CN104267390A - Lag angle compensation device and lag angle compensation precision correction method of satellite-borne wind-detecting laser radar system - Google Patents
Lag angle compensation device and lag angle compensation precision correction method of satellite-borne wind-detecting laser radar system Download PDFInfo
- Publication number
- CN104267390A CN104267390A CN201410507605.XA CN201410507605A CN104267390A CN 104267390 A CN104267390 A CN 104267390A CN 201410507605 A CN201410507605 A CN 201410507605A CN 104267390 A CN104267390 A CN 104267390A
- Authority
- CN
- China
- Prior art keywords
- drag angle
- telescope
- mirror
- processing module
- signal processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012937 correction Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 72
- 230000003287 optical effect Effects 0.000 claims abstract description 54
- 238000001514 detection method Methods 0.000 claims abstract description 13
- 230000002093 peripheral effect Effects 0.000 claims abstract description 4
- 238000013519 translation Methods 0.000 claims description 38
- 238000003384 imaging method Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims 7
- 238000012546 transfer Methods 0.000 claims 3
- 230000011514 reflex Effects 0.000 claims 2
- 230000009897 systematic effect Effects 0.000 claims 2
- 230000003044 adaptive effect Effects 0.000 claims 1
- 238000013459 approach Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 23
- 230000035559 beat frequency Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本发明涉及一种星载激光雷达测风系统滞后角补偿装置及精度修正方法,属于测量技术领域。本发明装置中的滞后角补偿模块位于双望远镜扫描光学系统后;在系统正常工作时,回波激光经过双望远镜扫描光学系统传输至滞后角补偿模块,经滞后角补偿模块补偿后传输至外围设备;在进行滞后角补偿精度修正时,可移动插入式反射镜位于滞后角补偿模块后的光路上,扩束镜放置于可移动插入式反射镜的一侧且位于面阵光电探测器的前端;面阵光电探测器的输出端接控制信号处理模块的输入端;控制信号处理模块的输出端接滞后角补偿模块的输入端。本发明涉及的一种星载测风激光雷达系统滞后角补偿装置及精度修正方法,具有补偿角度动态可调,且可利用闭环检测进行精确修正等优点。
The invention relates to a lag angle compensation device and an accuracy correction method of a spaceborne laser radar wind measurement system, and belongs to the field of measurement technology. The lag angle compensation module in the device of the present invention is located behind the dual-telescope scanning optical system; when the system is working normally, the echo laser is transmitted to the lag angle compensation module through the dual-telescope scanning optical system, and then transmitted to peripheral equipment after being compensated by the lag angle compensation module ; When correcting the lag angle compensation accuracy, the movable plug-in mirror is located on the optical path behind the lag angle compensation module, and the beam expander is placed on one side of the movable plug-in mirror and at the front end of the area array photodetector; The output terminal of the area array photodetector is connected to the input terminal of the control signal processing module; the output terminal of the control signal processing module is connected to the input terminal of the lag angle compensation module. The invention relates to a lag angle compensation device and accuracy correction method for a space-borne wind measurement laser radar system, which has the advantages of dynamically adjustable compensation angle, accurate correction by closed-loop detection, and the like.
Description
技术领域 technical field
本发明涉及一种滞后角补偿装置及精度修正方法,特别涉及一种星载激光雷达测风系统滞后角补偿装置及精度修正方法,属于测量技术领域。 The invention relates to a lag angle compensation device and an accuracy correction method, in particular to a lag angle compensation device and an accuracy correction method for a spaceborne laser radar wind measurement system, and belongs to the field of measurement technology. the
背景技术 Background technique
激光多普勒测风雷达是利用光的多普勒效应测量大气风场速度的一种技术。它将含有风速信息的回波与本振光进行外差拍频进而计算出不同距离处的风速,具有灵敏度高、速度精度高等特点,可测量晴空湍流、风切变、飞机轨迹涡流等,在天气预报、环境监测、航空航天、遥感遥测、气象观测等领域具有广阔的应用前景。卫星的轨道高度达数百公里,发射激光到接收到回波信号之间存在毫秒级的时间延迟,即激光脉冲到目标的往返时间。对于收发同轴的激光雷达,卫星平台的高速运动会使望远镜的光轴在接收信号的时刻相对于激光发射的时刻产生一个偏角,称为滞后角。对于星载测风激光雷达,虽然每个系统其组成有所差异,但根据探测点位置和平台运动速度和高度等信息,雷达系统所产生的滞后角均可计算得到,即滞后角可认为是已知的。滞后角的存在会降低激光雷达的接收效率,由于回波信号本就非常微弱,所以必须进行滞后角的补偿,来提高接收效率。 Laser Doppler wind radar is a technology that uses the Doppler effect of light to measure the velocity of atmospheric wind field. It performs heterodyne beat frequency between the echo containing wind speed information and local oscillator light to calculate the wind speed at different distances. It has the characteristics of high sensitivity and high speed accuracy. It can measure clear air turbulence, wind shear, aircraft trajectory vortex, etc., in It has broad application prospects in fields such as weather forecasting, environmental monitoring, aerospace, remote sensing and telemetry, and meteorological observation. The orbital altitude of the satellite is hundreds of kilometers, and there is a time delay of milliseconds between launching the laser and receiving the echo signal, that is, the round-trip time from the laser pulse to the target. For the laser radar with coaxial transmission and reception, the high-speed movement of the satellite platform will cause the optical axis of the telescope to produce a deflection angle at the moment of receiving the signal relative to the moment of laser emission, which is called the lag angle. For space-borne wind-measuring lidar, although the composition of each system is different, the lag angle generated by the radar system can be calculated according to the position of the detection point and the speed and height of the platform, that is, the lag angle can be considered as known. The existence of the lag angle will reduce the receiving efficiency of the lidar. Since the echo signal is very weak, it is necessary to compensate the lag angle to improve the receiving efficiency. the
测风激光雷达需要至少两个方向探测的风速数据,进行矢量合成,才能得到地面的风速与风向信息。在公开的文献中所见到的测风激光雷达系统,发射和接收部分大部分采用单望远镜和扫描控制器,扫描镜的作用是在不同的时刻改变光的方向(扫描镜的角速度为匀速转动),使激光雷达可以对同一个测量点进行多个方向的风速探测,从而得到该测量点风的方向和风速。对于有扫描镜的测风激光雷达系统,在回波光束滞后角产生的同时扫描镜会转动至某一位置,最终进入系统内部的回波光位置可以利用光学原理计算出来。其滞后角补偿方法有两种,一种是在系统中加入一个位置可调的滞后角补偿反射镜,在进行滞后角补偿时,使补偿反射镜转动 至某一固定位置处,对本振光进行补偿使其反射至回波光位置处进行外差拍频;另一种方法则是采用滞后角补偿反射镜将回波光轴补偿至与本振光重合,由于滞后角是已知的,滞后角补偿反射镜对不同的滞后角补偿时需要位移至不同的固定位置,最后将补偿后的回波光束与本振光进行外差拍频。 Wind lidar requires wind speed data detected in at least two directions, and vector synthesis is performed to obtain ground wind speed and wind direction information. In the wind lidar system seen in the open literature, most of the transmitting and receiving parts use a single telescope and a scanning controller. The function of the scanning mirror is to change the direction of light at different times (the angular velocity of the scanning mirror is a uniform rotation ), so that the lidar can detect the wind speed in multiple directions on the same measurement point, so as to obtain the wind direction and wind speed at the measurement point. For a wind-measuring LiDAR system with a scanning mirror, the scanning mirror will rotate to a certain position when the lag angle of the echo beam is generated, and the position of the echo light that finally enters the system can be calculated using optical principles. There are two methods of lag angle compensation. One is to add a position-adjustable lag angle compensation mirror to the system. When performing lag angle compensation, the compensation mirror is rotated to a fixed position, and the local oscillator light is adjusted. Compensation makes it reflected to the position of the echo light for heterodyne beat frequency; another method is to use a lag angle compensation mirror to compensate the echo optical axis to coincide with the local oscillator light. Since the lag angle is known, the lag angle compensation The reflector needs to be displaced to different fixed positions when compensating for different lag angles, and finally the compensated echo beam and local oscillator light are subjected to heterodyne beat frequency. the
国家发明专利《一种新型相干测风激光雷达望远镜系统》(专利申请号:)公开了一种采用扫描控制器加两望远镜扫描的测风激光雷达望远镜系统,其结构如图1所示。该测风激光雷达望远镜系统包括扫描控制器和两个相同的具有一定夹角的离轴反射望远镜;两个离轴反射望远镜以扫描控制器(4)为中心,以相同距离相隔一定夹角放置;每个离轴反射望远镜由主镜(1)、次镜(2)和补偿镜(3)组成;扫描控制器(4)由一部扫描电机及一个平面反射镜组成;由扫描电机上的反射镜的偏转,进行2个望远镜光路的切换,实现2个望远镜的探测;从激光光源出射的光经由扫描电机上的反射镜反射进入望远镜的补偿镜(3),然后经过补偿镜(3)折射至望远镜次镜(2),再经由倾斜的次镜(2)反射至望远镜主镜(1),由望远镜主镜(1)发射到大气中;激光作为载波信号,与大气中的分子和气溶胶粒子相互作用产生回波信号,从大气中返回的回波信号由同一望远镜进行接收,经由望远镜的主镜(1)、次镜(2)、补偿镜(3)至扫描电机上的反射镜,反射至后续光路中。 The national invention patent "A Novel Coherent Wind LiDAR Telescope System" (patent application number: ) discloses a wind measurement LiDAR telescope system that uses a scan controller and two telescopes to scan. Its structure is shown in Figure 1. The wind-measuring lidar telescope system includes a scanning controller and two identical off-axis reflecting telescopes with a certain angle; the two off-axis reflecting telescopes are centered on the scanning controller (4) and placed at the same distance apart at a certain angle ; Each off-axis reflecting telescope is made up of primary mirror (1), secondary mirror (2) and compensating mirror (3); scanning controller (4) is made up of a scanning motor and a plane mirror; The deflection of the mirror is to switch the optical path of the two telescopes to realize the detection of the two telescopes; the light emitted from the laser light source is reflected by the mirror on the scanning motor and enters the compensation mirror (3) of the telescope, and then passes through the compensation mirror (3) It is refracted to the secondary mirror (2) of the telescope, and then reflected to the primary mirror (1) of the telescope through the tilted secondary mirror (2), and is emitted into the atmosphere by the primary mirror (1) of the telescope; as a carrier signal, the laser light is used as a carrier signal to communicate with molecules and gases in the atmosphere The interaction of sol particles generates echo signals, and the echo signals returned from the atmosphere are received by the same telescope, through the primary mirror (1), secondary mirror (2), and compensation mirror (3) of the telescope to the mirror on the scanning motor , reflected into the subsequent optical path. the
由于两个离轴反射望远镜各自工作时间不同,在某一时刻,只有一个望远镜可以对测量点进行风速探测,间隔一段时间后,另一个望远镜对相同的测量点进行另一个方向上的风速探测,最后将这两个方向探测的风速数据进行矢量合成,得到该测量点上的水平风速与风向信息。双望远镜的扫描方式,会导致回波光束的光轴产生两种偏移,即回波光束的光轴位于接收系统理论光轴上方或者下方,使得滞后角无法用固定装置进行补偿。因此需要设计一种针对双望远镜的星载测风激光雷达系统滞后角进行补偿的装置及精度修正方法。 Due to the different working hours of the two off-axis reflecting telescopes, at a certain moment, only one telescope can detect the wind speed at the measurement point. Finally, the wind speed data detected in these two directions are vector synthesized to obtain the horizontal wind speed and wind direction information at the measurement point. The double-telescope scanning method will cause two types of offsets in the optical axis of the echo beam, that is, the optical axis of the echo beam is located above or below the theoretical optical axis of the receiving system, so that the lag angle cannot be compensated by a fixed device. Therefore, it is necessary to design a device and accuracy correction method for compensating the lag angle of the dual-telescope spaceborne wind lidar system. the
发明内容 Contents of the invention
本发明的目的是提出一种针对双望远镜的星载测风激光雷达系统滞后角进行补偿的装置及精度修正方法。本发明方法在现有的采用两块导光镜进行补偿的滞后角补偿装置的基础上,提出了一种补偿角度动态可调,且可利用闭环检测进行精确修正的滞后角补偿装置及精度修正方法。本发明装置通过加入光电探测器来检测滞后角补偿的精度,同时通过控制信号处理模块修正滞后角的补偿效果。 The object of the present invention is to propose a device and an accuracy correction method for compensating the lag angle of a spaceborne wind-measuring lidar system with two telescopes. On the basis of the existing lag angle compensation device using two light guide mirrors for compensation, the method of the present invention proposes a lag angle compensation device that can dynamically adjust the compensation angle and can be accurately corrected by closed-loop detection, and its precision correction method. The device of the invention detects the accuracy of the lag angle compensation by adding a photoelectric detector, and at the same time corrects the compensation effect of the lag angle through a control signal processing module. the
本发明的目的是通过以下技术方案实现的。 The purpose of the present invention is achieved through the following technical solutions. the
一种星载激光雷达测风系统滞后角补偿装置,其特征在于:其包括:望远镜扫描光学系统(5)、滞后角补偿模块(6)、可移动插入式反射镜(7)、扩束镜(8)、面阵光电探测器(9)和控制信号处理模块(10)。用符号a表示所述星载激光雷达测风系统滞后角补偿装置的系统光轴。 A lag angle compensation device for a spaceborne laser radar wind measurement system, characterized in that it includes: a telescope scanning optical system (5), a lag angle compensation module (6), a movable insertable reflector (7), a beam expander (8), an area array photodetector (9) and a control signal processing module (10). Symbol a represents the system optical axis of the lag angle compensation device of the spaceborne lidar wind measuring system. the
所述望远镜扫描光学系统(5)包括扫描控制器(4)和两个相同的离轴反射望远镜(分别用符号W1和W2表示);离轴反射望远镜W1的光轴与所述星载激光雷达测风系统滞后角补偿装置的系统光轴(用符号a表示)平行;离轴反射望远镜W1和W2分别与扫描控制器(4)的距离相等,并且离轴反射望远镜W1和W2与扫描控制器(4)的连线成一定夹角。每个离轴反射望远镜由主镜(1)、次镜(2)和补偿镜(3)组成;扫描控制器(4)由一部扫描电机及一个平面反射镜组成;由扫描电机上的反射镜的偏转,进行2个离轴反射望远镜光路的切换,实现2个离轴反射望远镜的探测。从激光光源出射的光经由扫描电机上的反射镜反射进入离轴反射望远镜的补偿镜(3),然后经过补偿镜(3)折射至望远镜次镜(2),再经由倾斜的次镜(2)反射至离轴反射望远镜主镜(1),由离轴反射望远镜主镜(1)发射到大气中;激光作为载波信号,与大气中的分子和气溶胶粒子相互作用产生回波信号,从大气中返回的回波信号由同一离轴反射望远镜进行接收,经由离轴反射望远镜的主镜(1)、次镜(2)、补偿镜(3)至扫描电机上的反射镜,反射至后续光路中。 The telescope scanning optical system (5) includes a scanning controller (4) and two identical off-axis reflecting telescopes (represented by symbols W 1 and W 2 respectively); the optical axis of the off-axis reflecting telescope W 1 is aligned with the star The system optical axis (indicated by symbol a) of the lag angle compensation device of the laser radar wind measuring system is parallel; the distances between the off-axis reflective telescopes W 1 and W 2 and the scanning controller (4) are equal, and the off-axis reflective telescope W 1 It forms a certain angle with the connection line between W 2 and the scan controller (4). Each off-axis reflecting telescope is made up of primary mirror (1), secondary mirror (2) and compensating mirror (3); scanning controller (4) is made up of a scanning motor and a plane mirror; The deflection of the mirror is used to switch the optical path of the two off-axis reflecting telescopes, and realize the detection of the two off-axis reflecting telescopes. The light emitted from the laser light source is reflected by the mirror on the scanning motor and enters the compensation mirror (3) of the off-axis reflection telescope, and then refracted to the secondary mirror (2) of the telescope through the compensation mirror (3), and then passes through the tilted secondary mirror (2) ) is reflected to the main mirror (1) of the off-axis reflecting telescope, and is emitted into the atmosphere by the main mirror (1) of the off-axis reflecting telescope; as a carrier signal, the laser interacts with molecules and aerosol particles in the atmosphere to generate an echo signal, which is transmitted from the atmosphere The echo signal returned in the center is received by the same off-axis reflecting telescope, passes through the main mirror (1), secondary mirror (2) and compensation mirror (3) of the off-axis reflecting telescope to the mirror on the scanning motor, and is reflected to the subsequent optical path middle.
两个离轴反射望远镜W1和W2为交替工作模式,在其中一个离轴反射望远镜完成m个激光脉冲探测后,切换至另一个离轴反射望远镜;m值由人为预先设定,m∈[20,100]。 The two off-axis reflecting telescopes W 1 and W 2 are in alternate working mode. After one of the off-axis reflecting telescopes completes m laser pulse detection, it switches to the other off-axis reflecting telescope; the value of m is preset by man, m∈ [20, 100].
所述望远镜扫描光学系统(5)的主要作用是:①在系统正常工作时,发射激光和接收回波;②在对滞后角补偿进行精度修正时,提供后向反射光。 The main functions of the telescope scanning optical system (5) are: ① emitting laser light and receiving echoes when the system is working normally; ② providing back-reflected light when performing precision correction on lag angle compensation. the
所述滞后角补偿模块(6)包括:旋转补偿器(601)、平移补偿器(606)、旋转导光镜(603)、平移导光镜(604)、第一连接件(602)和第二连接件(605);旋转导光镜(603)通过第一连接件(602)与旋转补偿器(601)固定连接;平移导光镜(604)通过第二连接件(605)与平移补偿器(606)固定连接;在初始状态,旋转导光镜(603)和平移导光镜(604)的零点位置为两者平行放置并与水平方向成45°夹角; The lag angle compensation module (6) includes: a rotation compensator (601), a translation compensator (606), a rotation light guide mirror (603), a translation light guide mirror (604), a first connecting member (602) and a second Two connectors (605); the rotating light guide mirror (603) is fixedly connected to the rotation compensator (601) through the first connector (602); the translation light guide mirror (604) is connected to the translation compensation through the second connector (605) The device (606) is fixedly connected; in the initial state, the zero point positions of the rotating light guide mirror (603) and the translation light guide mirror (604) are placed in parallel and form an angle of 45° with the horizontal direction;
所述滞后角补偿模块(6)的功能包括:①当所述星载激光雷达测风系统正常工作时,进行滞后角补偿工作。②当所述星载激光雷达测风系统处于滞后角补偿精度修正阶段时,进行滞后角补偿精度修正工作。 The functions of the lag angle compensation module (6) include: ① When the spaceborne lidar wind measurement system is working normally, perform lag angle compensation. ② When the spaceborne lidar wind measurement system is in the lag angle compensation accuracy correction stage, the lag angle compensation accuracy correction work is performed. the
所述可移动插入式反射镜(7)的功能是:在所述星载测风激光雷达系统需要进行滞后角补偿精度修正时,可移动插入式反射镜(7)移入到光路中,可移动插入式反射镜(7)将离轴反射望远镜W1中补偿镜(3)的后向反射光光束传输至扩束镜(8)。 The function of the movable plug-in reflector (7) is: when the spaceborne wind-measuring lidar system needs to correct the accuracy of lag angle compensation, the movable plug-in reflector (7) is moved into the optical path, and the movable plug-in reflector (7) The plug-in reflector (7) transmits the back-reflected light beam from the compensating mirror (3) in the off-axis reflecting telescope W1 to the beam expander (8).
所述扩束镜(8)的功能是将离轴反射望远镜W1中补偿镜(3)的后向反射光信号光束直径按倍数缩小,以适应面阵探测器的尺寸。所述倍数可选 The function of the beam expander (8) is to reduce the diameter of the back-reflected optical signal beam of the compensation mirror (3) in the off-axis reflecting telescope W1 by multiples, so as to adapt to the size of the area array detector. The multiples are optional
所述面阵光电探测器(9)的功能是接收扩束镜(8)中的光斑,成像后传输至控制信号处理模块(10)。 The function of the area array photodetector (9) is to receive the light spot in the beam expander (8), and transmit the image to the control signal processing module (10). the
所述控制信号处理模块(10)的功能包括:①当所述星载测风激光雷达系统正常工作时,控制信号处理模块(10)向滞后角补偿模块(6)发送上方滞后角补偿信号或下方滞后角补偿信号;向可移动插入式反射镜(7)发送可移动插入式反射镜(7)移出信号;向面阵光电探测器(9)发送关闭信号;并且在离轴反射望远镜W1正常工作时,控制信号处理模块(10)向扫描控制器(4)发出移出信号;在离轴反射望远镜W2正常工作时,控制信号处理模块(10)向扫描控制器(4)发出移入信号。②当所述星载测 风激光雷达系统处于滞后角补偿精度修正阶段,控制信号处理模块(10)向滞后角补偿模块(6)发送精度修正信号;向可移动插入式反射镜(7)发送可移动插入式反射镜(7)移入信号;向面阵光电探测器(9)发送打开信号;向扫描控制器(4)发出移出信号。 The functions of the control signal processing module (10) include: 1. when the spaceborne wind measurement laser radar system is working normally, the control signal processing module (10) sends the upper lag angle compensation signal to the lag angle compensation module (6) or Downward lag angle compensation signal; Send movable insertable reflector (7) to move out signal to movable insertable reflector (7); Send closing signal to area array photodetector (9); And in off-axis reflective telescope W 1 During normal operation, the control signal processing module (10) sends a move-out signal to the scan controller (4); when the off-axis reflecting telescope W2 works normally, the control signal processing module (10) sends a move-in signal to the scan controller (4) . ② When the spaceborne wind-measuring lidar system is in the lag angle compensation accuracy correction stage, the control signal processing module (10) sends an accuracy correction signal to the lag angle compensation module (6); sends an accuracy correction signal to the movable plug-in mirror (7) The movable inserting mirror (7) moves in a signal; sends an opening signal to the area array photodetector (9); sends a moving out signal to the scanning controller (4).
上述各部分的连接关系为: The connection relationship of the above parts is as follows:
滞后角补偿模块(6)位于双望远镜扫描光学系统(5)后;在系统正常工作时,回波激光经过双望远镜扫描光学系统(5)传输至滞后角补偿模块(6),经滞后角补偿模块(6)补偿后传输至外围设备;在进行滞后角补偿精度修正时,可移动插入式反射镜(7)位于滞后角补偿模块(6)后的光路上,扩束镜(8)放置于可移动插入式反射镜(7)的一侧且位于面阵光电探测器(9)的前端;面阵光电探测器(9)的输出端接控制信号处理模块(10)的输入端;控制信号处理模块(10)的输出端接滞后角补偿模块(6)的输入端。 The lag angle compensation module (6) is located behind the dual-telescope scanning optical system (5); when the system is in normal operation, the echo laser is transmitted to the lag angle compensation module (6) through the dual-telescope scanning optical system (5), and after lag angle compensation The module (6) is compensated and transmitted to the peripheral equipment; when correcting the lag angle compensation accuracy, the movable plug-in reflector (7) is located on the optical path behind the lag angle compensation module (6), and the beam expander (8) is placed on the One side of the movable plug-in reflector (7) is positioned at the front end of the area array photodetector (9); the output terminal of the area array photodetector (9) is connected to the input end of the control signal processing module (10); the control signal The output terminal of the processing module (10) is connected to the input terminal of the lag angle compensation module (6). the
使用所述星载测风激光雷达系统滞后角补偿装置对滞后角进行补偿的工作过程为: The working process of using the lag angle compensation device of the spaceborne wind measurement lidar system to compensate the lag angle is:
步骤1:使所述星载测风激光雷达系统处于正常工作阶段,控制信号处理模块(10)向可移动插入式反射镜(7)发送可移动插入式反射镜(7)移出信号,可移动插入式反射镜(7)移出系统光路;控制信号处理模块(10)向面阵光电探测器(9)发送关闭信号,面阵光电探测器(9)关闭;控制信号处理模块(10)根据离轴反射望远镜W1和W2之间的工作时序,在离轴反射望远镜W1正常工作时,控制信号处理模块(10)发出扫描控制器(4)移出信号,扫描控制器(4)移出系统光路;在离轴反射望远镜W2工作时,控制信号处理模块(10)发出扫描控制器(4)移入信号,扫描控制器(4)移入系统光路。 Step 1: Make the space-borne wind measurement laser radar system in the normal working stage, control the signal processing module (10) to send the movable plug-in reflector (7) to move out signal to the movable plug-in reflector (7), the movable The plug-in reflector (7) is moved out of the system optical path; the control signal processing module (10) sends a closing signal to the area array photodetector (9), and the area array photodetector (9) is closed; the control signal processing module (10) The working sequence between the off-axis reflecting telescope W1 and W2 , when the off-axis reflecting telescope W1 is working normally, the control signal processing module (10) sends the scan controller (4) to move out signal, and the scan controller (4) moves out of the system Optical path: when the off-axis reflecting telescope W 2 is working, the control signal processing module (10) sends the scanning controller (4) to move into the signal, and the scanning controller (4) moves into the system optical path.
步骤2:控制信号处理模块(10)向滞后角补偿模块(6)发送上方滞后角补偿信号或下方滞后角补偿信号。 Step 2: The control signal processing module (10) sends an upper lag angle compensation signal or a lower lag angle compensation signal to the lag angle compensation module (6). the
当望远镜扫描光学系统(5)中离轴反射望远镜W1正常工作时,控制信号处理模块(10)发送上方滞后角补偿信号。 When the off-axis reflecting telescope W1 in the telescope scanning optical system (5) works normally, the control signal processing module (10) sends an upper lag angle compensation signal.
当望远镜扫描光学系统(5)中离轴反射望远镜W2正常工作时,控制 信号处理模块(10)发送下方滞后角补偿信号。 When the off-axis reflecting telescope W2 in the telescope scanning optical system (5) was working normally, the control signal processing module (10) sent the lag angle compensation signal below.
步骤3:滞后角补偿模块(6)根据控制信号处理模块(10)发送来的上方滞后角补偿信号或下方滞后角补偿信号,完成滞后角补偿工作。具体为: Step 3: The lag angle compensation module (6) completes the lag angle compensation work according to the upper lag angle compensation signal or the lower lag angle compensation signal sent by the control signal processing module (10). Specifically:
步骤3.1:当滞后角补偿模块(6)接收到上方滞后角补偿信号时,具体操作是:旋转补偿器(601)控制旋转导光镜(603)转动至零点位置,再顺时针旋转至与初始位置成θ/2度位置处,其中θ为滞后角,θ由人为预先设定,θ∈[9×10-4/π,0.36/π]度;平移补偿器(606)控制平移导光镜(604)转动至零点位置,再向右平移H×tanθ,其中H为离轴反射望远镜W1的焦点到旋转导光镜(603)对称中心点的距离。旋转补偿器(601)和平移补偿器(606)完成控制后,结束操作。 Step 3.1: When the lag angle compensation module (6) receives the upper lag angle compensation signal, the specific operation is: the rotation compensator (601) controls the rotation of the rotating light guide mirror (603) to the zero position, and then rotates clockwise to the initial position. The position is at the position of θ/2 degrees, where θ is the lag angle, θ is pre-set by humans, θ∈[9×10 -4 /π, 0.36/π] degrees; the translation compensator (606) controls the translation of the light guide mirror (604) Rotate to the zero position, and then translate H×tanθ to the right, where H is the distance from the focal point of the off-axis reflecting telescope W 1 to the symmetrical center point of the rotating light guide mirror (603). After the rotation compensator (601) and the translation compensator (606) complete the control, the operation ends.
步骤3.2:当滞后角补偿模块(6)接收到下方滞后角补偿信号时,具体操作是:旋转补偿器(601)控制旋转导光镜(603)转动至零点位置,再逆时针旋转至与初始位置成θ/2度位置处;平移补偿器(606)控制平移导光镜(604)转动至零点位置,再向左平移H×tanθ。旋转补偿器(601)、平移补偿器(606)和扫描控制器(4)完成控制后,结束操作。 Step 3.2: When the lag angle compensation module (6) receives the lower lag angle compensation signal, the specific operation is: the rotation compensator (601) controls the rotation of the light guide mirror (603) to the zero position, and then rotates counterclockwise to the initial position. The position is at the position of θ/2 degrees; the translation compensator (606) controls the translation light guide mirror (604) to rotate to the zero position, and then translates H×tanθ to the left. After the rotation compensator (601), the translation compensator (606) and the scan controller (4) complete the control, the operation ends. the
使用所述星载测风激光雷达系统滞后角补偿装置对滞后角精度修正的工作过程为: The working process of using the lag angle compensation device of the spaceborne wind measurement lidar system to correct the lag angle accuracy is as follows:
步骤a:使所述星载测风激光雷达系统处于滞后角精度修正阶段,控制信号处理模块(10)向可移动插入式反射镜(7)发送可移动插入式反射镜(7)移入信号,可移动插入式反射镜(7)移入系统光路;控制信号处理模块(10)向面阵光电探测器(9)发送打开信号,面阵光电探测器(9)正常工作;控制信号处理模块(10)发出扫描控制器(4)移出信号,扫描控制器(4)移出系统光路,控制信号处理模块(10)对滞后角补偿模块(6)发出复位命令,旋转导光镜(603)和平移导光镜(604)复位至零点位置; Step a: Make the space-borne wind-measuring lidar system in the lag angle accuracy correction stage, control the signal processing module (10) to send the movable plug-in mirror (7) to move in signal to the movable plug-in mirror (7), The movable plug-in reflector (7) moves into the optical path of the system; the control signal processing module (10) sends an opening signal to the area array photodetector (9), and the area array photodetector (9) works normally; the control signal processing module (10 ) sends the scanning controller (4) moving out signal, the scanning controller (4) moves out of the system optical path, the control signal processing module (10) sends a reset command to the lag angle compensation module (6), and the rotating light guide mirror (603) and the translation guide Light mirror (604) resets to zero position;
步骤b:控制信号处理模块(10)读取面阵光电探测器(9)得到的离轴反射望远镜W1中补偿镜(3)的后向反射光光斑图像,并计算得到面阵光电探测器(9)得到的光斑中心与面阵光电探测器(9)的中心点的横坐标之差(用符号ΔL表示);信号处理模块(10)进一步计算出旋转补偿器 (601)的微调旋转量α/2,并将面阵光电探测器(9)得到的光斑中心与面阵光电探测器(9)的中心点的横坐标之差ΔL和微调旋转量α/2发送给滞后角补偿模块(6)。α的值可通过公式(1)计算得到。 Step b: Control the signal processing module (10) to read the back-reflected light spot image of the compensating mirror (3) in the off-axis reflecting telescope W1 obtained by the area array photodetector (9), and calculate and obtain the area array photodetector (9) the difference (expressed in symbol ΔL) of the abscissa of the spot center that obtains and the central point of the area array photodetector (9); α/2, and the difference ΔL of the spot center obtained by the area photodetector (9) and the center point of the area photodetector (9) and the fine-tuning rotation amount α/2 are sent to the lag angle compensation module ( 6). The value of α can be calculated by formula (1).
ΔL·AF=h·tanα (1) ΔL·AF=h·tanα (1)
其中,h为旋转导光镜(603)对称中心点到面阵光电探测器(9)的距离,AF为扩束镜(8)的扩束倍数。 Wherein, h is the distance from the symmetrical center point of the rotating light guide mirror (603) to the area photodetector (9), and AF is the beam expansion factor of the beam expander (8). the
步骤c:滞后角补偿模块(6)完成滞后角精度修正工作;具体操作是:检测旋转导光镜(603)是否处于零点位置,如果面阵光电探测器(9)得到的光斑中心与面阵光电探测器(9)的中心点的横坐标之差ΔL,如果|ΔL|<σ成立,σ为预先设定阈值,σ∈[0,10]微米,则认为旋转导光镜(603)处于零点位置,不需做补偿修正;否则,当ΔL为正值时,旋转补偿器(601)控制旋转导光镜(603)从当前位置逆时针旋转α/2度;当ΔL为负值时,旋转补偿器(601)控制旋转导光镜(603)从当前位置顺时针旋转α/2度。重复步骤c,直到检测到的|ΔL|<σ,停止操作。 Step c: the lag angle compensation module (6) completes the lag angle accuracy correction work; the specific operation is to detect whether the rotating light guide mirror (603) is at the zero position, if the spot center obtained by the area array photodetector (9) is consistent with the area array The difference ΔL of the abscissa of the central point of the photodetector (9), if |ΔL|<σ is established, σ is a preset threshold, σ∈[0,10] microns, then it is considered that the rotating light guide mirror (603) is in The zero position does not need to be compensated; otherwise, when ΔL is positive, the rotating compensator (601) controls the rotating light guide mirror (603) to rotate counterclockwise from the current position by α/2 degrees; when ΔL is negative, The rotation compensator (601) controls the rotation light guide mirror (603) to rotate α/2 degrees clockwise from the current position. Repeat step c until the detected |ΔL|<σ, stop the operation. the
有益效果 Beneficial effect
本发明涉及的一种星载测风激光雷达系统滞后角补偿装置及精度修正方法,具有补偿角度动态可调,且可利用闭环检测进行精确修正等优点。 The invention relates to a lag angle compensation device and accuracy correction method for a space-borne wind measurement laser radar system, which has the advantages of dynamically adjustable compensation angle, accurate correction by closed-loop detection, and the like. the
附图说明 Description of drawings
图1为已有技术中一种测风激光雷达望远镜系统的结构示意图; Fig. 1 is the structural representation of a kind of wind measuring lidar telescope system in the prior art;
其中:1-主镜、2-次镜、3-补偿镜、4-扫描控制器。 Among them: 1-primary mirror, 2-secondary mirror, 3-compensation mirror, 4-scanning controller. the
图2为本发明具体实施方式中星载测风激光雷达系统滞后角补偿装置的结构示意图; Fig. 2 is the structural representation of lagging angle compensating device of space-borne wind measuring lidar system in the specific embodiment of the present invention;
其中,5-望远镜扫描光学系统、6-滞后角补偿模块、7-可移动插入式反射镜、8-扩束镜、9-面阵光电探测器、10-控制信号处理模块; Among them, 5-telescope scanning optical system, 6-lag angle compensation module, 7-movable plug-in mirror, 8-beam expander, 9-area photodetector, 10-control signal processing module;
图3为本发明具体实施方式中滞后角补偿模块的结构示意图; Fig. 3 is the structural representation of lag angle compensation module in the specific embodiment of the present invention;
其中,601-旋转补偿器、602-第一连接件、603-旋转导光镜、604-平移导光镜、605-第二连接件、606-平移补偿器。 Among them, 601-rotational compensator, 602-first connecting part, 603-rotating light guide mirror, 604-translational light guiding mirror, 605-second connecting part, 606-translational compensator. the
具体实施方式 Detailed ways
为了更好的说明本发明的技术方案,下面通过实施例和附图,对本发明做进一步说明。 In order to better illustrate the technical solution of the present invention, the present invention will be further described below through examples and accompanying drawings. the
本实施例中的星载测风激光雷达系统滞后角补偿装置,其结构如图1所示,其包括:望远镜扫描光学系统5、滞后角补偿模块6、可移动插入式反射镜7、扩束镜8、面阵光电探测器9和控制信号处理模块10。图1中,a表示星载激光雷达测风系统滞后角补偿装置的系统光轴。 The lag angle compensation device of the spaceborne wind-measuring lidar system in this embodiment has a structure as shown in Figure 1, which includes: a telescope scanning optical system 5, a lag angle compensation module 6, a movable plug-in reflector 7, a beam expander Mirror 8, area array photodetector 9 and control signal processing module 10. In Fig. 1, a represents the system optical axis of the lag angle compensation device of the spaceborne lidar wind measurement system. the
望远镜扫描光学系统5包括:扫描控制器4和两个相同的离轴反射望远镜W1和W2;离轴反射望远镜W1的光轴与所述星载激光雷达测风系统滞后角补偿装置的系统光轴a平行;离轴反射望远镜W1和W2分别与扫描控制器4的距离相等,并且离轴反射望远镜W1和W2与扫描控制器4的连线成一定夹角。每个离轴反射望远镜由主镜1、次镜2和补偿镜3组成;扫描控制器4由一部扫描电机及一个平面反射镜组成;由扫描电机上的反射镜的偏转,进行2个离轴反射望远镜光路的切换,实现2个离轴反射望远镜的探测。从激光光源出射的光经由扫描电机上的反射镜反射进入离轴反射望远镜的补偿镜3,然后经过补偿镜3折射至望远镜次镜2,再经由倾斜的次镜2反射至离轴反射望远镜主镜1,由离轴反射望远镜主镜1发射到大气中;激光作为载波信号,与大气中的分子和气溶胶粒子相互作用产生回波信号,从大气中返回的回波信号由同一离轴反射望远镜进行接收,经由离轴反射望远镜的主镜1、次镜2、补偿镜3至扫描电机上的反射镜,反射至后续光路中。 The telescope scanning optical system 5 includes: a scanning controller 4 and two identical off-axis reflecting telescopes W 1 and W 2 ; The optical axis a of the system is parallel; the distances between the off-axis reflecting telescopes W 1 and W 2 and the scanning controller 4 are equal, and the connection between the off-axis reflecting telescopes W 1 and W 2 and the scanning controller 4 forms a certain angle. Each off-axis reflecting telescope is made up of main mirror 1, secondary mirror 2 and compensating mirror 3; scanning controller 4 is made up of a scanning motor and a plane reflecting mirror; by the deflection of the reflecting mirror on the scanning motor, two off-axis The switching of the optical path of the on-axis reflector telescope realizes the detection of two off-axis reflector telescopes. The light emitted from the laser light source is reflected by the mirror on the scanning motor and enters the compensation mirror 3 of the off-axis reflection telescope, then refracted to the secondary mirror 2 of the telescope through the compensation mirror 3, and then reflected to the main off-axis reflection telescope through the inclined secondary mirror 2 Mirror 1 is emitted into the atmosphere by the main mirror 1 of the off-axis reflecting telescope; as a carrier signal, the laser beam interacts with molecules and aerosol particles in the atmosphere to generate an echo signal, and the echo signal returned from the atmosphere is sent by the same off-axis reflecting telescope After receiving, the main mirror 1, the secondary mirror 2, the compensation mirror 3 of the off-axis reflecting telescope, and the mirror on the scanning motor are reflected to the subsequent optical path.
两个离轴反射望远镜W1和W2为交替工作模式,在其中一个离轴反射望远镜完成m个激光脉冲探测后,切换至另一个离轴反射望远镜;m=50。 The two off-axis reflective telescopes W 1 and W 2 work in an alternate mode, and after one off-axis reflective telescope completes m laser pulse detections, it switches to the other off-axis reflective telescope; m=50.
望远镜扫描光学系统5的主要作用是:①在系统正常工作时,发射激光和接收回波;②在对滞后角补偿进行精度修正时,提供后向反射光。 The main functions of the telescope scanning optical system 5 are: ① when the system is working normally, to emit laser light and receive echo; ② to provide back-reflected light when performing precision correction on lag angle compensation. the
滞后角补偿模块6的结构如图2所示,其包括:旋转补偿器601、平移补偿器606、旋转导光镜603、平移导光镜604、第一连接件602和第二连 接件605;旋转导光镜603通过第一连接件602与旋转补偿器601固定连接;平移导光镜604通过第二连接件605与平移补偿器606固定连接;在初始状态,旋转导光镜603和平移导光镜604的零点位置为两者平行放置并与水平方向成45°夹角; The structure of the lag angle compensation module 6 is as shown in Figure 2, which includes: a rotation compensator 601, a translation compensator 606, a rotation light guide mirror 603, a translation light guide mirror 604, a first connector 602 and a second connector 605 The rotating light guide mirror 603 is fixedly connected with the rotation compensator 601 through the first connector 602; the translation light guide mirror 604 is fixedly connected with the translation compensator 606 through the second connector 605; in the initial state, the rotation light guide mirror 603 and the translation The zero position of the light guide mirror 604 is placed in parallel and forms an angle of 45° with the horizontal direction;
其中,旋转补偿器601和平移补偿器606选用高精度高分辨率压电式摆偏台普爱纳米位移技术有限公司,产品型号为S-330.2SL。 Among them, the rotation compensator 601 and the translation compensator 606 are selected from high-precision and high-resolution piezoelectric swing platform Puai Nano Displacement Technology Co., Ltd., and the product model is S-330.2SL. the
滞后角补偿模块6的功能包括:①当所述星载激光雷达测风系统正常工作时,进行滞后角补偿工作。②当所述星载激光雷达测风系统处于滞后角补偿精度修正阶段时,进行滞后角补偿精度修正工作。 The functions of the lag angle compensation module 6 include: ① When the spaceborne lidar wind measurement system is working normally, perform lag angle compensation. ② When the spaceborne lidar wind measurement system is in the lag angle compensation accuracy correction stage, the lag angle compensation accuracy correction work is performed. the
可移动插入式反射镜7的功能是:在所述星载测风激光雷达系统需要进行滞后角补偿精度修正时,可移动插入式反射镜7移入到光路中,可移动插入式反射镜7将离轴反射望远镜W1中补偿镜3的后向反射光光束传输至扩束镜8。 The function of the movable plug-in reflector 7 is: when the spaceborne wind-measuring laser radar system needs to correct the lag angle compensation accuracy, the movable plug-in reflector 7 is moved into the optical path, and the movable plug-in reflector 7 will be The back-reflected light beam from the compensating mirror 3 in the off-axis reflecting telescope W 1 is transmitted to the beam expander 8 .
扩束镜8的功能是将离轴反射望远镜W1中补偿镜3的后向反射光信号光束直径按倍数缩小,以适应的面阵探测器尺寸。 The function of the beam expander 8 is to reduce the back-reflected light signal beam diameter of the compensating mirror 3 in the off-axis reflecting telescope W 1 by Multiplied down to fit the size of the area array detector.
面阵光电探测器9选用成像面阵的大小为320×256,像元大小为30μm×30μm,像面尺寸9.6mm×7.68mm的面阵光电探测器。其功能是接收扩束镜8中的光斑,成像后传输至控制信号处理模块10。 The area array photodetector 9 is an area array photodetector with an imaging area size of 320×256, a pixel size of 30 μm×30 μm, and an image plane size of 9.6 mm×7.68 mm. Its function is to receive the light spot in the beam expander 8 and transmit it to the control signal processing module 10 after imaging. the
所述控制信号处理模块10的功能包括:①当所述星载测风激光雷达系统正常工作时,控制信号处理模块10向滞后角补偿模块6发送上方滞后角补偿信号或下方滞后角补偿信号;向可移动插入式反射镜7发送可移动插入式反射镜7移出信号;向面阵光电探测器9发送关闭信号;并且在离轴反射望远镜W1正常工作时,控制信号处理模块10向扫描控制器4发出移出信号;在离轴反射望远镜W2正常工作时,控制信号处理模块10向扫描控制器4发出移入信号。②当所述星载测风激光雷达系统处于滞后角补偿精度修正阶段,控制信号处理模块10向滞后角补偿模块6发送精度修正信号;向可移动插入式反射镜7发送可移动插入式反射镜7移入信号;向面阵光电探测器9发送打开信号;向扫描控制器4发出移出信号。 The functions of the control signal processing module 10 include: 1. When the spaceborne wind-measuring lidar system works normally, the control signal processing module 10 sends an upper lag angle compensation signal or a lower lag angle compensation signal to the lag angle compensation module 6; Send movable insertable reflector 7 to move out signal to movable insertable reflector 7; Send closing signal to area array photodetector 9 ; When the off-axis reflecting telescope W 2 works normally, the control signal processing module 10 sends a move-in signal to the scan controller 4 . ② When the spaceborne wind-measuring lidar system is in the lag angle compensation accuracy correction stage, the control signal processing module 10 sends an accuracy correction signal to the lag angle compensation module 6; sends the movable plug-in mirror 7 to the movable plug-in mirror 7. Move in signal; send open signal to area array photodetector 9; send out signal to scan controller 4.
上述各部分的连接关系为: The connection relationship of the above parts is as follows:
滞后角补偿模块6位于双望远镜扫描光学系统5后;在系统正常工作时,回波激光经过双望远镜扫描光学系统5传输至滞后角补偿模块6,经滞后角补偿模块6补偿后传输至外围设备;在进行滞后角补偿精度修正时,可移动插入式反射镜7位于滞后角补偿模块6后的光路上,扩束镜8放置于可移动插入式反射镜7的一侧且位于面阵光电探测器9的前端;面阵光电探测器9的输出端接控制信号处理模块10的输入端;控制信号处理模块10的输出端接滞后角补偿模块6的输入端。 The lag angle compensation module 6 is located behind the dual-telescope scanning optical system 5; when the system is working normally, the echo laser is transmitted to the lag angle compensation module 6 through the dual-telescope scanning optical system 5, and then transmitted to the peripheral equipment after being compensated by the lag angle compensation module 6 ; When performing lag angle compensation accuracy correction, the movable plug-in mirror 7 is located on the optical path behind the lag angle compensation module 6, and the beam expander 8 is placed on one side of the movable plug-in mirror 7 and is located in the area array photoelectric detection The front end of the device 9; the output terminal of the area array photodetector 9 is connected to the input terminal of the control signal processing module 10; the output terminal of the control signal processing module 10 is connected to the input terminal of the lag angle compensation module 6. the
采用本实施例中所述星载测风激光雷达系统滞后角补偿装置对滞后角进行补偿,具体操作步骤为: Use the lag angle compensation device of the spaceborne wind measurement laser radar system described in this embodiment to compensate the lag angle, and the specific operation steps are:
步骤1:使所述星载测风激光雷达系统处于正常工作阶段,控制信号处理模块10向可移动插入式反射镜7发送可移动插入式反射镜7移出信号,可移动插入式反射镜7移出系统光路;控制信号处理模块10向面阵光电探测器9发送关闭信号,面阵光电探测器9关闭;控制信号处理模块10根据离轴反射望远镜W1和W2之间的工作时序,在离轴反射望远镜W1正常工作时,控制信号处理模块10发出扫描控制器4移出信号,扫描控制器4移出系统光路;在离轴反射望远镜W2工作时,控制信号处理模块10发出扫描控制器4移入信号,扫描控制器4移入系统光路。 Step 1: Make the spaceborne wind-measuring lidar system in the normal working stage, control the signal processing module 10 to send the movable plug-in reflector 7 to move out signal, and the movable plug-in reflector 7 moves out System optical path; control signal processing module 10 sends closing signal to area array photodetector 9 , and area array photodetector 9 is closed; When the off-axis reflecting telescope W 1 is working normally, the control signal processing module 10 sends a signal to move out of the scanning controller 4, and the scanning controller 4 moves out of the system optical path; To move in the signal, the scan controller 4 moves into the optical path of the system.
步骤2:控制信号处理模块10向滞后角补偿模块6发送上方滞后角补偿信号或下方滞后角补偿信号。 Step 2: The control signal processing module 10 sends an upper lag angle compensation signal or a lower lag angle compensation signal to the lag angle compensation module 6 . the
当望远镜扫描光学系统5中离轴反射望远镜W1正常工作时,控制信号处理模块10发送上方滞后角补偿信号。 When the off-axis reflecting telescope W1 in the telescope scanning optical system 5 is working normally, the control signal processing module 10 sends an upper lag angle compensation signal.
当望远镜扫描光学系统5中离轴反射望远镜W2正常工作时,控制信号处理模块10发送下方滞后角补偿信号。 When the off-axis reflecting telescope W2 in the telescope scanning optical system 5 is working normally, the control signal processing module 10 sends a downward lag angle compensation signal.
步骤3:滞后角补偿模块6根据控制信号处理模块10发送来的上方滞后角补偿信号或下方滞后角补偿信号,完成滞后角补偿工作。具体为: Step 3: The lag angle compensation module 6 completes the lag angle compensation work according to the upper lag angle compensation signal or the lower lag angle compensation signal sent from the control signal processing module 10 . Specifically:
步骤3.1:当滞后角补偿模块6接收到上方滞后角补偿信号时,具体操作是:旋转补偿器601控制旋转导光镜603转动至零点位置,再顺时针旋转至与初始位置成θ/2度位置处,其中θ为滞后角,θ=0.360/π度;平移补 偿器606控制平移导光镜604转动至零点位置,再向右平移H×tanθ,其中H为离轴反射望远镜W1的焦点到旋转导光镜603对称中心点的距离,H=1.5m。旋转补偿器601和平移补偿器606完成控制后,结束操作。 Step 3.1: When the lag angle compensation module 6 receives the upper lag angle compensation signal, the specific operation is: the rotating compensator 601 controls the rotating light guide mirror 603 to rotate to the zero position, and then rotates clockwise to the angle of θ/2 degrees from the initial position position, where θ is the lag angle, θ=0.360/π degrees; the translation compensator 606 controls the translation light guide mirror 604 to rotate to the zero position, and then translates H×tanθ to the right, where H is the focus of the off-axis reflecting telescope W 1 The distance to the center of symmetry of the rotating light guide mirror 603 is H=1.5m. After the rotation compensator 601 and the translation compensator 606 complete the control, the operation ends.
步骤3.2:当滞后角补偿模块6接收到下方滞后角补偿信号时,具体操作是:旋转补偿器601控制旋转导光镜603转动至零点位置,再逆时针旋转至与初始位置成θ/2度位置处;平移补偿器606控制平移导光镜604转动至零点位置,再向左平移H×tanθ。旋转补偿器601、平移补偿器606和扫描控制器4完成控制后,结束操作。 Step 3.2: When the lag angle compensation module 6 receives the lower lag angle compensation signal, the specific operation is: the rotation compensator 601 controls the rotation of the light guide mirror 603 to the zero position, and then rotates counterclockwise to the angle of θ/2 degrees from the initial position position; the translation compensator 606 controls the translation light guide mirror 604 to rotate to the zero position, and then translates H×tanθ to the left. After the rotation compensator 601, the translation compensator 606 and the scan controller 4 complete the control, the operation ends. the
使用所述星载测风激光雷达系统滞后角补偿装置对滞后角精度修正的工作过程为: The working process of using the lag angle compensation device of the spaceborne wind measurement lidar system to correct the lag angle accuracy is as follows:
步骤a:使所述星载测风激光雷达系统处于滞后角精度修正阶段,控制信号处理模块10向可移动插入式反射镜7发送可移动插入式反射镜7移入信号,可移动插入式反射镜7移入系统光路;控制信号处理模块10向面阵光电探测器9发送打开信号,面阵光电探测器9正常工作;控制信号处理模块10发出扫描控制器4移出信号,扫描控制器4移出系统光路,控制信号处理模块10对滞后角补偿模块6发出复位命令,旋转导光镜603和平移导光镜604复位至零点位置; Step a: Make the spaceborne wind-measuring lidar system in the lag angle accuracy correction stage, control the signal processing module 10 to send the movable plug-in reflector 7 to move in signal to the movable plug-in reflector 7, and move the plug-in reflector 7 7 moves into the optical path of the system; the control signal processing module 10 sends an open signal to the area array photodetector 9, and the area array photodetector 9 works normally; the control signal processing module 10 sends a signal for the scanning controller 4 to move out, and the scanning controller 4 moves out of the system optical path , the control signal processing module 10 issues a reset command to the lag angle compensation module 6, and the rotating light guide mirror 603 and the translation light guide mirror 604 are reset to the zero position;
步骤b:控制信号处理模块10读取面阵光电探测器9得到的离轴反射望远镜W1中补偿镜3的后向反射光光斑图像,并计算得到面阵光电探测器9得到的光斑中心与面阵光电探测器9的中心点的横坐标之差ΔL;信号处理模块10进一步计算出旋转补偿器601的微调旋转量α/2,并将面阵光电探测器9得到的光斑中心与面阵光电探测器9的中心点的横坐标之差ΔL和微调旋转量α/2发送给滞后角补偿模块6。α的值可通过公式1计算得到,公式1中h=0.5m, Step b: Control the signal processing module 10 to read the back-reflected light spot image of the compensating mirror 3 in the off-axis reflecting telescope W 1 obtained by the area array photodetector 9, and calculate the center of the light spot obtained by the area array photodetector 9 and The difference ΔL of the abscissa of the central point of the area array photodetector 9; the signal processing module 10 further calculates the fine-tuning rotation amount α/2 of the rotation compensator 601, and compares the light spot center obtained by the area array photodetector 9 with the area array The difference ΔL of the abscissa of the central point of the photodetector 9 and the fine-tuning rotation amount α/2 are sent to the lag angle compensation module 6 . The value of α can be calculated by formula 1, where h=0.5m,
步骤c:滞后角补偿模块6完成滞后角精度修正工作;具体操作是:检测旋转导光镜603是否处于零点位置,如果面阵光电探测器9得到的光斑 中心与面阵光电探测器9的中心点的横坐标之差ΔL,如果满足|ΔL|<σ,σ=1.5微米,则认为旋转导光镜603处于零点位置,不需做补偿修正;否则,当ΔL为正值时,旋转补偿器601控制旋转导光镜603从当前位置逆时针旋转α/2度;当ΔL为负值时,旋转补偿器601控制旋转导光镜603从当前位置顺时针旋转α/2度。重复步骤c,直到检测到的|ΔL|<σ,停止操作。 Step c: the lag angle compensation module 6 completes the lag angle accuracy correction work; the specific operation is: whether the detection rotating light guide mirror 603 is in the zero position, if the spot center obtained by the area array photodetector 9 is the same as the center of the area array photodetector 9 If the difference ΔL of the abscissa of the point satisfies |ΔL|<σ, σ=1.5 microns, then the rotating light guide mirror 603 is considered to be at the zero point position, and compensation correction is not required; otherwise, when ΔL is a positive value, the rotating compensator 601 controls the rotating light guide mirror 603 to rotate α/2 degrees counterclockwise from the current position; when ΔL is a negative value, the rotation compensator 601 controls the rotating light guide mirror 603 to rotate clockwise α/2 degrees from the current position. Repeat step c until the detected |ΔL|<σ, stop the operation. the
本发明的主要内容已通过上述优选实例作了详细介绍,应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。 The main content of the present invention has been introduced in detail through the above preferred examples, and it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims. the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410507605.XA CN104267390B (en) | 2014-09-29 | 2014-09-29 | Spaceborne anemometry laser radar system angle of lag compensation device and precision correcting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410507605.XA CN104267390B (en) | 2014-09-29 | 2014-09-29 | Spaceborne anemometry laser radar system angle of lag compensation device and precision correcting method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104267390A true CN104267390A (en) | 2015-01-07 |
CN104267390B CN104267390B (en) | 2016-08-24 |
Family
ID=52158930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410507605.XA Expired - Fee Related CN104267390B (en) | 2014-09-29 | 2014-09-29 | Spaceborne anemometry laser radar system angle of lag compensation device and precision correcting method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104267390B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107209266A (en) * | 2015-01-30 | 2017-09-26 | 高通股份有限公司 | Puopulsion equipment laser radar system and method |
CN107664509A (en) * | 2017-08-30 | 2018-02-06 | 中国科学院上海技术物理研究所 | A kind of a wide range of dynamic testing angle precision detection means of spaceborne sweep mechanism and method |
CN107678012A (en) * | 2017-11-10 | 2018-02-09 | 深圳市速腾聚创科技有限公司 | Laser radar closed-loop control system, laser radar and laser radar control method |
CN108717195A (en) * | 2018-05-24 | 2018-10-30 | 远景能源(江苏)有限公司 | A kind of coherent Doppler wind-observation laser radar system and its control method |
CN109283540A (en) * | 2018-09-30 | 2019-01-29 | 江苏慧光电子科技有限公司 | System and light channel structure suitable for output pattern light beam |
CN109856614A (en) * | 2018-12-28 | 2019-06-07 | 上海卫星工程研究所 | Satellite-bone laser radar optical axis is directed toward measuring system |
CN112789511A (en) * | 2019-08-23 | 2021-05-11 | 深圳市速腾聚创科技有限公司 | Laser radar and autopilot device |
CN113093149A (en) * | 2021-03-15 | 2021-07-09 | 昂纳信息技术(深圳)有限公司 | Rotating mirror device and laser radar |
CN113162690A (en) * | 2021-06-01 | 2021-07-23 | 中国科学院微小卫星创新研究院 | Space laser communication detection device and method |
CN113985420A (en) * | 2021-12-28 | 2022-01-28 | 四川吉埃智能科技有限公司 | Method for compensating scanning light path error of laser radar inclined by 45 degrees |
WO2022088334A1 (en) * | 2020-10-30 | 2022-05-05 | 苏州镭智传感科技有限公司 | Coherent laser radar |
CN115598625A (en) * | 2022-11-07 | 2023-01-13 | 深圳煜炜光学科技有限公司(Cn) | Laser radar measurement correction method, device, equipment and storage medium |
CN117614518A (en) * | 2024-01-22 | 2024-02-27 | 北京融为科技有限公司 | Satellite-borne laser load receiving and transmitting coaxial calibration method and system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3169074B2 (en) * | 1998-09-25 | 2001-05-21 | 日本電気株式会社 | Laser radar device |
JP2001201573A (en) * | 2000-01-20 | 2001-07-27 | Mitsubishi Electric Corp | Coherent laser radar device and target measuring method |
CN101813778B (en) * | 2010-04-20 | 2012-04-11 | 长春艾克思科技有限责任公司 | Automobile multi-line laser radar system |
CN203149116U (en) * | 2012-10-26 | 2013-08-21 | 北京敏视达雷达有限公司 | Laser measuring ray machine system |
CN104048922A (en) * | 2014-06-26 | 2014-09-17 | 北京理工大学 | Method for measuring polarization degree and polarization angle of fluorescence spectrum |
-
2014
- 2014-09-29 CN CN201410507605.XA patent/CN104267390B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3169074B2 (en) * | 1998-09-25 | 2001-05-21 | 日本電気株式会社 | Laser radar device |
JP2001201573A (en) * | 2000-01-20 | 2001-07-27 | Mitsubishi Electric Corp | Coherent laser radar device and target measuring method |
CN101813778B (en) * | 2010-04-20 | 2012-04-11 | 长春艾克思科技有限责任公司 | Automobile multi-line laser radar system |
CN203149116U (en) * | 2012-10-26 | 2013-08-21 | 北京敏视达雷达有限公司 | Laser measuring ray machine system |
CN104048922A (en) * | 2014-06-26 | 2014-09-17 | 北京理工大学 | Method for measuring polarization degree and polarization angle of fluorescence spectrum |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107209266B (en) * | 2015-01-30 | 2020-08-04 | 高通股份有限公司 | Propulsion device lidar system and method |
CN107209266A (en) * | 2015-01-30 | 2017-09-26 | 高通股份有限公司 | Puopulsion equipment laser radar system and method |
CN107664509A (en) * | 2017-08-30 | 2018-02-06 | 中国科学院上海技术物理研究所 | A kind of a wide range of dynamic testing angle precision detection means of spaceborne sweep mechanism and method |
CN107664509B (en) * | 2017-08-30 | 2024-01-05 | 中国科学院上海技术物理研究所 | Device and method for detecting large-range dynamic angle measurement precision of spaceborne scanning mechanism |
CN107678012A (en) * | 2017-11-10 | 2018-02-09 | 深圳市速腾聚创科技有限公司 | Laser radar closed-loop control system, laser radar and laser radar control method |
CN108717195A (en) * | 2018-05-24 | 2018-10-30 | 远景能源(江苏)有限公司 | A kind of coherent Doppler wind-observation laser radar system and its control method |
CN109283540A (en) * | 2018-09-30 | 2019-01-29 | 江苏慧光电子科技有限公司 | System and light channel structure suitable for output pattern light beam |
CN109856614A (en) * | 2018-12-28 | 2019-06-07 | 上海卫星工程研究所 | Satellite-bone laser radar optical axis is directed toward measuring system |
CN109856614B (en) * | 2018-12-28 | 2021-05-11 | 上海卫星工程研究所 | Satellite-borne laser radar optical axis pointing measurement system |
CN112789511A (en) * | 2019-08-23 | 2021-05-11 | 深圳市速腾聚创科技有限公司 | Laser radar and autopilot device |
CN114442104A (en) * | 2020-10-30 | 2022-05-06 | 苏州镭智传感科技有限公司 | Coherent Lidar |
WO2022088334A1 (en) * | 2020-10-30 | 2022-05-05 | 苏州镭智传感科技有限公司 | Coherent laser radar |
CN113093149A (en) * | 2021-03-15 | 2021-07-09 | 昂纳信息技术(深圳)有限公司 | Rotating mirror device and laser radar |
CN113093149B (en) * | 2021-03-15 | 2024-02-20 | 昂纳科技(深圳)集团股份有限公司 | Rotary mirror device and laser radar |
CN113162690A (en) * | 2021-06-01 | 2021-07-23 | 中国科学院微小卫星创新研究院 | Space laser communication detection device and method |
CN113162690B (en) * | 2021-06-01 | 2023-10-27 | 中国科学院微小卫星创新研究院 | Space laser communication detection device and method |
CN113985420B (en) * | 2021-12-28 | 2022-05-03 | 四川吉埃智能科技有限公司 | Method for compensating scanning light path error of laser radar inclined by 45 degrees |
CN113985420A (en) * | 2021-12-28 | 2022-01-28 | 四川吉埃智能科技有限公司 | Method for compensating scanning light path error of laser radar inclined by 45 degrees |
CN115598625A (en) * | 2022-11-07 | 2023-01-13 | 深圳煜炜光学科技有限公司(Cn) | Laser radar measurement correction method, device, equipment and storage medium |
CN115598625B (en) * | 2022-11-07 | 2023-03-10 | 深圳煜炜光学科技有限公司 | Laser radar measurement correction method, device, equipment and storage medium |
CN117614518A (en) * | 2024-01-22 | 2024-02-27 | 北京融为科技有限公司 | Satellite-borne laser load receiving and transmitting coaxial calibration method and system |
CN117614518B (en) * | 2024-01-22 | 2024-04-09 | 北京融为科技有限公司 | Satellite-borne laser load receiving and transmitting coaxial calibration method and system |
Also Published As
Publication number | Publication date |
---|---|
CN104267390B (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104267390B (en) | Spaceborne anemometry laser radar system angle of lag compensation device and precision correcting method | |
CN109270515B (en) | Variable scanning area coaxial receiving and transmitting scanning laser radar | |
CN103278808B (en) | A kind of multi-thread scanning type laser radar installations | |
CN207336754U (en) | Laser radar scanning system and vehicle | |
CN103791860B (en) | The tiny angle measurement device and method of view-based access control model detection technique | |
CN106342248B (en) | A kind of laser radar for intersection docking between space device | |
CN106019303B (en) | Doppler anemometry laser radar radial direction wind speed real-time calibration system | |
US10365352B2 (en) | Distance measurement instrument with scanning function | |
CN112711031B (en) | Improved quasi-blind area-free Doppler coherent laser radar wind speed measurement system and method | |
CN106679594A (en) | Parallelism detection device of laser emitting axis and optical visual axis | |
CN111596456A (en) | Laser pointing stability control system | |
CN102681550A (en) | Double-fast-reflector fine tracking device and method | |
CN102279391A (en) | Doppler wind-measuring laser radar system | |
CN102096071A (en) | Relay light-amplified laser ranging method and device for cooperative target | |
CN114353596B (en) | An anti-drone multi-spectral detection and tracking equipment | |
CN109343030A (en) | Scan Architecture and laser radar and the vehicles | |
CN111010231A (en) | Free space optical communication method and system | |
CN115184954B (en) | Radar system and method for detecting atmospheric coherence length and turbulence profile | |
CN114779212A (en) | Laser radar | |
CN103293524B (en) | Michelson direct-vision synthetic aperture laser imaging radar transmitter | |
CN116400326A (en) | Onboard infrared early warning system and method for tracking and ranging | |
CN102141386B (en) | Method for measuring included angle between optical axis and reference plane of satellite optical communication terminal | |
CN115426043A (en) | A system and method for on-orbit self-calibration of the optical axis of a space laser communication terminal | |
CN116338632A (en) | Laser radar receiving and transmitting optical system, laser radar using same and method for operating laser radar | |
CN104393932B (en) | Real-time correction method for optical axis of telescope of quantum communication ground station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160824 Termination date: 20170929 |
|
CF01 | Termination of patent right due to non-payment of annual fee |