[go: up one dir, main page]

CN104283596B - A kind of 3D beam form-endowing methods and equipment - Google Patents

A kind of 3D beam form-endowing methods and equipment Download PDF

Info

Publication number
CN104283596B
CN104283596B CN201310603604.0A CN201310603604A CN104283596B CN 104283596 B CN104283596 B CN 104283596B CN 201310603604 A CN201310603604 A CN 201310603604A CN 104283596 B CN104283596 B CN 104283596B
Authority
CN
China
Prior art keywords
mrow
msub
beam angle
access point
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310603604.0A
Other languages
Chinese (zh)
Other versions
CN104283596A (en
Inventor
崔高峰
王卫东
唐明环
邹珣
张英海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201310603604.0A priority Critical patent/CN104283596B/en
Publication of CN104283596A publication Critical patent/CN104283596A/en
Application granted granted Critical
Publication of CN104283596B publication Critical patent/CN104283596B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种3D波束赋形方法及设备,该方法包括:获取当前时隙需要服务的各个用户的位置信息,根据获取到的位置信息确定各个用户的总吞吐量相对于波束角向量αβ的函数使用迭代算法确定使最大的波束角向量αβM;根据获取到的波束角向量αβM调整各个接入点发送的波束的波束角。相比于现有技术中,直接将波束指向用户的方式,本发明能够较为有效的抑制波束对其他用户的干扰,使系统的总吞吐量最大。

The present invention provides a 3D beamforming method and equipment. The method includes: obtaining the location information of each user that needs to be served in the current time slot, and determining the total throughput of each user relative to the beam angle vector αβ according to the obtained location information The function Use an iterative algorithm to determine the The largest beam angle vector αβ M ; adjust the beam angles of the beams sent by each access point according to the acquired beam angle vector αβ M . Compared with the method of directing the beam to the user in the prior art, the present invention can more effectively suppress the interference of the beam to other users and maximize the total throughput of the system.

Description

一种3D波束赋形方法及设备A 3D beamforming method and device

技术领域technical field

本发明涉及通信技术领域,尤其涉及到一种3D波束赋形方法及设备。The present invention relates to the technical field of communications, and in particular to a 3D beamforming method and device.

背景技术Background technique

异构网络是区别于传统同构网络模型的新型网络结构。异构网络增加了低功率发射节点,包括微基站(Microcell)、微微基站(Picocell)、毫微微基站(Femtocell)、中继(Relay)和射频拉远节点(RRH)等。跟宏蜂窝基站相比,上述几种基站体积小,发射功率低,覆盖范围小,但是比宏基站更容易部署。异构网络部署多种类型基站覆盖重叠,可以解决覆盖“盲区”和“忙区”的问题,尤其是适用于解决室内和热点地区的覆盖问题,可以显著提升系统的容量并提高系统的频谱效率。Heterogeneous network is a new network structure different from the traditional homogeneous network model. The heterogeneous network adds low-power transmitting nodes, including micro base stations (Microcell), pico base stations (Picocell), femto base stations (Femtocell), relays (Relay) and remote radio nodes (RRH). Compared with macro-cell base stations, the above-mentioned base stations are small in size, low in transmission power, and small in coverage, but they are easier to deploy than macro-cell base stations. Heterogeneous network deploys multiple types of base station coverage overlapping, which can solve the problem of coverage "blind area" and "busy area", especially suitable for solving the coverage problem of indoor and hotspot areas, which can significantly increase the system capacity and improve the system's spectral efficiency .

波束赋形技术最早应用于智能天线中,基站动态调整下行波束的水平方向,使波束指向所服务的用户,从而增大接收功率并且减小对其他用户的干扰。水平波束赋形不能解决处于相同水平方向的用户之间的干扰问题,因此,近年来出现了控制波束下倾角的技术。通过动态调整波束倾角,不仅可以有效抑制相同径向的用户之间的干扰,而且有效解决了小区边缘用户接收功率低,小区中心盲区问题。随着技术的发展,近年来出现了同时调整波束水平角和下倾角的技术,即3D波束赋形,3D波束赋形需要基站之间交互更多的信息,复杂度高,现有技术都是对小区进行水平和垂直分区,每个分区对应固定的角度,灵活性不高。Beamforming technology was first used in smart antennas. The base station dynamically adjusts the horizontal direction of the downlink beam so that the beam points to the served user, thereby increasing the received power and reducing interference to other users. Horizontal beamforming cannot solve the interference problem between users in the same horizontal direction, therefore, techniques to control beam downtilt have emerged in recent years. By dynamically adjusting the beam inclination angle, it can not only effectively suppress the interference between users in the same radial direction, but also effectively solve the problems of low receiving power of users at the edge of the cell and blind spots in the center of the cell. With the development of technology, in recent years, a technology that simultaneously adjusts the horizontal angle and downtilt angle of the beam has emerged, that is, 3D beamforming. 3D beamforming requires more information to be exchanged between base stations, and the complexity is high. The existing technology is Horizontally and vertically partition the plot, and each partition corresponds to a fixed angle, so the flexibility is not high.

异构网络中多种类型基站的覆盖区域重叠,会产生大量小区边缘区域,在小区边缘区域的用户容易受到相邻基站的干扰。3D波束赋形技术通过将较细的波束指向所服务的用户,可以提高用户接收功率并且降低对其他用户的干扰,有效提高信干比。在异构网络中使用3D波束赋形技术对吞吐量提升有很大的潜力。然而,如果在小区边缘,相邻小区的用户距离很近的场景下,直接将波束指向用户,势必会带来更强的干扰,不仅对系统吞吐量提升没有贡献,甚至反而会带来吞吐量下降。The overlapping coverage areas of various types of base stations in a heterogeneous network will generate a large number of cell edge areas, and users in the cell edge areas are easily interfered by adjacent base stations. The 3D beamforming technology can improve the received power of the user and reduce the interference to other users by directing the thinner beam to the served user, effectively improving the signal-to-interference ratio. Using 3D beamforming technology in heterogeneous networks has great potential for throughput improvement. However, if the beam is directed at the user at the edge of the cell and the users in the adjacent cell are very close, it will inevitably bring stronger interference, which will not only make no contribution to the improvement of system throughput, but will even increase the throughput. decline.

发明内容Contents of the invention

本发明提供了一种3D波束赋形方法及设备,能够较好的降低异构网络中相邻小区之间的干扰,提高系统的吞吐量。The invention provides a 3D beam forming method and equipment, which can better reduce the interference between adjacent cells in a heterogeneous network and improve the throughput of the system.

本发明提供了一种3D波束赋形方法,其特征在于,应用于异构网络中,所述异构网络中至少一个宏小区包含一个宏基站和至少一个低功率基站,所述一个宏基站和至少一个低功率基站均作为接入点构成接入点组GN,每一个接入点在一个时隙内使用一个波束为一个用户服务,该方法包括:The present invention provides a 3D beamforming method, which is characterized in that it is applied in a heterogeneous network, where at least one macro cell in the heterogeneous network includes a macro base station and at least one low-power base station, and the macro base station and At least one low-power base station is used as an access point to form an access point group GN, and each access point uses a beam in a time slot to serve a user. The method includes:

获取当前时隙需要服务的各个用户的位置信息;Obtain the location information of each user that needs to be served in the current time slot;

根据获取到的位置信息确定各个用户的总吞吐量相对于波束角向量αβ的函数其中所述波束角向量αβ为(α1,α2……αS,β1,β2……βS),其中αs用于表示第s个接入点发送的波束的波峰所在的直线在水平面上的投影与预设的水平轴X之间的夹角,βs用于表示第s个接入点发送的波束的波峰所在的直线与水平面的夹角,S为用户的个数,Rs(αβ)为第s个用户对应的数据传输速率;According to the obtained position information, the function of the total throughput of each user relative to the beam angle vector αβ is determined The beam angle vector αβ is (α 1 , α 2 ... α S , β 1 , β 2 ... β S ), where α s is used to represent the straight line where the crest of the beam sent by the sth access point is located The angle between the projection on the horizontal plane and the preset horizontal axis X, β s is used to represent the angle between the straight line where the peak of the beam sent by the sth access point is located and the horizontal plane, S is the number of users, R s (αβ) is the data transmission rate corresponding to the sth user;

使用迭代算法确定使最大的波束角向量αβMUse an iterative algorithm to determine the The largest beam angle vector αβ M ;

根据获取到的波束角向量αβM调整各个接入点发送的波束的波束角。The beam angles of the beams sent by each access point are adjusted according to the acquired beam angle vector αβ M.

优选的,所述根据获取到的位置信息确定各个用户的总吞吐量相对于波束角向量αβ的函数具体包括:Preferably, the function of determining the total throughput of each user relative to the beam angle vector αβ according to the acquired position information Specifically include:

根据获取到的位置信息确定各个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数;Determine the function of the large-scale fading from each access point to each user relative to the beam angle vector αβ according to the obtained position information;

作为各个用户的总吞吐量相对于波束角向量αβ的函数,其中,Pick As a function of the total throughput of each user with respect to the beam angle vector αβ, where,

属于集合为大于0的整数; belong to collection is an integer greater than 0;

其中,ρs(α,β)=[ρs,111),…,ρs,SSS)],ρs,bbb)为第b个接入点到第s个用户的大尺度衰落相对于第b个接入点的波束角(αbb)的函数,rs=(rs,1,rs,2,rs,3……rs,S),其中,当s=b时,rs,b=N;当s≠b时,rs,b=1,N为各个接入点的天线的个数;为ρs(α,β)去掉第s个元素后得到的向量,为rs去掉第s个元素后得到的向量。Among them, ρ s (α,β)=[ρ s,111 ),…,ρ s,SSS )], ρ s,bbb ) is The large-scale fading from the bth access point to the sth user is a function of the beam angle (α b , β b ) of the bth access point, rs = (rs ,1 , rs ,2 , r s,3 ... r s,S ), where, when s=b, r s,b =N; when s≠b, r s,b =1, N is the number of antennas of each access point number; is the vector obtained after removing the sth element for ρ s (α,β), The vector obtained after removing the sth element for r s .

优选的,所述根据获取到的位置信息确定各个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数,具体包括:分别计算每一个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数,其中,PLs,b是接入点b到用户s的路损,Ψs,b是接入点b到用户s的阴影衰落,是天线方向图;是连接用户s和接入点b的直线与X轴的夹角,是连接用户s和接入点b的直线与水平面的夹角;SLLaz和SLLel分别是水平和和垂直方向图的旁瓣电平,SLLtot是总的旁瓣电平;E[A]表示取A的期望值,Amax为预设值。Preferably, the determining the function of the large-scale fading from each access point to each user relative to the beam angle vector αβ according to the acquired location information specifically includes: calculating the large-scale fading from each access point to each user respectively Fading as a function of the beam angle vector αβ, where, PL s,b is the path loss from access point b to user s, Ψ s,b is the shadow fading from access point b to user s, is the antenna pattern; is the angle between the line connecting user s and access point b and the X axis, is the angle between the straight line connecting user s and access point b and the horizontal plane; SLL az and SLL el are the side lobe levels of the horizontal and vertical patterns, respectively, and SLL tot is the total side lobe level; E[A] It means to take the expected value of A, and A max is the default value.

优选的,所述使用迭代算法确定使最大的波束角向量αβM,具体包括:Preferably, the iterative algorithm is used to determine that The largest beam angle vector αβ M , including:

S1,选取k个波束角向量,所述k个波束角向量αβ中包含各个接入点直接指向所服务的用户设备时对应的波束角向量αβ;其中k为预设值,且所述k个波束角向量αβ中包含各个接入点的天线直接指向其所需要服务的用户时对应的波束角向量;S1. Select k beam angle vectors, the k beam angle vectors αβ include beam angle vectors αβ corresponding to each access point directly pointing to the served user equipment; where k is a preset value, and the k The beam angle vector αβ contains the corresponding beam angle vector when the antenna of each access point is directly pointing to the user it needs to serve;

S2,判断所述k个波束角向量αβ对应的k个总吞吐量是否收敛在预设范围内,若否,转向步骤S3,若是,转向步骤S4;S2, judging whether the k total throughputs corresponding to the k beam angle vectors αβ converge within the preset range, if not, turn to step S3, and if so, turn to step S4;

S3,选取所述k个波束角向量αβ以外的其他波束角向量αβ代替所述k个波束角向量αβ中使总吞吐量最小的波束角向量αβ,并返回步骤S2;S3, select other beam angle vectors αβ other than the k beam angle vectors αβ to replace the beam angle vector αβ that minimizes the total throughput among the k beam angle vectors αβ, and return to step S2;

S4,选取k个波束角向量αβ中使总吞吐量最大的波束角向量αβ作为使最大的波束角向量αβMS4. Select the beam angle vector αβ that maximizes the total throughput among the k beam angle vectors αβ as the Maximum beam angle vector αβ M .

优选的,所述使用复杂形算法获取使总吞吐量最大的波束角向量αβM之后,根据所述获取到的波束角向量αβM调整各个接入点发送的波束的波束角之前,所述方法还包括:Preferably, said use of the complex shape algorithm to obtain the total throughput After the maximum beam angle vector αβ M , before adjusting the beam angles of the beams sent by each access point according to the acquired beam angle vector αβ M , the method further includes:

按照预设的步长在正负T°范围内改变波束角向量αβM中的任意一个角度的值,并在每一次改变所述任意一个角度值时,相应的改变波束角向量αβM中其他角度的取值,使宏基站和低功率基站的总吞吐量取最大值,所述T为预设值;Change the value of any angle in the beam angle vector αβ M within the range of plus or minus T° according to the preset step size, and change the value of any angle in the beam angle vector αβ M accordingly each time the value of any angle is changed The value of the angle makes the total throughput of the macro base station and the low-power base station take the maximum value, and the T is a preset value;

判断在每一次改变所述任意一个角度值后总吞吐量的最大值与波束角向量αβM对应的总吞吐量的比值是否大于预设值,并在判断为是时,将该次改变所述任意一个角度值后使总吞吐量取最大值的波束角向量加入待选集合;Judging whether the ratio of the maximum value of the total throughput to the total throughput corresponding to the beam angle vector αβ M is greater than a preset value after changing any one of the angle values each time, and if it is judged to be yes, change the After any angle value, the beam angle vector that maximizes the total throughput is added to the candidate set;

从待选集合中选择使宏基站间干扰抑制SLNR最大的波束角向量αβmSelect the beam angle vector αβ m that maximizes the interference suppression SLNR between macro base stations from the set to be selected;

所述根据所述波束角向量αβM调整各个接入点发送的波束的波束角,具体包括:The adjusting the beam angle of the beam sent by each access point according to the beam angle vector αβ M specifically includes:

根据所述波束角向量αβm调整所述宏基站和所述低功率基站的波束角。Adjusting beam angles of the macro base station and the low-power base station according to the beam angle vector αβ m .

本发明提供了一种3D波束赋形设备,作为宏基站应用于异构网络中,该设备包括:The present invention provides a 3D beamforming device, which is used as a macro base station in a heterogeneous network, and the device includes:

位置信息获取模块,获取当前时隙需要服务的各个用户的位置信息;The location information acquisition module acquires the location information of each user that needs to be served in the current time slot;

调用模块,根据获取到的位置信息确定各个用户的总吞吐量相对于波束角向量αβ的函数其中所述波束角向量αβ为(α1,α2……αS,β1,β2……βS),其中αs用于表示第s个接入点发送的波束的波峰所在的直线在水平面上的投影与预设的水平轴X之间的夹角,βs用于表示第s个接入点发送的波束的波峰所在的直线与水平面的夹角,S为用户的个数,Rs(αβ)为第s个用户对应的数据传输速率;Call the module to determine the function of the total throughput of each user relative to the beam angle vector αβ according to the obtained position information The beam angle vector αβ is (α 1 , α 2 ... α S , β 1 , β 2 ... β S ), where α s is used to represent the straight line where the crest of the beam sent by the sth access point is located The angle between the projection on the horizontal plane and the preset horizontal axis X, β s is used to represent the angle between the straight line where the peak of the beam sent by the sth access point is located and the horizontal plane, S is the number of users, R s (αβ) is the data transmission rate corresponding to the sth user;

计算模块,使用迭代算法确定使最大的波束角向量αβMcalculation module, using an iterative algorithm to determine the The largest beam angle vector αβ M ;

调整模块,用于根据获取到的波束角向量αβM调整各个接入点发送的波束的波束角。An adjustment module, configured to adjust beam angles of beams sent by each access point according to the acquired beam angle vector αβ M.

优选的,所述调用模块,具体用于根据获取到的位置信息确定各个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数,取作为各个用户的总吞吐量相对于波束角向量αβ的函数,其中,Preferably, the calling module is specifically configured to determine the function of the large-scale fading from each access point to each user with respect to the beam angle vector αβ according to the acquired position information, which takes As a function of the total throughput of each user with respect to the beam angle vector αβ, where,

属于集合 n为大于0的整数; belong to collection n is an integer greater than 0;

其中,ρs(α,β)=[ρs,111),…,ρs,SSS)],ρs,bbb)为第b个接入点到第s个用户的大尺度衰落相对于第b个接入点的波束角(αbb)的函数,rs=(rs,1,rs,2,rs,3……rs,S),其中,当s=b时,rs,b=N;当s≠b时,rs,b=1,N为各个接入点的天线的个数;为ρs(α,β)去掉第s个元素后得到的向量,为rs去掉第s个元素后得到的向量Among them, ρ s (α,β)=[ρ s,111 ),…,ρ s,SSS )], ρ s,bbb ) is The large-scale fading from the bth access point to the sth user is a function of the beam angle (α b , β b ) of the bth access point, rs = (rs ,1 , rs ,2 , r s,3 ... r s,S ), where, when s=b, r s,b =N; when s≠b, r s,b =1, N is the number of antennas of each access point number; is the vector obtained after removing the sth element for ρ s (α,β), The vector obtained after removing the sth element for r s

优选的,所述调用模块,具体用于分别计算每一个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数,其中PLs,b是接入点b到用户s的路损,Ψs,b是接入点b到用户s的阴影衰落,是天线方向图;是连接用户s和接入点b的直线与X轴的夹角,是连接用户s和接入点b的直线与水平面的夹角;SLLaz和SLLel分别是水平和和垂直方向图的旁瓣电平,SLLtot是总的旁瓣电平;E[A]表示取A的期望值,Amax为预设值。Preferably, the calling module is specifically used to calculate the function of the large-scale fading from each access point to each user relative to the beam angle vector αβ, wherein PL s,b is the path loss from access point b to user s, Ψ s,b is the shadow fading from access point b to user s, is the antenna pattern; is the angle between the line connecting user s and access point b and the X axis, is the angle between the straight line connecting user s and access point b and the horizontal plane; SLL az and SLL el are the side lobe levels of the horizontal and vertical patterns, respectively, and SLL tot is the total side lobe level; E[A] It means to take the expected value of A, and A max is the default value.

优选的,所述计算模块,具体用于执行如下步骤:Preferably, the calculation module is specifically configured to perform the following steps:

S1,选取k个波束角向量,其中k为预设值,且所述k个波束角向量αβ中包含各个接入点的天线直接指向其所需要服务的用户时对应的波束角向量;S1. Select k beam angle vectors, where k is a preset value, and the k beam angle vectors αβ include the corresponding beam angle vectors when the antennas of each access point point directly to the users they need to serve;

S2,判断所述k个波束角向量αβ对应的k个总吞吐量是否收敛在预设范围内,若否,转向步骤S3,若是,转向步骤S4;S2, judging whether the k total throughputs corresponding to the k beam angle vectors αβ converge within the preset range, if not, turn to step S3, and if so, turn to step S4;

S3,选取所述k个波束角向量αβ以外的其他波束角向量αβ代替所述k个波束角向量αβ中使总吞吐量最小的波束角向量αβ,并返回步骤S2;S3, select other beam angle vectors αβ other than the k beam angle vectors αβ to replace the beam angle vector αβ that minimizes the total throughput among the k beam angle vectors αβ, and return to step S2;

S4,选取k个波束角向量αβ中使总吞吐量最大的波束角向量αβ作为使最大的波束角向量αβMS4. Select the beam angle vector αβ that maximizes the total throughput among the k beam angle vectors αβ as the Maximum beam angle vector αβ M .

优选的,该设备还包括:Preferably, the device also includes:

微调模块,用于执行下列步骤:A fine-tuning module for performing the following steps:

按照预设的步长在正负T°范围内改变波束角向量αβM中对应于宏基站的任意一个角度值,并在每一次改变所述意一个角度值时,相应的改变波束角向量αβM中其他角度的取值,使宏基站和低功率基站的总吞吐量取最大值,所述T为预设值;Change any angle value corresponding to the macro base station in the beam angle vector αβ M within the range of plus or minus T° according to the preset step size, and change the beam angle vector αβ correspondingly every time the angle value is changed The values of other angles in M make the total throughput of the macro base station and the low-power base station take the maximum value, and the T is a preset value;

判断在每一次改变所述任意一个角度值后总吞吐量的最大值与波束角向量αβM对应的总吞吐量的比值是否大于预设值,并在判断为是时,将该次改变所述任意一个角度值后使总吞吐量取最大值的波束角向量加入待选集合;Judging whether the ratio of the maximum value of the total throughput to the total throughput corresponding to the beam angle vector αβ M is greater than a preset value after changing any one of the angle values each time, and if it is judged to be yes, change the After any angle value, the beam angle vector that maximizes the total throughput is added to the candidate set;

从待选集合中选择使宏基站间干扰抑制SLNR最大的波束角向量αβmSelect the beam angle vector αβ m that maximizes the interference suppression SLNR between macro base stations from the set to be selected;

所述调整模块,具体用于根据所述波束角向量αβm调整各个接入点发送的波束的波束角。The adjusting module is specifically configured to adjust beam angles of beams sent by each access point according to the beam angle vector αβ m .

本发明中,获取当前时隙需要服务的各个用户的位置信息,根据获取到的位置信息确定各个用户的总吞吐量相对于波束角向量αβ的函数其中所述波束角向量αβ为(α1,α2……αS,β1,β2……βS),其中αs用于表示第s个接入点发送的波束的波峰所在的直线与预设的水平轴X之间的夹角,βs用于表示第s个接入点发送的波束的波峰所在的直线与水平面的夹角,S为用户的个数,Rs(αβ)为第s个用户对应的数据传输速率;使用迭代算法确定使最大的波束角向量αβM;根据获取到的波束角向量αβM调整各个接入点发送的波束的波束角。相比于现有技术中,直接将波束指向用户的方式,本发明能够较为有效的抑制波束对其他用户的干扰,使系统的总吞吐量最大。同时本发明中,使对GN内各个接入点的波束角的计算统一在该GN的宏基站上执行,且各个宏基站分别计算自身所在GN的波束角,在有效抑制GN内干扰的同时,还避免了计算各个GN内的波束角的工作在用一台设备上执行,降低了单台设备的工作负担。In the present invention, the location information of each user that needs to be served in the current time slot is obtained, and the function of the total throughput of each user relative to the beam angle vector αβ is determined according to the obtained location information The beam angle vector αβ is (α 1 , α 2 ... α S , β 1 , β 2 ... β S ), where α s is used to represent the straight line where the crest of the beam sent by the sth access point is located The included angle with the preset horizontal axis X, β s is used to indicate the included angle between the straight line where the peak of the beam sent by the sth access point is located and the horizontal plane, S is the number of users, R s (αβ) is the data transmission rate corresponding to the sth user; use an iterative algorithm to determine the The largest beam angle vector αβ M ; adjust the beam angles of the beams sent by each access point according to the acquired beam angle vector αβ M . Compared with the method of directing the beam to the user in the prior art, the present invention can more effectively suppress the interference of the beam to other users and maximize the total throughput of the system. At the same time, in the present invention, the calculation of the beam angles of each access point in the GN is uniformly performed on the macro base station of the GN, and each macro base station calculates the beam angle of the GN where it is located, while effectively suppressing the interference in the GN, It also prevents the work of calculating the beam angles in each GN from being performed on one device, reducing the workload of a single device.

附图说明Description of drawings

图1为本发明实施例提供的一种3D波束赋形方法的流程示意图;FIG. 1 is a schematic flowchart of a 3D beamforming method provided by an embodiment of the present invention;

图2为本发明实施例提供的一种3D波束赋形方法中计算波束角向量的流程示意图;FIG. 2 is a schematic flow chart of calculating a beam angle vector in a 3D beamforming method provided by an embodiment of the present invention;

图3本发明实施例提供的一种3D波束赋形方法的部分流程示意图;FIG. 3 is a schematic flowchart of a part of a 3D beamforming method provided by an embodiment of the present invention;

图4本发明实施例提供的一种3D波束赋形设备的结构示意图。FIG. 4 is a schematic structural diagram of a 3D beamforming device provided by an embodiment of the present invention.

具体实施方式detailed description

下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The specific implementation manners of the present invention will be further described below in conjunction with the drawings and examples. The following examples are only used to illustrate the technical solution of the present invention more clearly, but not to limit the protection scope of the present invention.

本发明实施例提供了一种3D波束赋形方法,应用于异构网络系统中,该异构网络中包含一个宏基站和至少一个低功率基站,如图1所示,该方法包括:An embodiment of the present invention provides a 3D beamforming method, which is applied to a heterogeneous network system. The heterogeneous network includes a macro base station and at least one low-power base station. As shown in FIG. 1 , the method includes:

步骤101,获取当前时隙需要服务的各个用户的位置信息。Step 101, acquiring location information of each user that needs to be served in the current time slot.

实际应用中,获取当前时隙需要服务的各个用户的位置信息的方式有多重,比如其中一种方式是:在每个GN内,LPN通过馈线与MBS连接,用户位置信息由他的服务节点向MBS上报。In practical applications, there are multiple ways to obtain the location information of each user that needs to be served in the current time slot. For example, one of the methods is: in each GN, the LPN is connected to the MBS through a feeder, and the user location information is sent by its service node to the MBS. MBS report.

步骤102,根据获取到的位置信息确定各个用户的总吞吐量相对于波束角向量αβ的函数其中所述波束角向量αβ为(α1,α2……αS,β1,β2……βS),其中αs用于表示第s个接入点发送的波束的波峰所在的直线与预设的水平轴X之间的夹角,βs用于表示第s个接入点发送的波束的波峰所在的直线与水平面的夹角,S为用户的个数,Rs(αβ)为第s个用户对应的数据传输速率;Step 102, according to the obtained location information, determine the function of the total throughput of each user relative to the beam angle vector αβ The beam angle vector αβ is (α 1 , α 2 ... α S , β 1 , β 2 ... β S ), where α s is used to represent the straight line where the crest of the beam sent by the sth access point is located The included angle with the preset horizontal axis X, β s is used to indicate the included angle between the straight line where the peak of the beam sent by the sth access point is located and the horizontal plane, S is the number of users, R s (αβ) is the data transmission rate corresponding to the sth user;

步骤103,使用迭代算法确定使最大的波束角向量αβMStep 103, using an iterative algorithm to determine Maximum beam angle vector αβ M .

步骤104,根据获取到的波束角向量αβM调整各个接入点发送的波束的波束角。Step 104, adjust the beam angles of the beams sent by each access point according to the acquired beam angle vector αβ M.

本发明实施例中,预先确定一个总吞吐量相对于波束角向量αβ的函数并使用复杂形算法选取使总吞吐量最大的波束角向量αβ调整各个接入点发送的波束的波束角。相比于现有技术中直接将波束指向用户的方式,本发明能够较为有效的抑制波束对其他用户的干扰,使系统的总吞吐量最大。In the embodiment of the present invention, a function of the total throughput relative to the beam angle vector αβ is predetermined and use the complex shape algorithm to choose such that the total throughput The largest beam angle vector αβ adjusts the beam angles of the beams transmitted by each access point. Compared with the way of directing the beam to the user in the prior art, the present invention can more effectively suppress the interference of the beam to other users and maximize the total throughput of the system.

优选的,上述步骤102具体包括:Preferably, the above step 102 specifically includes:

根据获取到的位置信息确定各个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数;Determine the function of the large-scale fading from each access point to each user relative to the beam angle vector αβ according to the obtained position information;

作为各个用户的总吞吐量相对于波束角向量αβ的函数;其中,Pick As a function of the total throughput of each user with respect to the beam angle vector αβ; where,

属于集合n为大于0的整数; belong to collection n is an integer greater than 0;

其中,ρs(α,β)=[ρs,111),…,ρs,SSS)],ρs,bbb)为第b个接入点到第s个用户的大尺度衰落相对于第b个接入点的波束角(αbb)的函数,rs=(rs,1,rs,2,rs,3……rs,S),其中,当s=b时,rs,b=N;当s≠b时,rs,b=1,N为各个接入点的天线的个数;为ρs(α,β)去掉第s个元素后得到的向量,为rs去掉第s个元素后得到的向量。通过这种方式,能够降低计算波束角向量αβ的复杂度。Among them, ρ s (α,β)=[ρ s,111 ),…,ρ s,SSS )], ρ s,bbb ) is The large-scale fading from the bth access point to the sth user is a function of the beam angle (α b , β b ) of the bth access point, rs = (rs ,1 , rs ,2 , r s,3 ... r s,S ), where, when s=b, r s,b =N; when s≠b, r s,b =1, N is the number of antennas of each access point number; is the vector obtained after removing the sth element for ρ s (α,β), The vector obtained after removing the sth element for r s . In this way, the complexity of calculating the beam angle vector αβ can be reduced.

具体的,假设是基站b和用户s之间的信道矩阵,表征小尺度衰落。假设信道是不相关瑞丽衰落信道,所以是独立同分布的,并且属于CN(0,1)。xb∈□N×1是基站b的发送信号,功率限制为xb可以写成xs=fsds。fs是归一化波束赋形向量,即对于第s个用户,fs=hs,s/|hs,s|。ds代表用户s的接收数据符号。由以上可知,服从缩放系数为1/2,自由度为2N的卡方分布,即干扰服从缩放系数为1/2,自由度为2的卡方分布,即其中,代表自由度为n的卡方分布。ns□CN(0,1)是用户s受到的归一化加性高斯白噪声(AWGN)。Specifically, suppose is the channel matrix between base station b and user s, representing small-scale fading. Suppose the channel is an uncorrelated Rayleigh fading channel, so is independent and identically distributed and belongs to CN(0,1). x b ∈□ N×1 is the transmitted signal of base station b, and the power limit is x b can be written as x s = f s d s . f s is a normalized beamforming vector, that is, for the sth user, f s =h s,s /|h s,s |. d s represents the received data symbol of user s. From the above we can see, It obeys a chi-square distribution with a scaling factor of 1/2 and a degree of freedom of 2N, namely interference It obeys a chi-square distribution with a scaling factor of 1/2 and a degree of freedom of 2, namely in, Represents a chi-square distribution with n degrees of freedom. n s □CN(0,1) is the normalized additive white Gaussian noise (AWGN) received by user s.

由此可以得到用户的信干噪比为From this, the signal-to-interference-noise ratio of the user can be obtained as

其中α=[α1,…,αS],β=[β1,…,βS]表示每个基站波束的水平角和下倾角,即各个发送的波束的波峰所在的直线在水平面上的投影与预设的水平轴X之间的夹角和所在的直线与水平面的夹角。根据香农定理,用户平均数据速率为Where α=[α 1 ,…,α S ], β=[β 1 ,…,β S ] represent the horizontal angle and downtilt angle of each base station beam, that is, the straight line where the peak of each transmitted beam is located on the horizontal plane The angle between the projection and the preset horizontal axis X and the angle between the straight line and the horizontal plane. According to Shannon's theorem, the average user data rate is

Rs(α,β)=Ε[log2(1+SINRs(α,β))] (2)R s (α,β)=Ε[log 2 (1+SINR s (α,β))] (2)

将(2)代入(1)得Substitute (2) into (1) to get

引理:假设Xm是一个卡方分布的随机变量,自由度为2rm>0,X是Xm的求和,即令μ=[μ1,…,μM],r=[r1,…,rM],则对于f(μ,r)=Ε[log2(1+X)],我们可以得到Lemma: Suppose X m is a random variable with chi-square distribution, the degree of freedom is 2r m > 0, and X is the sum of X m , that is Let μ=[μ 1 ,…,μ M ], r=[r 1 ,…,r M ], then for f(μ,r)=Ε[log 2 (1+X)], we can get

其中in

i=[i1,i2,…,iM]属于集合Ωt,l i=[i 1 ,i 2 ,…,i M ] belongs to the set Ω t,l

令rs=1s+(Nt-1)es,ρs(α,β)=[ρs,111),…,ρs,SSS)],由引理得Let r s =1 s +(N t -1)e s , ρ s (α,β)=[ρ s,111 ),…,ρ s,SSS ) ], by the lemma

but

优选的,所述根据获取到的位置信息确定各个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数,具体包括:分别计算每一个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数PLs,b是接入点b到用户s的路损,Ψs,b是接入点b到用户s的阴影衰落,是天线方向图;b是连接用户s和接入点b的直线与X轴的夹角,是连接用户s和接入点b的直线与水平面的夹角;SLLaz和SLLel分别是水平和和垂直方向图的旁瓣电平,SLLtot是总的旁瓣电平;E[A]表示取A的期望值,Amax为预设值。Preferably, the determining the function of the large-scale fading from each access point to each user relative to the beam angle vector αβ according to the acquired location information specifically includes: calculating the large-scale fading from each access point to each user respectively Fading as a function of beam angle vector αβ PL s,b is the path loss from access point b to user s, Ψ s,b is the shadow fading from access point b to user s, is the antenna pattern; b is the angle between the line connecting user s and access point b and the X axis, is the angle between the straight line connecting user s and access point b and the horizontal plane; SLL az and SLL el are the side lobe levels of the horizontal and vertical patterns, respectively, and SLL tot is the total side lobe level; E[A] It means to take the expected value of A, and A max is the default value.

优选的,上述步骤103可以具体包括,如图2所示的各个步骤:Preferably, the above-mentioned step 103 may specifically include, as shown in FIG. 2 , various steps:

步骤201:设置映射因子λ和复杂形的维数k,令αβ0为一个起始点,通过在可行域内随机取点确定另外k-1个起始点并计算每点处的目标函数(总吞吐量函数)的值。这里维数k可以为预设值。Step 201: Set the mapping factor λ and the dimension k of the complex shape, let αβ0 be a starting point, determine another k-1 starting points by randomly selecting points in the feasible region, and calculate the objective function at each point (total throughput function) value. Here the dimension k may be a preset value.

优选的k=2S,映射因子λ为预设值,αβ0表示各个接入点将波束的波峰直接指向用户设备时对应的波束角向量。在实际应用中,将波束的波峰直接指向用户设备时对应的波束角向量对应的总吞吐量虽然不一定最大值,但是也是一个较大值。通过这种方式,能够保证网络中的总吞吐量不小于波束的波峰直接指向用户设备时对应的吞吐量。Preferably, k=2S, the mapping factor λ is a preset value, and αβ 0 represents the corresponding beam angle vector when each access point directs the peak of the beam to the user equipment. In practical applications, although the total throughput corresponding to the corresponding beam angle vector when the peak of the beam is directly directed to the user equipment is not necessarily the maximum value, it is also a relatively large value. In this manner, it can be ensured that the total throughput in the network is not less than the corresponding throughput when the crest of the beam directly points to the user equipment.

步骤202:调整映射因子λ,确定最差点αβW,即这里的最差点是指目标函数最小的点,依据式(7)计算中心点αβCStep 202: Adjust the mapping factor λ to determine the worst point αβ W , that is, the worst point here refers to the point with the smallest objective function, and calculate the center point αβ C according to formula (7);

步骤203:依据式(8)计算αβR,用αβR代替最差点形成新的复杂形。Step 203: Calculate αβ R according to formula (8), and use αβ R to replace the worst point to form a new complex shape.

αβR=αβC+λ(αβC-αβW) (8)αβ R =αβ C +λ(αβ C -αβ W ) (8)

步骤204,判断αβR是否为最差点,如果否,转到步骤206,如果是,转向步骤205。Step 204, judge whether αβR is the worst point, if not, go to step 206, if yes, go to step 205.

步骤205,将λ减小一半,之后转向步骤203。Step 205, reduce λ by half, and then go to step 203.

步骤206,判断所有k个点都在若干个空间单元内,若否,则转向步骤202,若是则转向步骤207。Step 206, judge that all k points are within several spatial units, if not, go to step 202, if yes, go to step 207.

步骤207,取k个向量中使目标函数取最大值的向量作为使吞吐量最大的波束角向量。Step 207, taking the vector that maximizes the objective function among the k vectors as the beam angle vector that maximizes the throughput.

需要指出的是,上述的步骤201-207仅是对本发明实施例步骤103的一种优选的实施方式,实际应用中,本领域技术人员可以想到多种其他的迭代算法,具体选中何种算法不应该落入本申请的保护范围。It should be pointed out that the above-mentioned steps 201-207 are only a preferred implementation of step 103 in the embodiment of the present invention. In practical applications, those skilled in the art can think of many other iterative algorithms. Should fall into the protection scope of this application.

优选的,在步骤103之后,步骤104之前,本发明实施例提供的3D波束赋形方法还可以包括如图3所示的如下步骤301-303:Preferably, after step 103 and before step 104, the 3D beamforming method provided by the embodiment of the present invention may further include the following steps 301-303 as shown in FIG. 3 :

步骤301,按照预设的步长在正负T°范围内改变波束角向量αβM中的对应于宏基站的任意一个角度值,并在每一次改变所述任意一个角度值时,相应的改变波束角向量αβM中其他角度的取值,使宏基站和低功率基站的总吞吐量取最大值,所述T为预设值。Step 301, change any angle value corresponding to the macro base station in the beam angle vector αβ M within the range of plus or minus T° according to the preset step size, and change each time any angle value corresponding to Values of other angles in the beam angle vector αβ M make the total throughput of the macro base station and the low-power base station take the maximum value, and the T is a preset value.

步骤302,判断在每一次改变所述任意一个角度值后总吞吐量的最大值与波束角向量αβM对应的总吞吐量的比值是否大于预设值,并在判断为是时,将该次改变所述任意一个角度值后使总吞吐量取最大值的波束角向量加入待选集合。Step 302, judging whether the ratio of the maximum value of the total throughput to the total throughput corresponding to the beam angle vector αβ M is greater than the preset value after changing any one of the angle values each time, and when the judgment is yes, the time After changing any one of the angle values, the beam angle vector with the maximum total throughput is added to the candidate set.

步骤303,从待选集合中选择使宏基站间干扰抑制SLNR最大的波束角向量αβmStep 303, selecting a beam angle vector αβ m that maximizes the SLNR of inter-macro base station interference suppression SLNR from the candidate set.

具体的,实际应用中,每个用户都被分为小区中心用户或小区边缘用户,如果一个MBS用户是小区中心用户,则其与相邻GN的用户距离较远,MBS的波束不会对相邻GN用户造成严重的干扰,所以不进行GN间干扰抑制;如果一个MBS用户是边缘用户,可能造成严重的GN间干扰,则依据最大SLNR原则进行GN间干扰抑制。令所研究的基站编号为1,相邻GN共有Q-1个边缘用户,编号为2到Q,泄露的信号可以写成Specifically, in practical applications, each user is classified as a cell center user or a cell edge user. If an MBS user is a cell center user, it is far away from adjacent GN users, and the beams of the MBS will not face each other. Adjacent GN users cause severe interference, so inter-GN interference suppression is not performed; if an MBS user is an edge user, which may cause serious inter-GN interference, inter-GN interference suppression is performed based on the principle of maximum SLNR. Let the number of the studied base station be 1, there are Q-1 edge users in the adjacent GN, numbered from 2 to Q, the leaked signal can be written as

则SLNR为Then SLNR is

GN间干扰抑制所要解决的问题为调整3D波束赋形角度,使SLNR最大,即The problem to be solved for inter-GN interference suppression is to adjust the 3D beamforming angle to maximize the SLNR, namely

为保证算法的收敛性,令向量αβ的每个元素的变化范围为正负5°,以a)中得到的角度为起始点,首先固定α1(假设宏基站对应的两个角度值为α1,β1),以0.5°为步长,减小β1,对于某一个α11,在正负5°范围内调整GN内LPN的3D波束赋形角度,得到αβ使GN吞吐量最大化,如果吞吐量下降不低于原来的5%,将这个αβ放入候选集Δ,一旦达到边界限制,停止这个方向的搜索,改变方向,即增大β1,以同样的方式寻找候选集元素。然后以同样的步长改变α1,固定α1,对β1做同样的搜索,直到确定候选集Δ。In order to ensure the convergence of the algorithm, let the variation range of each element of the vector αβ be plus or minus 5°, take the angle obtained in a) as the starting point, and first fix α 1 (assuming that the two angle values corresponding to the macro base station are α1 , β1), take 0.5° as the step size, reduce β 1 , for a certain α 1 , β 1 , adjust the 3D beamforming angle of the LPN in the GN within the range of plus or minus 5°, and get αβ to maximize the GN throughput If the throughput drops by no less than 5%, put this αβ into the candidate set Δ, once the boundary limit is reached, stop the search in this direction, change the direction, that is, increase β 1 , and search for the candidate set in the same way element. Then change α 1 with the same step size, fix α 1 , and do the same search on β 1 until the candidate set Δ is determined.

为了应用a)中所得结论(4),将(10)写成如下形式,In order to apply the conclusion (4) obtained in a), write (10) as follows,

由于函数y=log2(1+x)是x的单调递增函数,所以当RSLNR取最大值的时候SLNR也取到最大。RSLNR可以进一步写成Since the function y=log 2 (1+x) is a monotonically increasing function of x, when the RSLNR takes the maximum value, the SLNR also takes the maximum value. RSLNR can be further written as

应用(4),并定义r1=11+(N-1)e1,ρ1(α,β)=[P1ρ1,1(α,β),…,P1ρQ,1(α,β)]可以得到Applying (4), and defining r 1 =1 1 +(N-1)e 1 , ρ 1 (α,β)=[P 1 ρ 1,1 (α,β),…,P 1 ρ Q,1 (α,β)] can be obtained

所以求(11)等效为解决So finding (11) is equivalent to solving

应用穷举法,在候选集Δ中找到使RSLNR最大的角度αβ1,即为GN各接入点的最优角。每个GN用同样的方式并行找到自己的最优角,由此可以计算中心7个GN的总吞吐量。这里需要说明的是,由于中心7个GN同时受到GN间和GN内干扰,所以研究中心7个GN具有普适性。另外在计算总吞吐量的时候需要考虑LPN对相邻GN内用户的干扰。Apply the exhaustive method to find the angle αβ 1 that maximizes the RSLNR in the candidate set Δ, which is the optimal angle of each access point of the GN. Each GN finds its own optimal angle in parallel in the same way, so the total throughput of the 7 GNs in the center can be calculated. What needs to be explained here is that since the 7 GNs in the center are subject to both inter-GN and intra-GN interference, the 7 GNs in the research center are universal. In addition, when calculating the total throughput, it is necessary to consider the interference of the LPN to users in adjacent GNs.

在步骤301-步骤303的基础上,步骤104具体为:根据所述波束角向量αβm调整各个接入点发送的波束的波束角。On the basis of steps 301-303, step 104 specifically includes: adjusting the beam angles of the beams sent by each access point according to the beam angle vector αβ m .

基于上述步骤301-303,本发明实施例在进行波束赋形时还充分考虑邻居小区的宏基站对小区内各个用户的影响,通过这种方式,能够抑制宏基站之间的干扰。Based on the above steps 301-303, the embodiment of the present invention also fully considers the influence of the macro base station of the neighbor cell on each user in the cell when performing beamforming. In this way, the interference between the macro base stations can be suppressed.

本发明实施例提供的技术方案中,通过计算各个被服务的用户吞吐量的总和,调整各个接入点的波束角,相比于现有技术中直接将波束照射到用户设备的方式,能够获得更大的吞吐量。同时本发明实施例中,还提供了预估各个被服务的用户吞吐量的总和的计算方式,简化了计算的复杂度,另外还根据宏小区之间的干扰调整波束角的大小,进一步降低了用户收到的干扰,提高了吞吐量。In the technical solution provided by the embodiment of the present invention, by calculating the sum of the throughput of each served user and adjusting the beam angle of each access point, compared with the method of directly irradiating the beam to the user equipment in the prior art, it is possible to obtain Greater throughput. At the same time, in the embodiment of the present invention, it also provides a calculation method for estimating the sum of the throughput of each served user, which simplifies the calculation complexity. In addition, the size of the beam angle is adjusted according to the interference between macro cells, which further reduces the Users receive less interference, improving throughput.

基于相同的构思,本发明实施例还提供了一种3D波束赋形设备,如图4所示,包括:Based on the same idea, an embodiment of the present invention also provides a 3D beamforming device, as shown in FIG. 4 , including:

位置信息获取模块401,获取当前时隙需要服务的各个用户的位置信息;The location information acquisition module 401, which acquires the location information of each user who needs to be served in the current time slot;

调用模块402,根据获取到的位置信息确定各个用户的总吞吐量相对于波束角向量αβ的函数其中所述波束角向量αβ为(α1,α2……αS,β1,β2……βS),其中αs用于表示第s个接入点发送的波束的波峰所在的直线在水平面上的投影与预设的水平轴X之间的夹角,βs用于表示第s个接入点发送的波束的波峰所在的直线与水平面的夹角,S为用户的个数,Rs(αβ)为第s个用户对应的数据传输速率;Call module 402 to determine the function of the total throughput of each user relative to the beam angle vector αβ according to the acquired position information The beam angle vector αβ is (α 1 , α 2 ... α S , β 1 , β 2 ... β S ), where α s is used to represent the straight line where the crest of the beam sent by the sth access point is located The angle between the projection on the horizontal plane and the preset horizontal axis X, β s is used to represent the angle between the straight line where the peak of the beam sent by the sth access point is located and the horizontal plane, S is the number of users, R s (αβ) is the data transmission rate corresponding to the sth user;

计算模块403,使用迭代算法确定使最大的波束角向量αβMCalculation module 403, using an iterative algorithm to determine The largest beam angle vector αβ M ;

调整模块404,用于根据获取到的波束角向量αβM调整各个接入点发送的波束的波束角。An adjustment module 404, configured to adjust the beam angles of the beams sent by each access point according to the acquired beam angle vector αβ M.

优选的,调用模块402,具体用于根据获取到的位置信息确定各个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数,取作为各个用户的总吞吐量相对于波束角向量αβ的函数,其中,Preferably, the calling module 402 is specifically used to determine the function of the large-scale fading from each access point to each user with respect to the beam angle vector αβ according to the obtained position information, which takes As a function of the total throughput of each user with respect to the beam angle vector αβ, where,

属于集合 n为大于0的整数; belong to collection n is an integer greater than 0;

其中,ρs(α,β)=[ρs,111),…,ρs,SSS)],ρs,bbb)为第b个接入点到第s个用户的大尺度衰落相对于第b个接入点的波束角(αbb)的函数,rs=(rs,1,rs,2,rs,3……rs,S),其中,当s=b时,rs,b=N;当s≠b时,rs,b=1,N为各个接入点的天线的个数;为ρs(α,β)去掉第s个元素后得到的向量,为rs去掉第s个元素后得到的向量。Among them, ρ s (α,β)=[ρ s,111 ),…,ρ s,SSS )], ρ s,bbb ) is The large-scale fading from the bth access point to the sth user is a function of the beam angle (α b , β b ) of the bth access point, rs = (rs ,1 , rs ,2 , r s,3 ... r s,S ), where, when s=b, r s,b =N; when s≠b, r s,b =1, N is the number of antennas of each access point number; is the vector obtained after removing the sth element for ρ s (α,β), The vector obtained after removing the sth element for r s .

优选的,调用模块402,具体用于:分别计算每一个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数PLs,b是接入点b到用户s的路损,Ψs,b是接入点b到用户s的阴影衰落,是天线方向图;是连接用户s和接入点b的直线与X轴的夹角,是连接用户s和接入点b的直线与水平面的夹角;SLLaz和SLLel分别是水平和和垂直方向图的旁瓣电平,SLLtot是总的旁瓣电平;E[A]表示取A的期望值,Amax为预设值。Preferably, the calling module 402 is specifically used to: respectively calculate the function of the large-scale fading from each access point to each user with respect to the beam angle vector αβ PL s,b is the path loss from access point b to user s, Ψ s,b is the shadow fading from access point b to user s, is the antenna pattern; is the angle between the line connecting user s and access point b and the X axis, is the angle between the straight line connecting user s and access point b and the horizontal plane; SLL az and SLL el are the side lobe levels of the horizontal and vertical patterns, respectively, and SLL tot is the total side lobe level; E[A] It means to take the expected value of A, and A max is the default value.

优选的,计算模块403,具体用于执行如下步骤:Preferably, the computing module 403 is specifically configured to perform the following steps:

S1,选取k个波束角向量,其中k为预设值,且所述k个波束角向量αβ中包含各个接入点的天线直接指向其所需要服务的用户时对应的波束角向量;S1. Select k beam angle vectors, where k is a preset value, and the k beam angle vectors αβ include the corresponding beam angle vectors when the antennas of each access point point directly to the users they need to serve;

S2,判断所述k个波束角向量αβ对应的k个总吞吐量是否收敛在预设范围内,若否,转向步骤S3,若是,转向步骤S4;S2, judging whether the k total throughputs corresponding to the k beam angle vectors αβ converge within the preset range, if not, turn to step S3, and if so, turn to step S4;

S3,选取所述k个波束角向量αβ以外的其他波束角向量αβ代替所述k个波束角向量αβ中使总吞吐量最小的波束角向量αβ,并返回步骤S2;S3, select other beam angle vectors αβ other than the k beam angle vectors αβ to replace the beam angle vector αβ that minimizes the total throughput among the k beam angle vectors αβ, and return to step S2;

S4,选取k个波束角向量αβ中使总吞吐量最大的波束角向量αβ作为使最大的波束角向量αβMS4. Select the beam angle vector αβ that maximizes the total throughput among the k beam angle vectors αβ as the Maximum beam angle vector αβ M .

优选的,该设备还包括:Preferably, the device also includes:

微调模块405,用于执行下列步骤:Fine-tuning module 405, configured to perform the following steps:

按照预设的步长在正负T°范围内改变波束角向量αβM中对应于宏基站的任意一个角度值,并在每一次改变所述任意一个角度值时,相应的改变波束角向量αβM中其他角度的取值,使宏基站和低功率基站的总吞吐量取最大值,所述T为预设值;Change any angle value corresponding to the macro base station in the beam angle vector αβ M within the range of plus or minus T° according to the preset step size, and change the beam angle vector αβ correspondingly every time the arbitrary angle value is changed The values of other angles in M make the total throughput of the macro base station and the low-power base station take the maximum value, and the T is a preset value;

判断在每一次改变所述任意一个角度值后总吞吐量的最大值与波束角向量αβM对应的总吞吐量的比值是否大于预设值,并在判断为是时,将该次改变所述任意一个角度值后使总吞吐量取最大值的波束角向量加入待选集合;Judging whether the ratio of the maximum value of the total throughput to the total throughput corresponding to the beam angle vector αβ M is greater than a preset value after changing any one of the angle values each time, and if it is judged to be yes, change the After any angle value, the beam angle vector that maximizes the total throughput is added to the candidate set;

从待选集合中选择使宏基站间干扰抑制SLNR最大的波束角向量αβmSelect the beam angle vector αβ m that maximizes the interference suppression SLNR between macro base stations from the set to be selected;

调整模块404,具体用于根据所述波束角向量αβm调整各个接入点发送的波束的波束角。The adjustment module 404 is specifically configured to adjust the beam angles of the beams sent by each access point according to the beam angle vector αβ m .

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and modifications can also be made. These improvements and modifications It should also be regarded as the protection scope of the present invention.

Claims (6)

1.一种3D波束赋形方法,其特征在于,应用于异构网络中,所述异构网络中至少一个宏小区包含一个宏基站和至少一个低功率基站,所述一个宏基站和至少一个低功率基站均作为接入点构成接入点组GN,每一个接入点在一个时隙内使用一个波束为一个用户服务,该方法包括:1. A 3D beamforming method, characterized in that it is applied in a heterogeneous network, where at least one macro cell in the heterogeneous network includes a macro base station and at least one low-power base station, and the one macro base station and at least one The low-power base stations are all used as access points to form an access point group GN, and each access point uses a beam in a time slot to serve a user. The method includes: 获取当前时隙需要服务的各个用户的位置信息;Obtain the location information of each user that needs to be served in the current time slot; 根据获取到的位置信息确定各个用户的总吞吐量相对于波束角向量αβ的函数其中所述波束角向量αβ为(α1,α2……αS,β1,β2……βS),其中αs用于表示第s个接入点发送的波束的波峰所在的直线在水平面上的投影与预设的水平轴X之间的夹角,βs用于表示第s个接入点发送的波束的波峰所在的直线与水平面的夹角,S为用户的个数,Rs(αβ)为第s个用户对应的数据传输速率;According to the obtained position information, the function of the total throughput of each user relative to the beam angle vector αβ is determined The beam angle vector αβ is (α 1 , α 2 ... α S , β 1 , β 2 ... β S ), where α s is used to represent the straight line where the crest of the beam sent by the sth access point is located The angle between the projection on the horizontal plane and the preset horizontal axis X, β s is used to represent the angle between the straight line where the peak of the beam sent by the sth access point is located and the horizontal plane, S is the number of users, R s (αβ) is the data transmission rate corresponding to the sth user; 使用迭代算法确定使最大的波束角向量αβMUse an iterative algorithm to determine the The largest beam angle vector αβ M ; 根据获取到的波束角向量αβM调整各个接入点发送的波束的波束角;adjusting beam angles of beams sent by each access point according to the acquired beam angle vector αβ M ; 所述使用迭代算法确定使最大的波束角向量αβM,具体包括:The iterative algorithm used to determine the The largest beam angle vector αβ M , including: S1,选取k个波束角向量,其中k为预设值,且所述k个波束角向量αβ中包含各个接入点的天线直接指向其所需要服务的用户时对应的波束角向量;S1. Select k beam angle vectors, where k is a preset value, and the k beam angle vectors αβ include the corresponding beam angle vectors when the antennas of each access point point directly to the users they need to serve; S2,判断所述k个波束角向量αβ对应的k个总吞吐量是否收敛在预设范围内,若否,转向步骤S3,若是,转向步骤S4;S2, judging whether the k total throughputs corresponding to the k beam angle vectors αβ converge within the preset range, if not, turn to step S3, and if so, turn to step S4; S3,选取所述k个波束角向量αβ以外的其他波束角向量αβ代替所述k个波束角向量αβ中使总吞吐量最小的波束角向量αβ,并返回步骤S2;S3, select other beam angle vectors αβ other than the k beam angle vectors αβ to replace the beam angle vector αβ that minimizes the total throughput among the k beam angle vectors αβ, and return to step S2; S4,选取k个波束角向量αβ中使总吞吐量最大的波束角向量αβ作为使最大的波束角向量αβMS4. Select the beam angle vector αβ that maximizes the total throughput among the k beam angle vectors αβ as the The largest beam angle vector αβ M ; 所述使用迭代算法获取使总吞吐量最大的波束角向量αβM之后,根据所述获取到的波束角向量αβM调整各个接入点发送的波束的波束角之前,所述方法还包括:The use of an iterative algorithm to obtain the total throughput After the maximum beam angle vector αβ M , before adjusting the beam angles of the beams sent by each access point according to the acquired beam angle vector αβ M , the method further includes: 按照预设的步长在正负T°范围内改变波束角向量αβM中对应于宏基站的任意一个角度值,并在每一次改变所述任意一个角度值时,相应的改变波束角向量αβM中其他角度的取值,使宏基站和低功率基站的总吞吐量取最大值,所述T为预设值;Change any angle value corresponding to the macro base station in the beam angle vector αβ M within the range of plus or minus T° according to the preset step size, and change the beam angle vector αβ correspondingly every time the arbitrary angle value is changed The values of other angles in M make the total throughput of the macro base station and the low-power base station take the maximum value, and the T is a preset value; 判断在每一次改变所述任意一个角度值后总吞吐量的最大值与波束角向量αβM对应的总吞吐量的比值是否大于预设值,并在判断为是时,将该次改变所述任意一个角度值后使总吞吐量取最大值的波束角向量加入待选集合;Judging whether the ratio of the maximum value of the total throughput to the total throughput corresponding to the beam angle vector αβ M is greater than a preset value after changing any one of the angle values each time, and if it is judged to be yes, change the After any angle value, the beam angle vector that maximizes the total throughput is added to the candidate set; 从待选集合中选择使宏基站间信号泄露噪声比SLNR最大的波束角向量αβmSelect the beam angle vector αβ m that maximizes the signal leakage-to-noise ratio SLNR between macro base stations from the candidate set; 所述根据所述波束角向量αβM调整各个接入点发送的波束的波束角,具体包括:The adjusting the beam angle of the beam sent by each access point according to the beam angle vector αβ M specifically includes: 根据所述波束角向量αβm调整各个接入点发送的波束的波束角。The beam angles of the beams sent by each access point are adjusted according to the beam angle vector αβ m . 2.如权利要求1所述的方法,其特征在于,所述根据获取到的位置信息确定各个用户的总吞吐量相对于波束角向量αβ的函数具体包括:2. The method according to claim 1, wherein the function of determining the total throughput of each user with respect to the beam angle vector αβ according to the acquired position information Specifically include: 根据获取到的位置信息确定各个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数;Determine the function of the large-scale fading from each access point to each user relative to the beam angle vector αβ according to the obtained position information; 作为各个用户的总吞吐量相对于波束角向量αβ的函数;其中,Pick As a function of the total throughput of each user with respect to the beam angle vector αβ; where, <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mo>,</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <mfrac> <mn>1</mn> <mrow> <msup> <msub> <mi>&amp;mu;</mi> <mi>m</mi> </msub> <msub> <mi>r</mi> <mi>m</mi> </msub> </msup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>r</mi> <mi>t</mi> </msub> </munderover> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <msub> <mi>r</mi> <mi>t</mi> </msub> <mo>-</mo> <mi>l</mi> </mrow> </msup> <msubsup> <mi>&amp;mu;</mi> <mi>t</mi> <mrow> <msub> <mi>r</mi> <mi>t</mi> </msub> <mo>-</mo> <mi>l</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&amp;Psi;</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mo>,</mo> <mi>r</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>&amp;mu;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> </msup> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>r</mi> <mi>t</mi> </msub> <mo>-</mo> <mi>l</mi> </mrow> </munderover> <msub> <mi>E</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>t</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> </mrow> <mrow><mi>f</mi><mrow><mo>(</mo><mi>&amp;mu;</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>log</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>&amp;lsqb;</mo><munderover><mi>&amp;Pi;</mi><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mfrac><mn>1</mn><mrow><msup><msub><mi>&amp;mu;</mi><mi>m</mi></msub><msub><mi>r</mi><mi>m</mi></msub></msup></mrow></mfrac><mo>&amp;rsqb;</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><munderover><mi>&amp;Sigma;</mi><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>r</mi><mi>t</mi></msub></munderover><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><msub><mi>r</mi><mi>t</mi></msub><mo>-</mo><mi>l</mi></mrow></msup><msubsup><mi>&amp;mu;</mi><mi>t</mi><mrow><msub><mi>r</mi><mi>t</mi></msub><mo>-</mo><mi>l</mi><mo>+</mo><mn>1</mn></mrow></msubsup><msub><mi>&amp;Psi;</mi><mrow><mi>t</mi><mo>,</mo><mi>l</mi></mrow></msub><mrow><mo>(</mo><mi>&amp;mu;</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msub><mi>&amp;mu;</mi><mi>t</mi></msub><mo>)</mo></mrow></msup><munderover><mi>&amp;Sigma;</mi><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><msub><mi>r</mi><mi>t</mi></msub><mo>-</mo><mi>l</mi></mrow></munderover><msub><mi>E</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mfrac><mn>1</mn><msub><mi>&amp;mu;</mi><mi>t</mi></msub></mfrac><mo>)</mo></mrow><mo>,</mo></mrow> i=[i1,i2,…,iM]属于集合Ωt,ln为大于0的整数,M为向量i的长度; i=[i 1 ,i 2 ,…,i M ] belongs to the set Ω t,l , n is an integer greater than 0, and M is the length of vector i; 其中,ρs(α,β)=[ρs,111),…,ρs,SSS)],ρs,bbb)为第b个接入点到第s个用户的大尺度衰落相对于第b个接入点的波束角(αbb)的函数,rs=(rs,1,rs,2,rs,3……rs,S),其中,当s=b时,rs,b=N;当s≠b时,rs,b=1,N为各个接入点的天线的个数;为ρs(α,β)去掉第s个元素后得到的向量,为rs去掉第s个元素后得到的向量。Among them, ρ s (α,β)=[ρ s,111 ),…,ρ s,SSS )], ρ s,bbb ) is The large-scale fading from the bth access point to the sth user is a function of the beam angle (α b , β b ) of the bth access point, rs = (rs ,1 , rs ,2 , r s,3 ... r s,S ), where, when s=b, r s,b =N; when s≠b, r s,b =1, and N is the number of antennas of each access point number; is the vector obtained after removing the sth element for ρ s (α,β), The vector obtained after removing the sth element for r s . 3.如权利要求2所述的方法,其特征在于,所述根据获取到的位置信息确定各个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数,具体包括:分别计算每一个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数,其中PLs,b是接入点b到用户s的路损,Ψs,b是接入点b到用户s的阴影衰落,3. The method according to claim 2, wherein the determining the function of the large-scale fading from each access point to each user with respect to the beam angle vector αβ according to the acquired position information specifically comprises: respectively calculating The large-scale fading from each access point to each user is a function of the beam angle vector αβ, where PL s,b is the path loss from access point b to user s, Ψ s,b is the shadow fading from access point b to user s, <mrow> <msubsup> <mi>A</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> <mi>B</mi> <mi>i</mi> </mrow> <mi>b</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>b</mi> </msub> <mo>,</mo> <msub> <mi>&amp;beta;</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>&amp;lsqb;</mo> <mn>12</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mi>&amp;phi;</mi> <mi>s</mi> <mi>b</mi> </msubsup> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mi>b</mi> </msub> </mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mn>3</mn> <mi>d</mi> <mi>B</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> <msub> <mi>SLL</mi> <mrow> <mi>a</mi> <mi>z</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>&amp;lsqb;</mo> <mn>12</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mi>&amp;theta;</mi> <mi>s</mi> <mi>b</mi> </msubsup> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mi>b</mi> </msub> </mrow> <msub> <mi>&amp;theta;</mi> <mrow> <mn>3</mn> <mi>d</mi> <mi>B</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> <msub> <mi>SLL</mi> <mrow> <mi>e</mi> <mi>l</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>,</mo> <msub> <mi>SLL</mi> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>A</mi><mrow><mi>s</mi><mo>,</mo><mi>d</mi><mi>B</mi><mi>i</mi></mrow><mi>b</mi></msubsup><mrow><mo>(</mo><msub><mi>&amp;alpha;</mi><mi>b</mi></msub><mo>,</mo><msub><mi>&amp;beta;</mi><mi>b</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>A</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>-</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mi>m</mi><mi>i</mi><mi>n</mi><mo>&amp;lsqb;</mo><mn>12</mn><msup><mrow><mo>(</mo><mfrac><mrow><msubsup><mi>&amp;phi;</mi><mi>s</mi><mi>b</mi></msubsup><mo>-</mo><msub><mi>&amp;alpha;</mi><mi>b</mi></msub></mrow><msub><mi>&amp;phi;</mi>mi><mrow><mn>3</mn><mi>d</mi><mi>B</mi></mrow></msub></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>,</mo><msub><mi>SLL</mi><mrow><mi>a</mi><mi>z</mi></mrow></msub><mo>&amp;rsqb;</mo><mo>+</mo><mi>m</mi><mi>i</mi><mi>n</mi><mo>&amp;lsqb;</mo><mn>12</mn><msup><mrow><mo>(</mo><mfrac><mrow><msubsup><mi>&amp;theta;</mi><mi>s</mi><mi>b</mi></msubsup><mo>-</mo><msub><mi>&amp;beta;</mi><mi>b</mi></msub></mrow><msub><mi>&amp;theta;</mi><mrow><mn>3</mn><mi>d</mi><mi>B</mi></mrow></msub></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>,</mo><msub><mi>SLL</mi><mrow><mi>e</mi><mi>l</mi></mrow></msub><mo>&amp;rsqb;</mo><mo>,</mo><msub><mi>SLL</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow> 是天线方向图;是连接用户s和接入点b的直线与X轴的夹角,是连接用户s和接入点b的直线与水平面的夹角;SLLaz和SLLel分别是水平和垂直方向图的旁瓣电平,SLLtot是总的旁瓣电平;E[A]表示取A的期望值,Amax为预设值,φ3dB为垂直方向的半功率波瓣宽度,θ3dB为水平方向的半功率波瓣宽度。is the antenna pattern; is the angle between the line connecting user s and access point b and the X axis, is the angle between the straight line connecting user s and access point b and the horizontal plane; SLL az and SLL el are the side lobe levels of the horizontal and vertical pattern respectively, and SLL tot is the total side lobe level; E[A] means Take the expected value of A, A max is the preset value, φ 3dB is the half-power lobe width in the vertical direction, and θ 3dB is the half-power lobe width in the horizontal direction. 4.一种3D波束赋形设备,其特征在于,作为宏基站应用于异构网络中,该设备包括:4. A 3D beamforming device, characterized in that it is used as a macro base station in a heterogeneous network, and the device includes: 位置信息获取模块,获取当前时隙需要服务的各个用户的位置信息;The location information acquisition module acquires the location information of each user that needs to be served in the current time slot; 调用模块,根据获取到的位置信息确定各个用户的总吞吐量相对于波束角向量αβ的函数其中所述波束角向量αβ为(α1,α2……αS,β1,β2……βS),其中αs用于表示第s个接入点发送的波束的波峰所在的直线在水平面上的投影与预设的水平轴X之间的夹角,βs用于表示第s个接入点发送的波束的波峰所在的直线与水平面的夹角,S为用户的个数,Rs(αβ)为第s个用户对应的数据传输速率;Call the module to determine the function of the total throughput of each user relative to the beam angle vector αβ according to the obtained position information The beam angle vector αβ is (α 1 , α 2 ... α S , β 1 , β 2 ... β S ), where α s is used to represent the straight line where the crest of the beam sent by the sth access point is located The angle between the projection on the horizontal plane and the preset horizontal axis X, β s is used to represent the angle between the straight line where the peak of the beam sent by the sth access point is located and the horizontal plane, S is the number of users, R s (αβ) is the data transmission rate corresponding to the sth user; 计算模块,使用迭代算法确定使最大的波束角向量αβMcalculation module, using an iterative algorithm to determine the The largest beam angle vector αβ M ; 调整模块,用于根据获取到的波束角向量αβM调整各个接入点发送的波束的波束角;An adjustment module, configured to adjust the beam angles of the beams sent by each access point according to the acquired beam angle vector αβ M ; 所述计算模块,具体用于执行如下步骤:The calculation module is specifically used to perform the following steps: S1,选取k个波束角向量,其中k为预设值,且所述k个波束角向量αβ中包含各个接入点的天线直接指向其所需要服务的用户时对应的波束角向量;S1. Select k beam angle vectors, where k is a preset value, and the k beam angle vectors αβ include the corresponding beam angle vectors when the antennas of each access point point directly to the users they need to serve; S2,判断所述k个波束角向量αβ对应的k个总吞吐量是否收敛在预设范围内,若否,转向步骤S3,若是,转向步骤S4;S2, judging whether the k total throughputs corresponding to the k beam angle vectors αβ converge within the preset range, if not, turn to step S3, and if so, turn to step S4; S3,选取所述k个波束角向量αβ以外的其他波束角向量αβ代替所述k个波束角向量αβ中使总吞吐量最小的波束角向量αβ,并返回步骤S2;S3, select other beam angle vectors αβ other than the k beam angle vectors αβ to replace the beam angle vector αβ that minimizes the total throughput among the k beam angle vectors αβ, and return to step S2; S4,选取k个波束角向量αβ中使总吞吐量最大的波束角向量αβ作为使最大的波束角向量αβMS4. Select the beam angle vector αβ that maximizes the total throughput among the k beam angle vectors αβ as the The largest beam angle vector αβ M ; 微调模块,用于执行下列步骤:A fine-tuning module for performing the following steps: 按照预设的步长在正负T°范围内改变波束角向量αβM中对应于宏基站的任意一个角度值,并在每一次改变所述意一个角度值时,相应的改变波束角向量αβM中其他角度的取值,使宏基站和低功率基站的总吞吐量取最大值,所述T为预设值;Change any angle value corresponding to the macro base station in the beam angle vector αβ M within the range of plus or minus T° according to the preset step size, and change the beam angle vector αβ correspondingly every time the angle value is changed The values of other angles in M make the total throughput of the macro base station and the low-power base station take the maximum value, and the T is a preset value; 判断在每一次改变所述任意一个角度值后总吞吐量的最大值与波束角向量αβM对应的总吞吐量的比值是否大于预设值,并在判断为是时,将该次改变所述任意一个角度值后使总吞吐量取最大值的波束角向量加入待选集合;Judging whether the ratio of the maximum value of the total throughput to the total throughput corresponding to the beam angle vector αβ M is greater than a preset value after changing any one of the angle values each time, and if it is judged to be yes, change the After any angle value, the beam angle vector that maximizes the total throughput is added to the candidate set; 从待选集合中选择使宏基站间干扰抑制SLNR最大的波束角向量αβmSelect the beam angle vector αβ m that maximizes the interference suppression SLNR between macro base stations from the set to be selected; 所述调整模块,具体用于根据所述波束角向量αβm调整各个接入点发送的波束的波束角。The adjusting module is specifically configured to adjust beam angles of beams sent by each access point according to the beam angle vector αβ m . 5.如权利要求4所述的设备,其特征在于,5. The apparatus of claim 4, wherein 所述调用模块,具体用于根据获取到的位置信息确定各个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数,取作为各个用户的总吞吐量相对于波束角向量αβ的函数,其中,The calling module is specifically used to determine the function of the large-scale fading from each access point to each user with respect to the beam angle vector αβ according to the obtained position information, which takes As a function of the total throughput of each user with respect to the beam angle vector αβ, where, <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mo>,</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <mfrac> <mn>1</mn> <mrow> <msup> <msub> <mi>&amp;mu;</mi> <mi>m</mi> </msub> <msub> <mi>r</mi> <mi>m</mi> </msub> </msup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>r</mi> <mi>t</mi> </msub> </munderover> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <msub> <mi>r</mi> <mi>t</mi> </msub> <mo>-</mo> <mi>l</mi> </mrow> </msup> <msubsup> <mi>&amp;mu;</mi> <mi>t</mi> <mrow> <msub> <mi>r</mi> <mi>t</mi> </msub> <mo>-</mo> <mi>l</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&amp;Psi;</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mo>,</mo> <mi>r</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>&amp;mu;</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> </msup> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>r</mi> <mi>t</mi> </msub> <mo>-</mo> <mi>l</mi> </mrow> </munderover> <msub> <mi>E</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;mu;</mi> <mi>t</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> </mrow> <mrow><mi>f</mi><mrow><mo>(</mo><mi>&amp;mu;</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>log</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>&amp;lsqb;</mo><munderover><mi>&amp;Pi;</mi><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><mfrac><mn>1</mn><mrow><msup><msub><mi>&amp;mu;</mi><mi>m</mi></msub><msub><mi>r</mi><mi>m</mi></msub></msup></mrow></mfrac><mo>&amp;rsqb;</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mi>M</mi></munderover><munderover><mi>&amp;Sigma;</mi><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>r</mi><mi>t</mi></msub></munderover><msup><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><msub><mi>r</mi><mi>t</mi></msub><mo>-</mo><mi>l</mi></mrow></msup><msubsup><mi>&amp;mu;</mi><mi>t</mi><mrow><msub><mi>r</mi><mi>t</mi></msub><mo>-</mo><mi>l</mi><mo>+</mo><mn>1</mn></mrow></msubsup><msub><mi>&amp;Psi;</mi><mrow><mi>t</mi><mo>,</mo><mi>l</mi></mrow></msub><mrow><mo>(</mo><mi>&amp;mu;</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msub><mi>&amp;mu;</mi><mi>t</mi></msub><mo>)</mo></mrow></msup><munderover><mi>&amp;Sigma;</mi><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><msub><mi>r</mi><mi>t</mi></msub><mo>-</mo><mi>l</mi></mrow></munderover><msub><mi>E</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mfrac><mn>1</mn><msub><mi>&amp;mu;</mi><mi>t</mi></msub></mfrac><mo>)</mo></mrow><mo>,</mo></mrow> i=[i1,i2,…,iM]属于集合Ωt,ln为大于0的整数,M为向量i的长度; i=[i 1 ,i 2 ,…,i M ] belongs to the set Ω t,l , n is an integer greater than 0, and M is the length of vector i; 其中,ρs(α,β)=[ρs,111),…,ρs,SSS)],ρs,bbb)为第b个接入点到第s个用户的大尺度衰落相对于第b个接入点的波束角(αbb)的函数,rs=(rs,1,rs,2,rs,3……rs,S),其中,当s=b时,rs,b=N;当s≠b时,rs,b=1,N为各个接入点的天线的个数;为ρs(α,β)去掉第s个元素后得到的向量,为rs去掉第s个元素后得到的向量。Among them, ρ s (α,β)=[ρ s,111 ),…,ρ s,SSS )], ρ s,bbb ) is The large-scale fading from the bth access point to the sth user is a function of the beam angle (α b , β b ) of the bth access point, rs = (rs ,1 , rs ,2 , r s,3 ... r s,S ), where, when s=b, r s,b =N; when s≠b, r s,b =1, and N is the number of antennas of each access point number; is the vector obtained after removing the sth element for ρ s (α,β), The vector obtained after removing the sth element for r s . 6.如权利要求5所述的设备,其特征在于,所述调用模块,分别计算每一个接入点到每一个用户的大尺度衰落相对于波束角向量αβ的函数,其中PLs,b是接入点b到用户s的路损,Ψs,b是接入点b到用户s的阴影衰落,6. The device according to claim 5, wherein the calling module calculates the function of the large-scale fading from each access point to each user with respect to the beam angle vector αβ, wherein PL s,b is the path loss from access point b to user s, Ψ s,b is the shadow fading from access point b to user s, <mrow> <msubsup> <mi>A</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>d</mi> <mi>B</mi> <mi>i</mi> </mrow> <mi>b</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>b</mi> </msub> <mo>,</mo> <msub> <mi>&amp;beta;</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>&amp;lsqb;</mo> <mn>12</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mi>&amp;phi;</mi> <mi>s</mi> <mi>b</mi> </msubsup> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mi>b</mi> </msub> </mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mn>3</mn> <mi>d</mi> <mi>B</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> <msub> <mi>SLL</mi> <mrow> <mi>a</mi> <mi>z</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>&amp;lsqb;</mo> <mn>12</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mi>&amp;theta;</mi> <mi>s</mi> <mi>b</mi> </msubsup> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mi>b</mi> </msub> </mrow> <msub> <mi>&amp;theta;</mi> <mrow> <mn>3</mn> <mi>d</mi> <mi>B</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> <msub> <mi>SLL</mi> <mrow> <mi>e</mi> <mi>l</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>,</mo> <msub> <mi>SLL</mi> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow><msubsup><mi>A</mi><mrow><mi>s</mi><mo>,</mo><mi>d</mi><mi>B</mi><mi>i</mi></mrow><mi>b</mi></msubsup><mrow><mo>(</mo><msub><mi>&amp;alpha;</mi><mi>b</mi></msub><mo>,</mo><msub><mi>&amp;beta;</mi><mi>b</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>A</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>-</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mi>m</mi><mi>i</mi><mi>n</mi><mo>&amp;lsqb;</mo><mn>12</mn><msup><mrow><mo>(</mo><mfrac><mrow><msubsup><mi>&amp;phi;</mi><mi>s</mi><mi>b</mi></msubsup><mo>-</mo><msub><mi>&amp;alpha;</mi><mi>b</mi></msub></mrow><msub><mi>&amp;phi;</mi>mi><mrow><mn>3</mn><mi>d</mi><mi>B</mi></mrow></msub></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>,</mo><msub><mi>SLL</mi><mrow><mi>a</mi><mi>z</mi></mrow></msub><mo>&amp;rsqb;</mo><mo>+</mo><mi>m</mi><mi>i</mi><mi>n</mi><mo>&amp;lsqb;</mo><mn>12</mn><msup><mrow><mo>(</mo><mfrac><mrow><msubsup><mi>&amp;theta;</mi><mi>s</mi><mi>b</mi></msubsup><mo>-</mo><msub><mi>&amp;beta;</mi><mi>b</mi></msub></mrow><msub><mi>&amp;theta;</mi><mrow><mn>3</mn><mi>d</mi><mi>B</mi></mrow></msub></mfrac><mo>)</mo></mrow><mn>2</mn></msup><mo>,</mo><msub><mi>SLL</mi><mrow><mi>e</mi><mi>l</mi></mrow></msub><mo>&amp;rsqb;</mo><mo>,</mo><msub><mi>SLL</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow> 是天线方向图;是连接用户s和接入点b的直线与X轴的夹角,是连接用户s和接入点b的直线与水平面的夹角;SLLaz和SLLel分别是水平和垂直方向图的旁瓣电平,SLLtot是总的旁瓣电平;E[A]表示取A的期望值,Amax为预设值,φ3dB为垂直方向的半功率波瓣宽度,θ3dB为水平方向的半功率波瓣宽度。is the antenna pattern; is the angle between the line connecting user s and access point b and the X axis, is the angle between the straight line connecting user s and access point b and the horizontal plane; SLL az and SLL el are the side lobe levels of the horizontal and vertical pattern respectively, and SLL tot is the total side lobe level; E[A] means Take the expected value of A, A max is the preset value, φ 3dB is the half-power lobe width in the vertical direction, and θ 3dB is the half-power lobe width in the horizontal direction.
CN201310603604.0A 2013-11-25 2013-11-25 A kind of 3D beam form-endowing methods and equipment Expired - Fee Related CN104283596B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310603604.0A CN104283596B (en) 2013-11-25 2013-11-25 A kind of 3D beam form-endowing methods and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310603604.0A CN104283596B (en) 2013-11-25 2013-11-25 A kind of 3D beam form-endowing methods and equipment

Publications (2)

Publication Number Publication Date
CN104283596A CN104283596A (en) 2015-01-14
CN104283596B true CN104283596B (en) 2018-02-23

Family

ID=52258130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310603604.0A Expired - Fee Related CN104283596B (en) 2013-11-25 2013-11-25 A kind of 3D beam form-endowing methods and equipment

Country Status (1)

Country Link
CN (1) CN104283596B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160801B (en) * 2015-03-25 2020-01-31 联想(北京)有限公司 signal processing method and base station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578424A (en) * 2003-07-30 2005-02-09 三星电子株式会社 Method and apparatus for receiving digital television signals using space diversity and beam-forming
CN1942782A (en) * 2004-04-20 2007-04-04 皇家飞利浦电子股份有限公司 Multizone color doppler beam transmission method
EP2625916A1 (en) * 2010-10-04 2013-08-14 Airspan Networks Inc. Apparatus and method for controlling a wireless feeder network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484279B (en) * 2010-10-04 2014-11-12 Airspan Networks Inc Apparatus and method for controlling a wireless feeder network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578424A (en) * 2003-07-30 2005-02-09 三星电子株式会社 Method and apparatus for receiving digital television signals using space diversity and beam-forming
CN1942782A (en) * 2004-04-20 2007-04-04 皇家飞利浦电子股份有限公司 Multizone color doppler beam transmission method
EP2625916A1 (en) * 2010-10-04 2013-08-14 Airspan Networks Inc. Apparatus and method for controlling a wireless feeder network

Also Published As

Publication number Publication date
CN104283596A (en) 2015-01-14

Similar Documents

Publication Publication Date Title
Sofi et al. A survey on energy efficient 5G green network with a planned multi-tier architecture
CN104053163B (en) A kind of network-building method based on the heterogeneous wireless network for calculating processing
CN105898757B (en) A Spectrum Resource Allocation Method in Wireless Backhaul Link Heterogeneous Internet of Things
US11838088B2 (en) Wireless repeater apparatus and methods of operation
CN104779986B (en) Using disturbance coordination method between the multiple cell of three-dimensional wave beam forming in 3D-MIMO systems
JP7572754B2 (en) Low power consumption multiple connection method for cell-free massive MIMO network
Sakaguchi et al. Cloud cooperated heterogeneous cellular networks
Moghaddam et al. Joint tilt angle adaptation and beamforming in multicell multiuser cellular networks
CN104079335B (en) The three-dimensional wave bundle shaping method of robustness under a kind of multi-cell OFDMA network
Bartelt et al. Joint bandwidth allocation and small cell switching in heterogeneous networks
CN104158572A (en) Green distributed antenna system communication method based on smart antenna
CN114980139A (en) Capacity coverage enhancement method of air-ground wireless network access and backhaul integrated system
Hajisami et al. Cloud-CFFR: coordinated fractional frequency reuse in cloud radio access network (C-RAN)
Rafieifar et al. IRS-aided NOMA in a cell free massive MIMO system
Al-Zahrani Optimal 3-D Placement of an Aerial Base Station in a Heterogeneous Wireless IoT with Nakagami-m Fading Channels.
Wang et al. Enhancing performance of heterogeneous cloud radio access networks with efficient user association
CN104283596B (en) A kind of 3D beam form-endowing methods and equipment
Dastoor et al. Cellular planning for next generation wireless mobile network using novel energy efficient CoMP
Ke et al. An adaptive clustering approach for small cell in ultra-dense networks
CN102149137A (en) Cell access control method
Shahid et al. Energy Efficiency in 5G Communications–Conventional to Machine Learning Approaches
Samal Interference management techniques in small cells overlaid heterogeneous cellular networks
Zhang et al. Congestion-aware user-centric cooperative base station selection in ultra-dense networks
Tang et al. A 3D-beamforming scheme for throughput optimization in heterogeneous network
Yuan et al. Adaptive channel detection for full-duplex IAB systems on unlicensed bands

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20150114

Assignee: AEROSPACE XINGYUN TECHNOLOGY Co.,Ltd.

Assignor: Beijing University of Posts and Telecommunications

Contract record no.: 2019110000002

Denomination of invention: 3D beam forming method and device

Granted publication date: 20180223

License type: Exclusive License

Record date: 20190408

EE01 Entry into force of recordation of patent licensing contract
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180223

CF01 Termination of patent right due to non-payment of annual fee