制,本发明不对所有例子进行一一说明,但是采用对本技术的关键要素进行等同替换或等效变换的方式所获得的技术方案都处于本发明的保护范围。 Due to space limitation, the present invention does not describe all the examples one by one, but the technical solutions obtained by equivalent replacement or equivalent transformation of the key elements of the technology are within the protection scope of the present invention.

   the

Claims (10)

1.本发明在此公开了一种选择催化氧化苯酚化合物制备对苯醌化合物的方法,其特征在于:在液体介质中,以苯酚化合物作为原料,在过渡金属化合物主催化剂和星状分子助催化剂的作用下,用氧气或含氧气体作为氧化剂,高选择性制备对苯醌化合物的技术。 1. The present invention discloses a method for preparing p-benzoquinone compounds by selective catalytic oxidation of phenol compounds, which is characterized in that: in a liquid medium, with phenol compounds as raw materials, in the transition metal compound main catalyst and star molecular co-catalyst Under the action of oxygen or oxygen-containing gas as an oxidizing agent, the technology of preparing p-benzoquinone compounds with high selectivity. 2. 根据权利要求1所述的方法,所述的苯酚化合物具有以下结构式: 2. method according to claim 1, described phenol compound has following structural formula: 其中R1,R2,R3和R4独立的选自氢、烃基基团,四者可以相同或者不同。 Wherein R 1 , R 2 , R 3 and R 4 are independently selected from hydrogen and hydrocarbon groups, and the four may be the same or different. 3. 根据权利要求1所述的方法和权利要求2的描述,所述的苯酚化合物选自苯酚、α-萘酚、2(3或5或6)-甲基(乙基、异丙基或叔丁基)苯酚、2-苯基苯酚、2-苄基苯酚、2-乙烯基苯酚、2,6(2,3、2,5或3,5)-二甲基(乙基、异丙基或叔丁基)苯酚、2,3,5(2,3,6、2,5,6或3,5,6)-三甲基(乙基、异丙基或叔丁基)苯酚、2,3,4,5-四甲基苯酚或上述化合物的混合物。 3. the method according to claim 1 and the description of claim 2, described phenol compound is selected from phenol, α-naphthol, 2 (3 or 5 or 6)-methyl (ethyl, isopropyl or tert-butyl)phenol, 2-phenylphenol, 2-benzylphenol, 2-vinylphenol, 2,6(2,3,2,5 or 3,5)-dimethyl(ethyl, isopropyl phenyl or tert-butyl)phenol, 2,3,5(2,3,6,2,5,6 or 3,5,6)-trimethyl(ethyl, isopropyl or tert-butyl)phenol, 2,3,4,5-Tetramethylphenol or mixtures of the above compounds. 4. 根据权利要求1所述的方法,所述的过渡金属化合物主催化剂选自V、Mn、Fe、Co、Ni、Cu、Rh、Ce、Ag、Pt、Pd中的一种或几种的组合,可以是金属的卤化物、硫酸盐、(亚)硝酸盐、(卤代)脂肪酸盐、(卤代)芳香酸盐、琥珀酸盐、席夫碱络合物、酞菁络合物;优选的,合适的过渡金属化合物可以选自V、Mn、Fe、Co、Cu、Ce、Ag中的一种或几种的组合,过渡金属化合物的无水或水合形式都可以作为催化剂。 4. method according to claim 1, described transition metal compound procatalyst is selected from one or more in V, Mn, Fe, Co, Ni, Cu, Rh, Ce, Ag, Pt, Pd Combination, can be metal halides, sulfates, (nitrites), (halogenated) fatty acid salts, (halogenated) aromatic salts, succinates, Schiff base complexes, phthalocyanine complexes Preferably, a suitable transition metal compound can be selected from one or more combinations of V, Mn, Fe, Co, Cu, Ce, Ag, and the anhydrous or hydrated form of the transition metal compound can be used as a catalyst. 5. 根据权利要求1所述的方法,所述的星状分子助催化剂可以用以下结构式表示: 5. method according to claim 1, described star-like molecule co-catalyst can be expressed with following structural formula: 其中R独立的选自C、P、Si、N或含杂原子芳香族环,所述的含杂原子芳香族环可以是吡啶基、吡咯基、吲哚基、异喹啉基、喹啉基,R1,R2和R3独立的选自氢和烃基基团,且其中至少一个为烃基基团,三者可以相同或不同,烃基基团可以是包含6至约16个碳原子的(取代)芳香族基团或(取代)烷基芳香族基团、包含约4至约14个碳原子的含杂原子芳香族基团或包含1至约10个碳原子的(取代)直链或支链烷烃基团;进一步地,所述的(取代)芳香族基团或(取代)烷基芳香族基团选自包含6至10个碳原子的基团,含杂原子(取代)芳香族基团是包含4至10个碳原子的基团,(取代)烷烃基团包含1至8个碳原子的直链或支链基团;优选地,但非限定的例子包括,烷烃基团可以是C1-C8的直链或支链烷基,芳香族基团或烷基芳香族基团可以是苯基、萘基、蒽基、联苯基、苯甲基、苯乙基、苄基、(邻/间/对)二甲苯基、(邻/间/对)二乙苯基、(邻/间/偏)三甲苯基、(邻/间/对)三乙苯基,含杂原子芳香族环可以是吡啶基、吡咯基、吲哚基、异喹啉基、喹啉基。 Wherein R is independently selected from C, P, Si, N or a heteroatom-containing aromatic ring, and the heteroatom-containing aromatic ring can be pyridyl, pyrrolyl, indolyl, isoquinolyl, quinolinyl , R 1 , R 2 and R 3 are independently selected from hydrogen and hydrocarbyl groups, and at least one of them is a hydrocarbyl group, and the three may be the same or different, and the hydrocarbyl groups may contain 6 to about 16 carbon atoms ( substituted) aromatic groups or (substituted) alkylaromatic groups, heteroatom-containing aromatic groups containing about 4 to about 14 carbon atoms or (substituted) straight chain or Branched chain alkane group; further, the (substituted) aromatic group or (substituted) alkylaromatic group is selected from groups containing 6 to 10 carbon atoms, heteroatom-containing (substituted) aromatic A group is a group containing 4 to 10 carbon atoms, a (substituted) alkane group is a linear or branched group containing 1 to 8 carbon atoms; preferred, but non-limiting examples include, an alkane group can It is C 1 -C 8 straight chain or branched chain alkyl, aromatic group or alkyl aromatic group can be phenyl, naphthyl, anthracenyl, biphenyl, benzyl, phenethyl, benzyl Base, (o/m/p) xylyl, (o/m/p) diethylphenyl, (o/m/bias) tricresyl, (o/m/p) triethylphenyl, containing hetero The atomic aromatic ring can be pyridyl, pyrrolyl, indolyl, isoquinolyl, quinolinyl. 6. 根据权利要求1所述的方法,其特征在于:过渡金属化合物主催化剂与苯酚化合物的摩尔之比在0.01-0.5,优选地,摩尔之比在0.01-0.2;星状分子助催化剂与过渡金属化合物主催化剂的摩尔之比在10-0.01,优选地,摩尔之比在2-0.2。 6. The method according to claim 1, characterized in that: the molar ratio of transition metal compound procatalyst to phenol compound is at 0.01-0.5, preferably, the molar ratio is at 0.01-0.2; The molar ratio of the metal compound main catalyst is 10-0.01, preferably, the molar ratio is 2-0.2. 7. 根据权利要求1所述的方法,所述的反应介质为液体,可以是含有1-3个碳原子的卤代烷烃,包含约2至约8个碳原子的烷烃腈、芳族腈、卤代芳香族化合物或有机酰胺,或含有1至8个碳原子的直链、支链或环状有机醇,或者前述溶剂的组合。 7. the method according to claim 1, described reaction medium is liquid, can be the haloalkane that contains 1-3 carbon atom, the alkane nitrile that contains about 2 to about 8 carbon atoms, aromatic nitrile, halide Substituted aromatic compounds or organic amides, or straight-chain, branched-chain or cyclic organic alcohols containing 1 to 8 carbon atoms, or a combination of the aforementioned solvents. 8. 根据权利要求1所述的方法,所述的氧气可以是纯氧,也可以使用含有氧气的混合气,作为混合组分的气体可以是氮气、氩气、氦气、氖气、或上述气体的组合,反应气体为纯氧时,压力通常在1-120atm,优选地,压力为1-80atm。 8. method according to claim 1, described oxygen can be pure oxygen, also can use the mixed gas that contains oxygen, can be nitrogen, argon, helium, neon or above-mentioned gas as the gas of mixed component For the combination of gases, when the reaction gas is pure oxygen, the pressure is usually 1-120 atm, preferably, the pressure is 1-80 atm. 9. 根据权利要求1所述的方法,所述的反应温度通常在20-120oC,优选地,温度为30-80oC。 9. The method according to claim 1, the temperature of the reaction is usually at 20-120 ° C, preferably, the temperature is 30-80 ° C. 10. 根据权利要求1所述的方法,本方法的特征之一在于对苯醌产物的选择性高,没有观察到其它邻苯醌类产物,催化剂的专一催化能力强。 10. The method according to claim 1, one of the characteristics of the method is that the selectivity of the benzoquinone product is high, no other o-benzoquinone products are observed, and the specific catalytic ability of the catalyst is strong.
CN201410452657.1A 2014-09-09 2014-09-09 Method for preparing p-benzoquinone compound through selective catalytic oxidation of phenol compound Pending CN104292096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410452657.1A CN104292096A (en) 2014-09-09 2014-09-09 Method for preparing p-benzoquinone compound through selective catalytic oxidation of phenol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410452657.1A CN104292096A (en) 2014-09-09 2014-09-09 Method for preparing p-benzoquinone compound through selective catalytic oxidation of phenol compound

Publications (1)

Publication Number Publication Date
CN104292096A true CN104292096A (en) 2015-01-21

Family

ID=52312090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410452657.1A Pending CN104292096A (en) 2014-09-09 2014-09-09 Method for preparing p-benzoquinone compound through selective catalytic oxidation of phenol compound

Country Status (1)

Country Link
CN (1) CN104292096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146276A (en) * 2015-04-02 2016-11-23 中国科学院金属研究所 A kind of method of phenol compound catalysis oxidative synthesis benzoquinone compound
CN110433862A (en) * 2019-08-30 2019-11-12 中南大学 A kind of preparation method and application of the porous catalyst based on waste plastic
US11168068B2 (en) 2016-07-18 2021-11-09 Janssen Pharmaceutica Nv Tau PET imaging ligands

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478752A (en) * 1981-07-20 1984-10-23 Sun Tech, Inc. Process for oxidizing phenol to p-benzoquinone
EP0369823A1 (en) * 1988-11-18 1990-05-23 THE STATE OF JAPAN, as Represented by the DIRECTOR GENERAL of the AGENCY of INDUSTRIAL SCIENCE and TECHNOLOGY Method for the preparation of 2,3,5-trimethylbenzoquinone
CN1293182A (en) * 1999-10-15 2001-05-02 德古萨-于尔斯股份公司 Method of preparing 2,3,5-frimethyl-p-benzoquinone
CN104292095A (en) * 2014-09-05 2015-01-21 中国科学院青岛生物能源与过程研究所 Method for direct oxidation of phenol compound to prepare p-benzoquinone compound
CN104557487A (en) * 2014-09-03 2015-04-29 中国科学院青岛生物能源与过程研究所 Preparation method of p-benzoquinone compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478752A (en) * 1981-07-20 1984-10-23 Sun Tech, Inc. Process for oxidizing phenol to p-benzoquinone
EP0369823A1 (en) * 1988-11-18 1990-05-23 THE STATE OF JAPAN, as Represented by the DIRECTOR GENERAL of the AGENCY of INDUSTRIAL SCIENCE and TECHNOLOGY Method for the preparation of 2,3,5-trimethylbenzoquinone
CN1293182A (en) * 1999-10-15 2001-05-02 德古萨-于尔斯股份公司 Method of preparing 2,3,5-frimethyl-p-benzoquinone
CN104557487A (en) * 2014-09-03 2015-04-29 中国科学院青岛生物能源与过程研究所 Preparation method of p-benzoquinone compound
CN104292095A (en) * 2014-09-05 2015-01-21 中国科学院青岛生物能源与过程研究所 Method for direct oxidation of phenol compound to prepare p-benzoquinone compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146276A (en) * 2015-04-02 2016-11-23 中国科学院金属研究所 A kind of method of phenol compound catalysis oxidative synthesis benzoquinone compound
CN106146276B (en) * 2015-04-02 2019-04-09 中国科学院金属研究所 Method for synthesizing benzoquinones by catalytic oxidation of phenolic compounds
US11168068B2 (en) 2016-07-18 2021-11-09 Janssen Pharmaceutica Nv Tau PET imaging ligands
US12006302B2 (en) 2016-07-18 2024-06-11 Janssen Pharmaceutica Nv Tau PET imaging ligands
CN110433862A (en) * 2019-08-30 2019-11-12 中南大学 A kind of preparation method and application of the porous catalyst based on waste plastic

Similar Documents

Publication Publication Date Title
Sedighipoor et al. Unsymmetrical palladium (II) N, N, O, O-Schiff base complexes: Efficient catalysts for Suzuki coupling reactions
Paul et al. Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1, 10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments
Nemoto et al. Efficient nickel-catalyzed hydrocyanation of alkenes using acetone cyanohydrin as a safer cyano source
CN104557487A (en) Preparation method of p-benzoquinone compound
Tan et al. Synthesis and structure of an air-stable organobismuth triflate complex and its use as a high-efficiency catalyst for the ring opening of epoxides in aqueous media with aromatic amines
Noshiranzadeh et al. Synthesis, characterization and catalytic reactivity of Mn (III) complexes with a scorpion-like bis (phenolate) ligand: Selective oxidation of primary alcohols to aldehydes
CN104292095A (en) Method for direct oxidation of phenol compound to prepare p-benzoquinone compound
CN113788748A (en) Method for preparing straight-chain carbonyl compounds from unsaturated hydrocarbons catalyzed by palladium composite catalysts modified by polydentate phosphine ligands
CN104292096A (en) Method for preparing p-benzoquinone compound through selective catalytic oxidation of phenol compound
CN114671831A (en) Method for preparing beta-lactone by carbonylation of epoxy compound catalyzed by gallium porphyrin-cobalt carbonyl
Basu et al. Synthesis and architecture of polystyrene-supported Schiff base-palladium complex: Catalytic features and functions in diaryl urea preparation in conjunction with Suzuki-Miyaura cross-coupling reaction by reductive carbonylation
Itazaki et al. Iron-catalyzed cross-dehydrogenative-coupling reactions
BRPI0714196A2 (en) Process for the production of substituted or unsubstituted 1,7-diolefins by hydrodimerization
Li et al. A green and recyclable ligand-free copper (I) catalysis system for amination of halonitrobenzenes in aqueous ammonia solution
CN105712899B (en) A method for one-step synthesis of imines from alcohols and amines catalyzed by a supported cobalt compound
Maurya et al. Polymer‐anchored mononuclear and binuclear CuII Schiff‐base complexes: Impact of heterogenization on liquid phase catalytic oxidation of a series of alkenes
Akdeniz et al. Synthesis, characterization, Suzuki-Miyaura and Mizoroki-Heck cross-coupling reactions of Schiff base-Pd (II) complexes
CN101270113A (en) Preparation of multichiral catalysts and their application in the synthesis of highly optically active cyclocarbonates
Hylland et al. The Suzuki–Miyaura Cross‐Coupling as the Key Step in the Synthesis of 2‐Aminobiphenyls and 2, 2'‐Diaminobiphenyls: Application in the Synthesis of Schiff Base Complexes of Zn
CN104910104A (en) Method for synthesizing dihydrofuran derivatives under catalytic action of copper
Mori et al. Pd (0)–polyethyleneimine complex as a partial hydrogenation catalyst of alkynes to alkenes
Cai et al. Carbonylation of aryl halides catalyzed by a silica-supported sulfur and phosphine mixed bidentate palladium complex
Reyes-Mata et al. Calix [8] arene-based Ni (II) complexes for electrocatalytic CO2 reduction
Ramakrishnan et al. Palladium-catalyzed synthesis of carboxylic acid anhydrides from alkenes
Duris et al. Lanthanide bis (trifluoromethylsulfonyl) amides vs. trifluoromethylsulfonates as catalysts for Friedel–Crafts acylations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150121

RJ01 Rejection of invention patent application after publication