CN104257371A - Research of dynamic blood pressure detection and calibration method of radial artery - Google Patents
Research of dynamic blood pressure detection and calibration method of radial artery Download PDFInfo
- Publication number
- CN104257371A CN104257371A CN201410537675.XA CN201410537675A CN104257371A CN 104257371 A CN104257371 A CN 104257371A CN 201410537675 A CN201410537675 A CN 201410537675A CN 104257371 A CN104257371 A CN 104257371A
- Authority
- CN
- China
- Prior art keywords
- blood pressure
- pulse wave
- module
- calibration
- radial artery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000036772 blood pressure Effects 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000001514 detection method Methods 0.000 title claims abstract description 18
- 210000002321 radial artery Anatomy 0.000 title claims abstract description 18
- 238000011160 research Methods 0.000 title description 2
- 230000004872 arterial blood pressure Effects 0.000 claims abstract description 15
- 210000000707 wrist Anatomy 0.000 claims abstract description 10
- 238000005259 measurement Methods 0.000 claims description 18
- 238000013500 data storage Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 10
- 238000007405 data analysis Methods 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims 2
- 238000012544 monitoring process Methods 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000009530 blood pressure measurement Methods 0.000 description 13
- 210000003811 finger Anatomy 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/022—Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
- A61B5/02225—Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0223—Operational features of calibration, e.g. protocols for calibrating sensors
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Ophthalmology & Optometry (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
技术领域technical field
本发明整体涉及一种桡动脉动态血压检测及校准方法的研究,尤其涉及一种经过两次校准后利用脉搏波传导时间差PWT与人体动脉血压之间的线性关系从而进行血压的连续监测的装置及方法。The present invention generally relates to the research of a radial artery dynamic blood pressure detection and calibration method, and in particular to a device for continuous monitoring of blood pressure by using the linear relationship between the pulse wave transit time difference PWT and the human arterial blood pressure after two calibrations. method.
背景技术Background technique
如今,高血压已经成为最常见的心血管系统慢性病,是全球的公共卫生之一。现有的家庭和医院常用的血压测量装置,主要是基于柯氏音法和示波法。其虽能准确的测量出血压值,但其测量过程中均需要使用袖带,存在一个袖带充放气的过程,因此只能测量某个时刻的血压值,又由于“白大衣”现象的存在,使得常用的血压测量装置在血压测量过程中会存在一些误差。Today, hypertension has become the most common chronic disease of the cardiovascular system and one of the global public health problems. Existing families and hospitals commonly used blood pressure measuring devices are mainly based on the Korotkoff sound method and the oscillometric method. Although it can accurately measure the blood pressure value, it needs to use a cuff during the measurement process. There is a process of inflation and deflation of the cuff, so it can only measure the blood pressure value at a certain moment, and because of the "white coat" phenomenon Existence, so commonly used blood pressure measuring devices will have some errors in the process of blood pressure measurement.
目前,由于心电R波较容易被测量,ECG与PPG结合的血压测量技术成为常用的动脉血压无创测量方法之一,该方法是利用同一动脉脉搏波从心电R波传输至脉搏波特征点之间的时间间隔PTT来估计血压。然而为了获得指端的PPG,通常情况下采用指夹式的PPG传感器,其导线都暴露在外面,给测量带来了不便。At present, because the ECG R wave is easier to be measured, the blood pressure measurement technology combining ECG and PPG has become one of the commonly used non-invasive measurement methods of arterial blood pressure. This method uses the same arterial pulse wave to transmit from the ECG R wave to the pulse wave feature point The time interval between PTT to estimate blood pressure. However, in order to obtain the PPG at the fingertip, a finger clip-type PPG sensor is usually used, and its wires are exposed outside, which brings inconvenience to the measurement.
两路PPG结合的血压测量技术也成为常用的无创血压测量方法之一。两路PPG结合的血压测量技术是将两个PPG传感器放置于人体的两个不同部位,如手指与脚趾,手指与耳朵,手指与上臂及手指与手腕等。两路PPG结合的血压测量技术能够保持动脉血管的一致性,且避免了心脏与射血期的影响。但由于两个传感器之间的距离易受到人体运动的变化,会影响到测量的时间间隔PTT,从而使估计得到的血压值产生误差。The blood pressure measurement technology combined with two-channel PPG has also become one of the commonly used non-invasive blood pressure measurement methods. The blood pressure measurement technology combining two-way PPG is to place two PPG sensors on two different parts of the human body, such as fingers and toes, fingers and ears, fingers and upper arms, fingers and wrists, etc. The blood pressure measurement technology combined with two-way PPG can maintain the consistency of the arteries and avoid the influence of the heart and the ejection period. However, since the distance between the two sensors is susceptible to changes in human body movement, it will affect the measurement time interval PTT, thereby causing errors in the estimated blood pressure value.
用脉搏波传导时间PWT来估算人体动脉血压是一种无创连续血压的测量方法,在1922年,就有人发现了脉搏波传导时间PWT与人体动脉血压的关系;1957年,又有人提出了脉搏传导时间PWT与动脉血压之间呈线性关系,但这种关系仅在某一个体的一段时间内是相对稳定的,对不同个体PWT与BP之间的比例系数是不同的,而在以往的研究中,对不同的个体都是采用相同的比例系数来计算,存在一定的误差。Using pulse wave transit time PWT to estimate human arterial blood pressure is a non-invasive and continuous blood pressure measurement method. In 1922, someone discovered the relationship between pulse wave transit time PWT and human arterial blood pressure; in 1957, someone proposed the pulse conduction time There is a linear relationship between time PWT and arterial blood pressure, but this relationship is relatively stable only in a certain period of time for an individual, and the proportional coefficient between PWT and BP is different for different individuals, and in previous studies , different individuals are calculated using the same proportional coefficient, there is a certain error.
发明内容Contents of the invention
本发明提供的是一种桡动脉动态血压检测及校准方法,通过示波法和ECG与PPG结合的方法进行两次校准,再利用同时测得手腕处两个不同部位的脉搏波传导时间差PWT与人体动脉血压之间的线性关系从而进行血压的连续监测。The present invention provides a radial artery ambulatory blood pressure detection and calibration method. The oscillometric method and the method of combining ECG and PPG are used to perform two calibrations, and then use the pulse wave transit time difference PWT and The linear relationship between human arterial blood pressure can be used for continuous monitoring of blood pressure.
本发明为了实现上述目的,可以使用以下方案:In order to achieve the above object, the present invention can use the following scheme:
本发明提供了一种桡动脉动态血压检测及校准方法,具有:脉搏波信号测量模块;心电信号测量模块;袖带模块;数据存储模块;数据分析处理模块;显示模块;其中,首先将装置戴在手腕上利用微处理器控制泵与阀,对袖带进行充气,利用示波法测量血压的原理测得血压值BP1,将其作为第一校准血压;然后,用手指接触装置上的两个电极,同时袖带进行充气,使得压电薄膜与皮肤充分接触,即能同时测得脉搏波信号与心电信号,再利用脉搏波信号、心电信号与人体动脉压BP之间的相关性测得第二校准血压BP2;两次血压校准后,再利用脉搏波传导时间PWT与人体动脉压BP之间的线性关系得出最终的血压值。The invention provides a radial artery dynamic blood pressure detection and calibration method, comprising: a pulse wave signal measurement module; an electrocardiographic signal measurement module; a cuff module; a data storage module; a data analysis and processing module; a display module; Wear it on the wrist, use the microprocessor to control the pump and valve, inflate the cuff, use the principle of oscillometric blood pressure measurement to measure the blood pressure value BP1, and use it as the first calibration blood pressure; then, touch the two pins on the device with your fingers One electrode, and the cuff is inflated at the same time, so that the piezoelectric film is in full contact with the skin, that is, the pulse wave signal and the ECG signal can be measured at the same time, and then the correlation between the pulse wave signal, the ECG signal and the human arterial pressure BP is used. The second calibration blood pressure BP2 is measured; after two blood pressure calibrations, the final blood pressure value is obtained by using the linear relationship between the pulse wave transit time PWT and the human arterial pressure BP.
本发明所涉及的是一种桡动脉动态血压检测及校准方法,其是在实现连续血压的测量前通过两种方法实现两次校正,并将两次校正的血压值存储于数据存储模块。两次校正后,利用显示屏下放置的与人体皮肤接触的3×2点阵型压电薄膜所测得的腕部不同部位的脉搏波,再利用脉搏波传导时间差最终得到人体动脉压。The present invention relates to a radial artery dynamic blood pressure detection and calibration method, which implements two corrections by two methods before realizing continuous blood pressure measurement, and stores the blood pressure values corrected twice in a data storage module. After two corrections, the pulse waves of different parts of the wrist measured by the 3×2 dot matrix piezoelectric film placed under the display and in contact with the human skin, and then the pulse wave transit time difference is used to finally obtain the human arterial pressure.
发明效果Invention effect
本发明涉及的是一种桡动脉动态血压检测及校准方法,其特点是在腕部实现血压的连续测量,该部位测量血压舒适性较好且受体位变化的影响小,测量误差较小;在实现血压的连续测量前先通过常用的血压测量方法进行两次校准,使的连续测量的血压较准确;采用3×2点阵式压电薄膜,由于整个压电薄膜片比较小,所测腕部不同部位较接近,使得所测脉搏波传导时间较精确,进而所得连续血压值较精确,误差小。该动态血压连续测量校准装置与以往的连续血压测量装置相比,在不同个体测量前只需进行一次校准即可实现连续血压测量,操作简单,可随时随地使用,舒适性较好,适宜长期佩戴。同时在第二次血压校正时采用的是心电信号与脉搏波信号结合的技术,与三个电极接触还能实现心电信号的监测,容易及时发现高血压等心脑血管疾病。The invention relates to a radial artery dynamic blood pressure detection and calibration method, which is characterized in that the continuous measurement of blood pressure is realized at the wrist, the blood pressure measurement at this part is more comfortable, the influence of the change of the receptor position is small, and the measurement error is small; Before realizing the continuous measurement of blood pressure, the commonly used blood pressure measurement method is used to calibrate twice, so that the continuous measurement of blood pressure is more accurate; using 3×2 dot matrix piezoelectric film, because the entire piezoelectric film is relatively small, the measured Different parts of the wrist are closer, so that the measured pulse wave transit time is more accurate, and the obtained continuous blood pressure value is more accurate and the error is small. Compared with the previous continuous blood pressure measurement device, the ambulatory blood pressure continuous measurement and calibration device only needs to be calibrated once before different individuals measure to realize continuous blood pressure measurement. It is easy to operate, can be used anytime and anywhere, has good comfort, and is suitable for long-term wear . At the same time, the technology of combining ECG signal and pulse wave signal is adopted in the second blood pressure calibration, and the monitoring of ECG signal can also be realized by contacting with three electrodes, which is easy to detect cardiovascular and cerebrovascular diseases such as hypertension in time.
附图说明Description of drawings
图1A是本发明桡动脉动态血压检测及校准装置俯视图。Fig. 1A is a top view of the radial artery ambulatory blood pressure detection and calibration device of the present invention.
图1B是本发明桡动脉动态血压检测及校准装置侧视图。Fig. 1B is a side view of the radial artery ambulatory blood pressure detection and calibration device of the present invention.
图2是本发明桡动脉动态血压检测及校准装置的系统框图。Fig. 2 is a system block diagram of the radial artery ambulatory blood pressure detection and calibration device of the present invention.
具体实施方法Specific implementation method
下面结合附图和具体实施例对本发明作进一步详细的说明,并不是把本发明的实施范围局限于此。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments, and the implementation scope of the present invention is not limited thereto.
如图1A是桡动脉动态血压检测及校准装置俯视图,将该装置戴于左手手腕,显示屏贴手腕内侧,按下开关,微控制器控制泵与阀对袖带进行充气与放气,从而得到第一校准血压,并将其存储于数据存储模块。Figure 1A is a top view of the radial artery ambulatory blood pressure detection and calibration device. The device is worn on the left wrist, the display screen is attached to the inner side of the wrist, and the switch is pressed. The microcontroller controls the pump and the valve to inflate and deflate the cuff, thereby obtaining The blood pressure is first calibrated and stored in the data storage module.
如图1B所示为桡动脉动态血压检测及校准装置侧视图,得到第一校准血压后,微控制器控制泵与阀使得袖带放气,放气至压力传感器与人体皮肤充分接触,进而3×2点阵式压电薄膜也与人体皮肤能充分接触,从而测得三个脉搏波信号,并将所得到的三个脉搏波信号存储于数据存储模块。随后右手手指接触装置侧面的电极101和电极102,装置袖带上的电极103已与人体接触,利用三点法测得心电信号。然后将心电信号以及3×2点阵式压电薄膜的第二行测得的脉搏波信号在数据分析处理模块进行分析处理得到第二校准血压,并将其存储于数据存储模块。Figure 1B is a side view of the radial artery ambulatory blood pressure detection and calibration device. After obtaining the first calibrated blood pressure, the microcontroller controls the pump and valve to deflate the cuff until the pressure sensor fully contacts the human skin, and then 3 The ×2 dot-matrix piezoelectric film can also be fully in contact with the human skin, thereby measuring three pulse wave signals, and storing the obtained three pulse wave signals in the data storage module. Then the fingers of the right hand touch the electrodes 101 and 102 on the side of the device, and the electrodes 103 on the cuff of the device have been in contact with the human body, and the ECG signals are measured by the three-point method. Then analyze and process the ECG signal and the pulse wave signal measured in the second line of the 3×2 dot matrix piezoelectric film in the data analysis and processing module to obtain the second calibrated blood pressure, and store it in the data storage module.
两次血压校准后,微控制器控制提取数据存储模块中3×2点阵式压电薄膜的第一行和第三行脉搏波信号并将其送入数据分析处理模块得到脉搏波传导时间差,再在该模块中利用脉搏波传导时间差PWT与人体动脉压BP之间的线性关系推导出血压,并将该血压在显示屏上进行显示。After two blood pressure calibrations, the microcontroller controls to extract the pulse wave signals of the first and third lines of the 3×2 dot matrix piezoelectric film in the data storage module and send them to the data analysis and processing module to obtain the pulse wave transit time difference, In this module, the blood pressure is deduced by using the linear relationship between the pulse wave transit time difference PWT and the human arterial pressure BP, and the blood pressure is displayed on the display screen.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410537675.XA CN104257371A (en) | 2014-10-13 | 2014-10-13 | Research of dynamic blood pressure detection and calibration method of radial artery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410537675.XA CN104257371A (en) | 2014-10-13 | 2014-10-13 | Research of dynamic blood pressure detection and calibration method of radial artery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104257371A true CN104257371A (en) | 2015-01-07 |
Family
ID=52149043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410537675.XA Pending CN104257371A (en) | 2014-10-13 | 2014-10-13 | Research of dynamic blood pressure detection and calibration method of radial artery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104257371A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105988584A (en) * | 2015-03-19 | 2016-10-05 | 宏达国际电子股份有限公司 | Mobile electronic device and detection system and method for detecting physiological characteristics |
CN106419878A (en) * | 2015-08-11 | 2017-02-22 | 三星电子株式会社 | Blood pressure estimating apparatus and method |
CN106901708A (en) * | 2017-03-01 | 2017-06-30 | 天津普仁万合信息技术有限公司 | Signal imitation method and device based on pulse wave conduction speed PWV |
CN107072555A (en) * | 2015-08-14 | 2017-08-18 | 华为技术有限公司 | A kind of processing method and processing device of blood-pressure measurement data |
CN107638121A (en) * | 2017-09-04 | 2018-01-30 | 广东美的环境电器制造有限公司 | Toilet lid and toilet with same |
WO2018039995A1 (en) * | 2016-08-31 | 2018-03-08 | 华为技术有限公司 | Method, apparatus and device for determining blood pressure calibration period |
CN107847153A (en) * | 2015-07-03 | 2018-03-27 | 深圳市长桑技术有限公司 | A kind of system and method for physiological compensation effects |
CN107865647A (en) * | 2016-09-28 | 2018-04-03 | 京东方科技集团股份有限公司 | The bearing calibration of blood pressure detector and blood pressure detector |
WO2018113442A1 (en) * | 2016-12-21 | 2018-06-28 | 天津普仁万合信息技术有限公司 | Continuous ambulatory blood pressure monitoring device and method based on pulse wave transit |
CN108577820A (en) * | 2018-03-26 | 2018-09-28 | 何史林 | A kind of quick early warning system of real-time blood pressure and its method |
CN109496137A (en) * | 2016-07-25 | 2019-03-19 | 皇家飞利浦有限公司 | Optics vital sign sensors |
CN109805914A (en) * | 2019-02-18 | 2019-05-28 | 中国航天员科研训练中心 | Non-invasive blood pressure monitor dynamic calibrator |
CN109963503A (en) * | 2016-10-10 | 2019-07-02 | 皇家飞利浦有限公司 | Device and method for determining the calibration parameter for blood pressure measurement device |
US10349847B2 (en) | 2015-01-15 | 2019-07-16 | Samsung Electronics Co., Ltd. | Apparatus for detecting bio-information |
US10357165B2 (en) | 2015-09-01 | 2019-07-23 | Samsung Electronics Co., Ltd. | Method and apparatus for acquiring bioinformation and apparatus for testing bioinformation |
US10405806B2 (en) | 2015-03-06 | 2019-09-10 | Samsung Electronics Co., Ltd. | Apparatus for and method of measuring blood pressure |
CN110381818A (en) * | 2017-03-15 | 2019-10-25 | 欧姆龙株式会社 | Vital information measurement device, methods and procedures |
CN110430806A (en) * | 2017-03-15 | 2019-11-08 | 欧姆龙株式会社 | Human body information measurement device, methods and procedures |
CN110573067A (en) * | 2017-03-02 | 2019-12-13 | 安科医疗私人有限公司 | Non-invasive brachial artery blood pressure measurement |
US10568527B2 (en) | 2014-09-03 | 2020-02-25 | Samsung Electronics Co., Ltd. | Apparatus for and method of monitoring blood pressure and wearable device having function of monitoring blood pressure |
CN110868922A (en) * | 2017-06-21 | 2020-03-06 | 卫保数码有限公司 | Apparatus and method for monitoring a person's pulse |
CN110974199A (en) * | 2019-11-27 | 2020-04-10 | 英华达(上海)科技有限公司 | Calibration method, device and system for blood pressure measurement, electronic equipment and storage medium |
CN111565626A (en) * | 2017-12-22 | 2020-08-21 | 法国公立援助医院 | System for measuring mean arterial pressure |
US10799127B2 (en) | 2015-03-31 | 2020-10-13 | Vita-Course Technologies Co., Ltd. | System and method for physiological parameter monitoring |
US10820858B2 (en) | 2016-10-12 | 2020-11-03 | Samsung Electronics Co., Ltd. | Apparatus and method for estimating biometric information |
CN112168155A (en) * | 2020-10-28 | 2021-01-05 | 广东小天才科技有限公司 | Blood pressure detection method, wearable device and computer readable storage medium |
CN112998674A (en) * | 2021-02-22 | 2021-06-22 | 天津工业大学 | Continuous blood pressure measuring device and self-calibration method |
US11375908B2 (en) | 2016-10-21 | 2022-07-05 | Huawei Technologies Co., Ltd. | Blood pressure detection signal sampling and compensation method and apparatus, and blood pressure signal collection system |
US11672430B2 (en) | 2015-01-04 | 2023-06-13 | Vita-Course Technologies Co., Ltd. | System and method for health monitoring |
CN116350195A (en) * | 2023-03-02 | 2023-06-30 | 杭州电子科技大学 | Blood pressure measurement method and system based on flexible piezoelectric material |
-
2014
- 2014-10-13 CN CN201410537675.XA patent/CN104257371A/en active Pending
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10568527B2 (en) | 2014-09-03 | 2020-02-25 | Samsung Electronics Co., Ltd. | Apparatus for and method of monitoring blood pressure and wearable device having function of monitoring blood pressure |
US11672430B2 (en) | 2015-01-04 | 2023-06-13 | Vita-Course Technologies Co., Ltd. | System and method for health monitoring |
US10349847B2 (en) | 2015-01-15 | 2019-07-16 | Samsung Electronics Co., Ltd. | Apparatus for detecting bio-information |
US10405806B2 (en) | 2015-03-06 | 2019-09-10 | Samsung Electronics Co., Ltd. | Apparatus for and method of measuring blood pressure |
US10178975B2 (en) | 2015-03-19 | 2019-01-15 | Htc Corporation | Detecting system and mobile electronic apparatus, and method for detecting physiological characteristic thereof method thereof |
CN105988584B (en) * | 2015-03-19 | 2019-02-22 | 宏达国际电子股份有限公司 | Mobile electronic device and detection system and method for detecting physiological characteristics |
CN105988584A (en) * | 2015-03-19 | 2016-10-05 | 宏达国际电子股份有限公司 | Mobile electronic device and detection system and method for detecting physiological characteristics |
US11134853B2 (en) | 2015-03-31 | 2021-10-05 | Vita-Course Technologies Co., Ltd. | System and method for blood pressure monitoring |
US12076125B2 (en) | 2015-03-31 | 2024-09-03 | Vita-Course Technologies Co., Ltd. | System and method for blood pressure monitoring |
US11185242B2 (en) | 2015-03-31 | 2021-11-30 | Vita-Course Technologies (Hainan) Co., Ltd. | System and method for physiological feature derivation |
US10799127B2 (en) | 2015-03-31 | 2020-10-13 | Vita-Course Technologies Co., Ltd. | System and method for physiological parameter monitoring |
US11957440B2 (en) | 2015-03-31 | 2024-04-16 | Vita-Course Technologies Co., Ltd. | System and method for physiological parameter monitoring |
US10932680B2 (en) | 2015-03-31 | 2021-03-02 | Vita-Course Technologies Co., Ltd. | System and method for physiological parameter monitoring |
US11712168B2 (en) | 2015-03-31 | 2023-08-01 | Vita-Course Technoloaies (Hainan) Co., Ltd. | System and method for physiological feature derivation |
CN112754445A (en) * | 2015-03-31 | 2021-05-07 | 深圳市长桑技术有限公司 | System and method for monitoring physiological parameters |
US11540735B2 (en) | 2015-03-31 | 2023-01-03 | Vita-Course Technologies Co., Ltd. | System and method for physiological parameter monitoring |
CN107847153A (en) * | 2015-07-03 | 2018-03-27 | 深圳市长桑技术有限公司 | A kind of system and method for physiological compensation effects |
CN107847153B (en) * | 2015-07-03 | 2020-12-04 | 深圳市长桑技术有限公司 | System and method for monitoring physiological parameters |
CN106419878B (en) * | 2015-08-11 | 2021-02-26 | 三星电子株式会社 | Blood pressure estimation apparatus and method |
CN106419878A (en) * | 2015-08-11 | 2017-02-22 | 三星电子株式会社 | Blood pressure estimating apparatus and method |
CN107072555A (en) * | 2015-08-14 | 2017-08-18 | 华为技术有限公司 | A kind of processing method and processing device of blood-pressure measurement data |
CN107072555B (en) * | 2015-08-14 | 2021-10-01 | 华为技术有限公司 | Calibration method and device for blood pressure measurement data |
US10357165B2 (en) | 2015-09-01 | 2019-07-23 | Samsung Electronics Co., Ltd. | Method and apparatus for acquiring bioinformation and apparatus for testing bioinformation |
CN109496137A (en) * | 2016-07-25 | 2019-03-19 | 皇家飞利浦有限公司 | Optics vital sign sensors |
WO2018039995A1 (en) * | 2016-08-31 | 2018-03-08 | 华为技术有限公司 | Method, apparatus and device for determining blood pressure calibration period |
US10729338B2 (en) | 2016-09-28 | 2020-08-04 | Boe Technology Group Co., Ltd. | Blood pressure measurement device and calibration method thereof |
CN107865647A (en) * | 2016-09-28 | 2018-04-03 | 京东方科技集团股份有限公司 | The bearing calibration of blood pressure detector and blood pressure detector |
CN107865647B (en) * | 2016-09-28 | 2020-01-14 | 京东方科技集团股份有限公司 | Blood pressure detection device and method for calibrating blood pressure detection device |
CN109963503A (en) * | 2016-10-10 | 2019-07-02 | 皇家飞利浦有限公司 | Device and method for determining the calibration parameter for blood pressure measurement device |
CN109963503B (en) * | 2016-10-10 | 2022-09-20 | 皇家飞利浦有限公司 | Device and method for determining calibration parameters for a blood pressure measuring device |
US10820858B2 (en) | 2016-10-12 | 2020-11-03 | Samsung Electronics Co., Ltd. | Apparatus and method for estimating biometric information |
US11666277B2 (en) | 2016-10-12 | 2023-06-06 | Samsung Electronics Co., Ltd. | Apparatus and method for estimating biometric information |
US11375908B2 (en) | 2016-10-21 | 2022-07-05 | Huawei Technologies Co., Ltd. | Blood pressure detection signal sampling and compensation method and apparatus, and blood pressure signal collection system |
WO2018113442A1 (en) * | 2016-12-21 | 2018-06-28 | 天津普仁万合信息技术有限公司 | Continuous ambulatory blood pressure monitoring device and method based on pulse wave transit |
CN106901708A (en) * | 2017-03-01 | 2017-06-30 | 天津普仁万合信息技术有限公司 | Signal imitation method and device based on pulse wave conduction speed PWV |
CN110573067A (en) * | 2017-03-02 | 2019-12-13 | 安科医疗私人有限公司 | Non-invasive brachial artery blood pressure measurement |
CN110381818A (en) * | 2017-03-15 | 2019-10-25 | 欧姆龙株式会社 | Vital information measurement device, methods and procedures |
CN110430806A (en) * | 2017-03-15 | 2019-11-08 | 欧姆龙株式会社 | Human body information measurement device, methods and procedures |
CN110868922A (en) * | 2017-06-21 | 2020-03-06 | 卫保数码有限公司 | Apparatus and method for monitoring a person's pulse |
CN107638121A (en) * | 2017-09-04 | 2018-01-30 | 广东美的环境电器制造有限公司 | Toilet lid and toilet with same |
CN111565626B (en) * | 2017-12-22 | 2024-05-24 | 法国公立援助医院 | System for measuring mean arterial pressure |
CN111565626A (en) * | 2017-12-22 | 2020-08-21 | 法国公立援助医院 | System for measuring mean arterial pressure |
CN108577820A (en) * | 2018-03-26 | 2018-09-28 | 何史林 | A kind of quick early warning system of real-time blood pressure and its method |
CN109805914A (en) * | 2019-02-18 | 2019-05-28 | 中国航天员科研训练中心 | Non-invasive blood pressure monitor dynamic calibrator |
CN109805914B (en) * | 2019-02-18 | 2021-04-23 | 中国航天员科研训练中心 | Non-invasive blood pressure monitor dynamic calibrator |
CN110974199A (en) * | 2019-11-27 | 2020-04-10 | 英华达(上海)科技有限公司 | Calibration method, device and system for blood pressure measurement, electronic equipment and storage medium |
CN110974199B (en) * | 2019-11-27 | 2022-07-08 | 英华达(上海)科技有限公司 | Calibration method, device and system for blood pressure measurement, electronic equipment and storage medium |
CN112168155A (en) * | 2020-10-28 | 2021-01-05 | 广东小天才科技有限公司 | Blood pressure detection method, wearable device and computer readable storage medium |
CN112998674A (en) * | 2021-02-22 | 2021-06-22 | 天津工业大学 | Continuous blood pressure measuring device and self-calibration method |
CN116350195A (en) * | 2023-03-02 | 2023-06-30 | 杭州电子科技大学 | Blood pressure measurement method and system based on flexible piezoelectric material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104257371A (en) | Research of dynamic blood pressure detection and calibration method of radial artery | |
TWI653029B (en) | Pulse detection module and blood pressure measuring device therewith | |
US11576583B2 (en) | Noninvasive blood pressure measurement method and device | |
CN107865647B (en) | Blood pressure detection device and method for calibrating blood pressure detection device | |
CN104873186B (en) | A kind of wearable artery detection device and its data processing method | |
CN100560019C (en) | Initial calibration device for measuring arterial blood pressure by pulse wave transmission time method | |
CN103637787B (en) | The method of blood pressure real-time measurement apparatus and in real time measurement pulse wave transmission time difference | |
CN104173036A (en) | Pulse wave acquisition device, and non-invasive blood pressure continuous beat-to-beat measuring system and method | |
CN104000573B (en) | Central artery pulse wave monitoring system and method based on body surface two-point pulse wave | |
CN101006915A (en) | Non-contact method for measuring key physiological parameters | |
CN104042200B (en) | A kind of non-invasive monitoring devices and methods therefor of arteriotony by shooting | |
CN103637788B (en) | Blood pressure real-time measurement apparatus | |
CN102688024A (en) | Blood pressure noninvasive measuring method | |
WO2017092020A1 (en) | Blood pressure measurement method and apparatus | |
CN204542117U (en) | A kind of multi-mode continuous blood pressure measurer | |
CN112890790B (en) | Wearable noninvasive dynamic blood pressure tracking and monitoring method | |
CN106923807A (en) | Based on the method and system that temperature is corrected to blood pressure measurement | |
US12059234B2 (en) | Method and a system for estimating a measure of cardiovascular health of a subject | |
CN103637789B (en) | Blood pressure real-time measurement apparatus | |
CN112218575A (en) | Device for determining stress and/or pain level | |
CN204562131U (en) | High-precision blood pressure measuring device | |
CN110755060A (en) | Intelligent personal portable blood pressure measurement system and blood pressure correction method | |
US20120108985A1 (en) | Cuffless blood pressure monitor | |
TWI644628B (en) | Physiology detecting garment and method thereof | |
EP4076165A1 (en) | Continuous non-invasive blood pressure measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150107 |