[go: up one dir, main page]

CN104257371A - Research of dynamic blood pressure detection and calibration method of radial artery - Google Patents

Research of dynamic blood pressure detection and calibration method of radial artery Download PDF

Info

Publication number
CN104257371A
CN104257371A CN201410537675.XA CN201410537675A CN104257371A CN 104257371 A CN104257371 A CN 104257371A CN 201410537675 A CN201410537675 A CN 201410537675A CN 104257371 A CN104257371 A CN 104257371A
Authority
CN
China
Prior art keywords
blood pressure
pulse wave
module
calibration
radial artery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410537675.XA
Other languages
Chinese (zh)
Inventor
韦然
惠芳
王金海
汪剑鸣
孙微
岳晨飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201410537675.XA priority Critical patent/CN104257371A/en
Publication of CN104257371A publication Critical patent/CN104257371A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

The invention relates to a dynamic blood pressure detection and calibration method of a radial artery. The method comprises the following steps: measuring a blood pressure value BP1 to perform first calibration by using oscillography; measuring a blood pressure value BP2 to perform second calibration by using correlation of an electrocardiosignal, a pulse wave signal and human arterial pressure; finally performing continuous monitoring of blood pressure by using the linear relation between pulse wave transmission time difference PWT of two different parts on a wrist and the human arterial blood pressure which are measured at the same time.

Description

一种桡动脉动态血压检测及校准方法的研究Research on a Radial Artery Ambulatory Blood Pressure Detection and Calibration Method

技术领域technical field

本发明整体涉及一种桡动脉动态血压检测及校准方法的研究,尤其涉及一种经过两次校准后利用脉搏波传导时间差PWT与人体动脉血压之间的线性关系从而进行血压的连续监测的装置及方法。The present invention generally relates to the research of a radial artery dynamic blood pressure detection and calibration method, and in particular to a device for continuous monitoring of blood pressure by using the linear relationship between the pulse wave transit time difference PWT and the human arterial blood pressure after two calibrations. method.

背景技术Background technique

如今,高血压已经成为最常见的心血管系统慢性病,是全球的公共卫生之一。现有的家庭和医院常用的血压测量装置,主要是基于柯氏音法和示波法。其虽能准确的测量出血压值,但其测量过程中均需要使用袖带,存在一个袖带充放气的过程,因此只能测量某个时刻的血压值,又由于“白大衣”现象的存在,使得常用的血压测量装置在血压测量过程中会存在一些误差。Today, hypertension has become the most common chronic disease of the cardiovascular system and one of the global public health problems. Existing families and hospitals commonly used blood pressure measuring devices are mainly based on the Korotkoff sound method and the oscillometric method. Although it can accurately measure the blood pressure value, it needs to use a cuff during the measurement process. There is a process of inflation and deflation of the cuff, so it can only measure the blood pressure value at a certain moment, and because of the "white coat" phenomenon Existence, so commonly used blood pressure measuring devices will have some errors in the process of blood pressure measurement.

目前,由于心电R波较容易被测量,ECG与PPG结合的血压测量技术成为常用的动脉血压无创测量方法之一,该方法是利用同一动脉脉搏波从心电R波传输至脉搏波特征点之间的时间间隔PTT来估计血压。然而为了获得指端的PPG,通常情况下采用指夹式的PPG传感器,其导线都暴露在外面,给测量带来了不便。At present, because the ECG R wave is easier to be measured, the blood pressure measurement technology combining ECG and PPG has become one of the commonly used non-invasive measurement methods of arterial blood pressure. This method uses the same arterial pulse wave to transmit from the ECG R wave to the pulse wave feature point The time interval between PTT to estimate blood pressure. However, in order to obtain the PPG at the fingertip, a finger clip-type PPG sensor is usually used, and its wires are exposed outside, which brings inconvenience to the measurement.

两路PPG结合的血压测量技术也成为常用的无创血压测量方法之一。两路PPG结合的血压测量技术是将两个PPG传感器放置于人体的两个不同部位,如手指与脚趾,手指与耳朵,手指与上臂及手指与手腕等。两路PPG结合的血压测量技术能够保持动脉血管的一致性,且避免了心脏与射血期的影响。但由于两个传感器之间的距离易受到人体运动的变化,会影响到测量的时间间隔PTT,从而使估计得到的血压值产生误差。The blood pressure measurement technology combined with two-channel PPG has also become one of the commonly used non-invasive blood pressure measurement methods. The blood pressure measurement technology combining two-way PPG is to place two PPG sensors on two different parts of the human body, such as fingers and toes, fingers and ears, fingers and upper arms, fingers and wrists, etc. The blood pressure measurement technology combined with two-way PPG can maintain the consistency of the arteries and avoid the influence of the heart and the ejection period. However, since the distance between the two sensors is susceptible to changes in human body movement, it will affect the measurement time interval PTT, thereby causing errors in the estimated blood pressure value.

用脉搏波传导时间PWT来估算人体动脉血压是一种无创连续血压的测量方法,在1922年,就有人发现了脉搏波传导时间PWT与人体动脉血压的关系;1957年,又有人提出了脉搏传导时间PWT与动脉血压之间呈线性关系,但这种关系仅在某一个体的一段时间内是相对稳定的,对不同个体PWT与BP之间的比例系数是不同的,而在以往的研究中,对不同的个体都是采用相同的比例系数来计算,存在一定的误差。Using pulse wave transit time PWT to estimate human arterial blood pressure is a non-invasive and continuous blood pressure measurement method. In 1922, someone discovered the relationship between pulse wave transit time PWT and human arterial blood pressure; in 1957, someone proposed the pulse conduction time There is a linear relationship between time PWT and arterial blood pressure, but this relationship is relatively stable only in a certain period of time for an individual, and the proportional coefficient between PWT and BP is different for different individuals, and in previous studies , different individuals are calculated using the same proportional coefficient, there is a certain error.

发明内容Contents of the invention

本发明提供的是一种桡动脉动态血压检测及校准方法,通过示波法和ECG与PPG结合的方法进行两次校准,再利用同时测得手腕处两个不同部位的脉搏波传导时间差PWT与人体动脉血压之间的线性关系从而进行血压的连续监测。The present invention provides a radial artery ambulatory blood pressure detection and calibration method. The oscillometric method and the method of combining ECG and PPG are used to perform two calibrations, and then use the pulse wave transit time difference PWT and The linear relationship between human arterial blood pressure can be used for continuous monitoring of blood pressure.

本发明为了实现上述目的,可以使用以下方案:In order to achieve the above object, the present invention can use the following scheme:

本发明提供了一种桡动脉动态血压检测及校准方法,具有:脉搏波信号测量模块;心电信号测量模块;袖带模块;数据存储模块;数据分析处理模块;显示模块;其中,首先将装置戴在手腕上利用微处理器控制泵与阀,对袖带进行充气,利用示波法测量血压的原理测得血压值BP1,将其作为第一校准血压;然后,用手指接触装置上的两个电极,同时袖带进行充气,使得压电薄膜与皮肤充分接触,即能同时测得脉搏波信号与心电信号,再利用脉搏波信号、心电信号与人体动脉压BP之间的相关性测得第二校准血压BP2;两次血压校准后,再利用脉搏波传导时间PWT与人体动脉压BP之间的线性关系得出最终的血压值。The invention provides a radial artery dynamic blood pressure detection and calibration method, comprising: a pulse wave signal measurement module; an electrocardiographic signal measurement module; a cuff module; a data storage module; a data analysis and processing module; a display module; Wear it on the wrist, use the microprocessor to control the pump and valve, inflate the cuff, use the principle of oscillometric blood pressure measurement to measure the blood pressure value BP1, and use it as the first calibration blood pressure; then, touch the two pins on the device with your fingers One electrode, and the cuff is inflated at the same time, so that the piezoelectric film is in full contact with the skin, that is, the pulse wave signal and the ECG signal can be measured at the same time, and then the correlation between the pulse wave signal, the ECG signal and the human arterial pressure BP is used. The second calibration blood pressure BP2 is measured; after two blood pressure calibrations, the final blood pressure value is obtained by using the linear relationship between the pulse wave transit time PWT and the human arterial pressure BP.

本发明所涉及的是一种桡动脉动态血压检测及校准方法,其是在实现连续血压的测量前通过两种方法实现两次校正,并将两次校正的血压值存储于数据存储模块。两次校正后,利用显示屏下放置的与人体皮肤接触的3×2点阵型压电薄膜所测得的腕部不同部位的脉搏波,再利用脉搏波传导时间差最终得到人体动脉压。The present invention relates to a radial artery dynamic blood pressure detection and calibration method, which implements two corrections by two methods before realizing continuous blood pressure measurement, and stores the blood pressure values corrected twice in a data storage module. After two corrections, the pulse waves of different parts of the wrist measured by the 3×2 dot matrix piezoelectric film placed under the display and in contact with the human skin, and then the pulse wave transit time difference is used to finally obtain the human arterial pressure.

发明效果Invention effect

本发明涉及的是一种桡动脉动态血压检测及校准方法,其特点是在腕部实现血压的连续测量,该部位测量血压舒适性较好且受体位变化的影响小,测量误差较小;在实现血压的连续测量前先通过常用的血压测量方法进行两次校准,使的连续测量的血压较准确;采用3×2点阵式压电薄膜,由于整个压电薄膜片比较小,所测腕部不同部位较接近,使得所测脉搏波传导时间较精确,进而所得连续血压值较精确,误差小。该动态血压连续测量校准装置与以往的连续血压测量装置相比,在不同个体测量前只需进行一次校准即可实现连续血压测量,操作简单,可随时随地使用,舒适性较好,适宜长期佩戴。同时在第二次血压校正时采用的是心电信号与脉搏波信号结合的技术,与三个电极接触还能实现心电信号的监测,容易及时发现高血压等心脑血管疾病。The invention relates to a radial artery dynamic blood pressure detection and calibration method, which is characterized in that the continuous measurement of blood pressure is realized at the wrist, the blood pressure measurement at this part is more comfortable, the influence of the change of the receptor position is small, and the measurement error is small; Before realizing the continuous measurement of blood pressure, the commonly used blood pressure measurement method is used to calibrate twice, so that the continuous measurement of blood pressure is more accurate; using 3×2 dot matrix piezoelectric film, because the entire piezoelectric film is relatively small, the measured Different parts of the wrist are closer, so that the measured pulse wave transit time is more accurate, and the obtained continuous blood pressure value is more accurate and the error is small. Compared with the previous continuous blood pressure measurement device, the ambulatory blood pressure continuous measurement and calibration device only needs to be calibrated once before different individuals measure to realize continuous blood pressure measurement. It is easy to operate, can be used anytime and anywhere, has good comfort, and is suitable for long-term wear . At the same time, the technology of combining ECG signal and pulse wave signal is adopted in the second blood pressure calibration, and the monitoring of ECG signal can also be realized by contacting with three electrodes, which is easy to detect cardiovascular and cerebrovascular diseases such as hypertension in time.

附图说明Description of drawings

图1A是本发明桡动脉动态血压检测及校准装置俯视图。Fig. 1A is a top view of the radial artery ambulatory blood pressure detection and calibration device of the present invention.

图1B是本发明桡动脉动态血压检测及校准装置侧视图。Fig. 1B is a side view of the radial artery ambulatory blood pressure detection and calibration device of the present invention.

图2是本发明桡动脉动态血压检测及校准装置的系统框图。Fig. 2 is a system block diagram of the radial artery ambulatory blood pressure detection and calibration device of the present invention.

具体实施方法Specific implementation method

下面结合附图和具体实施例对本发明作进一步详细的说明,并不是把本发明的实施范围局限于此。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments, and the implementation scope of the present invention is not limited thereto.

如图1A是桡动脉动态血压检测及校准装置俯视图,将该装置戴于左手手腕,显示屏贴手腕内侧,按下开关,微控制器控制泵与阀对袖带进行充气与放气,从而得到第一校准血压,并将其存储于数据存储模块。Figure 1A is a top view of the radial artery ambulatory blood pressure detection and calibration device. The device is worn on the left wrist, the display screen is attached to the inner side of the wrist, and the switch is pressed. The microcontroller controls the pump and the valve to inflate and deflate the cuff, thereby obtaining The blood pressure is first calibrated and stored in the data storage module.

如图1B所示为桡动脉动态血压检测及校准装置侧视图,得到第一校准血压后,微控制器控制泵与阀使得袖带放气,放气至压力传感器与人体皮肤充分接触,进而3×2点阵式压电薄膜也与人体皮肤能充分接触,从而测得三个脉搏波信号,并将所得到的三个脉搏波信号存储于数据存储模块。随后右手手指接触装置侧面的电极101和电极102,装置袖带上的电极103已与人体接触,利用三点法测得心电信号。然后将心电信号以及3×2点阵式压电薄膜的第二行测得的脉搏波信号在数据分析处理模块进行分析处理得到第二校准血压,并将其存储于数据存储模块。Figure 1B is a side view of the radial artery ambulatory blood pressure detection and calibration device. After obtaining the first calibrated blood pressure, the microcontroller controls the pump and valve to deflate the cuff until the pressure sensor fully contacts the human skin, and then 3 The ×2 dot-matrix piezoelectric film can also be fully in contact with the human skin, thereby measuring three pulse wave signals, and storing the obtained three pulse wave signals in the data storage module. Then the fingers of the right hand touch the electrodes 101 and 102 on the side of the device, and the electrodes 103 on the cuff of the device have been in contact with the human body, and the ECG signals are measured by the three-point method. Then analyze and process the ECG signal and the pulse wave signal measured in the second line of the 3×2 dot matrix piezoelectric film in the data analysis and processing module to obtain the second calibrated blood pressure, and store it in the data storage module.

两次血压校准后,微控制器控制提取数据存储模块中3×2点阵式压电薄膜的第一行和第三行脉搏波信号并将其送入数据分析处理模块得到脉搏波传导时间差,再在该模块中利用脉搏波传导时间差PWT与人体动脉压BP之间的线性关系推导出血压,并将该血压在显示屏上进行显示。After two blood pressure calibrations, the microcontroller controls to extract the pulse wave signals of the first and third lines of the 3×2 dot matrix piezoelectric film in the data storage module and send them to the data analysis and processing module to obtain the pulse wave transit time difference, In this module, the blood pressure is deduced by using the linear relationship between the pulse wave transit time difference PWT and the human arterial pressure BP, and the blood pressure is displayed on the display screen.

Claims (7)

1.一种桡动脉动态血压检测及校准方法,其特征在于进行两次校准后实现血压的连续测量,包括如下步骤:1. a kind of radial artery ambulatory blood pressure detection and calibration method, it is characterized in that carrying out the continuous measurement of blood pressure after twice calibration, comprises the steps: 利用微控制器控制袖带模块,从而得到第一校准血压,并将其存储于数据存储模块;Using a microcontroller to control the cuff module to obtain the first calibrated blood pressure and store it in the data storage module; 得到第一校准血压后,微控制器控制泵与阀使得袖带放气,放气至压力传感器与人体皮肤充分接触,利用所述脉搏波信号测量模块获得三个腕部不同部位的脉搏波信号,并将该三个脉搏波信号存储于数据存储模块;再利用所述心电信号测量模块获取心电信号,将获得的心电信号与其中一个脉搏波信号送入数据分析处理模块,得到第二校准血压,并将其存储于数据存储模块;After obtaining the first calibrated blood pressure, the microcontroller controls the pump and the valve to deflate the cuff until the pressure sensor fully contacts the human skin, and uses the pulse wave signal measurement module to obtain pulse wave signals from three different parts of the wrist , and store the three pulse wave signals in the data storage module; then use the ECG signal measurement module to obtain the ECG signal, send the obtained ECG signal and one of the pulse wave signals to the data analysis and processing module, and obtain the first 2. Calibrate the blood pressure and store it in the data storage module; 两次血压校准后,将所述数据存储模块中的另两个脉搏波数据送入数据分析处理模块依据脉搏波传导时间PWT与人体动脉血压BP的线性关系进行分析处理,进而得到血压值,并将其在显示屏上进行显示。After two blood pressure calibrations, send the other two pulse wave data in the data storage module to the data analysis and processing module for analysis and processing based on the linear relationship between the pulse wave transit time PWT and the human arterial blood pressure BP, and then obtain the blood pressure value, and Show it on the display. 2.根据权利要求一所述的腕式血压连续测量校准装置及方法,其特征在于:2. The wrist type blood pressure continuous measurement calibration device and method according to claim 1, characterized in that: 其是由微控制器控制脉搏波信号测量模块,心电信号测量模块,袖带模块,数据存储模块,数据分析处理模块,显示模块。The pulse wave signal measurement module, the ECG signal measurement module, the cuff module, the data storage module, the data analysis and processing module, and the display module are controlled by a microcontroller. 3.根据权利要求一所述的桡动脉动态血压检测及校准方法,其特征在于:3. radial artery ambulatory blood pressure detection and calibration method according to claim 1, is characterized in that: 其脉搏波信号测量模块是由3×2点阵式压电薄膜传感器经前置放大电路、带通滤波电路、主放大电路和50Hz陷波电路与电平调整电路连接构成,用于采集处理脉搏波信号。Its pulse wave signal measurement module is composed of a 3×2 dot matrix piezoelectric film sensor connected to a preamplifier circuit, a bandpass filter circuit, a main amplifier circuit, a 50Hz notch circuit and a level adjustment circuit, and is used to collect and process the pulse. wave signal. 4.根据权利要求一所述的桡动脉动态血压检测及校准方法,其特征在于:4. radial artery ambulatory blood pressure detection and calibration method according to claim 1, is characterized in that: 其心电信号测量模块是由电极101、电极102以及电极103经前置放大电路、带通滤波电路、主放大电路和50Hz陷波电路与电平调整电路连接构成,用于采集处理心电信号。Its ECG signal measurement module is composed of electrodes 101, 102 and 103 via a preamplifier circuit, a band-pass filter circuit, a main amplifier circuit, a 50Hz notch circuit and a level adjustment circuit, and is used for collecting and processing ECG signals. . 5.根据权利要求一所述的桡动脉动态血压检测及校准方法,其特征在于:5. radial artery ambulatory blood pressure detection and calibration method according to claim 1, is characterized in that: 其袖带模块是由阀、泵、压力传感器以及袖带组成;阀、泵以及袖带通过微处理器的控制得到第一校准血压;压力传感器是确保袖带内的气体能够使得3×2点阵式压电薄膜与人体皮肤能够充分接触,从而能够获得脉搏波信号。The cuff module is composed of valve, pump, pressure sensor and cuff; the valve, pump and cuff are controlled by the microprocessor to obtain the first calibration blood pressure; the pressure sensor is to ensure that the gas in the cuff can make 3×2 points The array piezoelectric film can fully contact with the human skin, so that the pulse wave signal can be obtained. 6.根据权利要求一所述的桡动脉动态血压检测及校准方法,其特征在于:6. radial artery ambulatory blood pressure detection and calibration method according to claim 1, is characterized in that: 其数据存储模块用于存储第一校准血压、第二校准血压、脉搏波信号与心电信号,便于设备的分析处理与显示。Its data storage module is used to store the first calibration blood pressure, the second calibration blood pressure, pulse wave signal and electrocardiogram signal, which is convenient for analysis, processing and display of the equipment. 7.根据权利要求一所述的桡动脉动态血压检测及校准方法,其特征在于:7. radial artery ambulatory blood pressure detection and calibration method according to claim 1, is characterized in that: 其数据分析处理模块用于处理心电信号与脉搏波信号从而得到第二校准电压与最终的血压值;获得第二校准血压的原理是依据心电信号R波与脉搏波信号特征点之间的时间差与人体动脉压之间的相关性;获得最终血压值的原理是依据脉搏波传导时间差PWT与人体动脉压BP呈线性关系。Its data analysis and processing module is used to process the ECG signal and the pulse wave signal to obtain the second calibration voltage and the final blood pressure value; the principle of obtaining the second calibration blood pressure is based on the relationship between the R wave of the ECG signal and the characteristic point of the pulse wave signal. The correlation between the time difference and the human arterial pressure; the principle of obtaining the final blood pressure value is based on the linear relationship between the pulse wave transit time difference PWT and the human arterial pressure BP.
CN201410537675.XA 2014-10-13 2014-10-13 Research of dynamic blood pressure detection and calibration method of radial artery Pending CN104257371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410537675.XA CN104257371A (en) 2014-10-13 2014-10-13 Research of dynamic blood pressure detection and calibration method of radial artery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410537675.XA CN104257371A (en) 2014-10-13 2014-10-13 Research of dynamic blood pressure detection and calibration method of radial artery

Publications (1)

Publication Number Publication Date
CN104257371A true CN104257371A (en) 2015-01-07

Family

ID=52149043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410537675.XA Pending CN104257371A (en) 2014-10-13 2014-10-13 Research of dynamic blood pressure detection and calibration method of radial artery

Country Status (1)

Country Link
CN (1) CN104257371A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988584A (en) * 2015-03-19 2016-10-05 宏达国际电子股份有限公司 Mobile electronic device and detection system and method for detecting physiological characteristics
CN106419878A (en) * 2015-08-11 2017-02-22 三星电子株式会社 Blood pressure estimating apparatus and method
CN106901708A (en) * 2017-03-01 2017-06-30 天津普仁万合信息技术有限公司 Signal imitation method and device based on pulse wave conduction speed PWV
CN107072555A (en) * 2015-08-14 2017-08-18 华为技术有限公司 A kind of processing method and processing device of blood-pressure measurement data
CN107638121A (en) * 2017-09-04 2018-01-30 广东美的环境电器制造有限公司 Toilet lid and toilet with same
WO2018039995A1 (en) * 2016-08-31 2018-03-08 华为技术有限公司 Method, apparatus and device for determining blood pressure calibration period
CN107847153A (en) * 2015-07-03 2018-03-27 深圳市长桑技术有限公司 A kind of system and method for physiological compensation effects
CN107865647A (en) * 2016-09-28 2018-04-03 京东方科技集团股份有限公司 The bearing calibration of blood pressure detector and blood pressure detector
WO2018113442A1 (en) * 2016-12-21 2018-06-28 天津普仁万合信息技术有限公司 Continuous ambulatory blood pressure monitoring device and method based on pulse wave transit
CN108577820A (en) * 2018-03-26 2018-09-28 何史林 A kind of quick early warning system of real-time blood pressure and its method
CN109496137A (en) * 2016-07-25 2019-03-19 皇家飞利浦有限公司 Optics vital sign sensors
CN109805914A (en) * 2019-02-18 2019-05-28 中国航天员科研训练中心 Non-invasive blood pressure monitor dynamic calibrator
CN109963503A (en) * 2016-10-10 2019-07-02 皇家飞利浦有限公司 Device and method for determining the calibration parameter for blood pressure measurement device
US10349847B2 (en) 2015-01-15 2019-07-16 Samsung Electronics Co., Ltd. Apparatus for detecting bio-information
US10357165B2 (en) 2015-09-01 2019-07-23 Samsung Electronics Co., Ltd. Method and apparatus for acquiring bioinformation and apparatus for testing bioinformation
US10405806B2 (en) 2015-03-06 2019-09-10 Samsung Electronics Co., Ltd. Apparatus for and method of measuring blood pressure
CN110381818A (en) * 2017-03-15 2019-10-25 欧姆龙株式会社 Vital information measurement device, methods and procedures
CN110430806A (en) * 2017-03-15 2019-11-08 欧姆龙株式会社 Human body information measurement device, methods and procedures
CN110573067A (en) * 2017-03-02 2019-12-13 安科医疗私人有限公司 Non-invasive brachial artery blood pressure measurement
US10568527B2 (en) 2014-09-03 2020-02-25 Samsung Electronics Co., Ltd. Apparatus for and method of monitoring blood pressure and wearable device having function of monitoring blood pressure
CN110868922A (en) * 2017-06-21 2020-03-06 卫保数码有限公司 Apparatus and method for monitoring a person's pulse
CN110974199A (en) * 2019-11-27 2020-04-10 英华达(上海)科技有限公司 Calibration method, device and system for blood pressure measurement, electronic equipment and storage medium
CN111565626A (en) * 2017-12-22 2020-08-21 法国公立援助医院 System for measuring mean arterial pressure
US10799127B2 (en) 2015-03-31 2020-10-13 Vita-Course Technologies Co., Ltd. System and method for physiological parameter monitoring
US10820858B2 (en) 2016-10-12 2020-11-03 Samsung Electronics Co., Ltd. Apparatus and method for estimating biometric information
CN112168155A (en) * 2020-10-28 2021-01-05 广东小天才科技有限公司 Blood pressure detection method, wearable device and computer readable storage medium
CN112998674A (en) * 2021-02-22 2021-06-22 天津工业大学 Continuous blood pressure measuring device and self-calibration method
US11375908B2 (en) 2016-10-21 2022-07-05 Huawei Technologies Co., Ltd. Blood pressure detection signal sampling and compensation method and apparatus, and blood pressure signal collection system
US11672430B2 (en) 2015-01-04 2023-06-13 Vita-Course Technologies Co., Ltd. System and method for health monitoring
CN116350195A (en) * 2023-03-02 2023-06-30 杭州电子科技大学 Blood pressure measurement method and system based on flexible piezoelectric material

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10568527B2 (en) 2014-09-03 2020-02-25 Samsung Electronics Co., Ltd. Apparatus for and method of monitoring blood pressure and wearable device having function of monitoring blood pressure
US11672430B2 (en) 2015-01-04 2023-06-13 Vita-Course Technologies Co., Ltd. System and method for health monitoring
US10349847B2 (en) 2015-01-15 2019-07-16 Samsung Electronics Co., Ltd. Apparatus for detecting bio-information
US10405806B2 (en) 2015-03-06 2019-09-10 Samsung Electronics Co., Ltd. Apparatus for and method of measuring blood pressure
US10178975B2 (en) 2015-03-19 2019-01-15 Htc Corporation Detecting system and mobile electronic apparatus, and method for detecting physiological characteristic thereof method thereof
CN105988584B (en) * 2015-03-19 2019-02-22 宏达国际电子股份有限公司 Mobile electronic device and detection system and method for detecting physiological characteristics
CN105988584A (en) * 2015-03-19 2016-10-05 宏达国际电子股份有限公司 Mobile electronic device and detection system and method for detecting physiological characteristics
US11134853B2 (en) 2015-03-31 2021-10-05 Vita-Course Technologies Co., Ltd. System and method for blood pressure monitoring
US12076125B2 (en) 2015-03-31 2024-09-03 Vita-Course Technologies Co., Ltd. System and method for blood pressure monitoring
US11185242B2 (en) 2015-03-31 2021-11-30 Vita-Course Technologies (Hainan) Co., Ltd. System and method for physiological feature derivation
US10799127B2 (en) 2015-03-31 2020-10-13 Vita-Course Technologies Co., Ltd. System and method for physiological parameter monitoring
US11957440B2 (en) 2015-03-31 2024-04-16 Vita-Course Technologies Co., Ltd. System and method for physiological parameter monitoring
US10932680B2 (en) 2015-03-31 2021-03-02 Vita-Course Technologies Co., Ltd. System and method for physiological parameter monitoring
US11712168B2 (en) 2015-03-31 2023-08-01 Vita-Course Technoloaies (Hainan) Co., Ltd. System and method for physiological feature derivation
CN112754445A (en) * 2015-03-31 2021-05-07 深圳市长桑技术有限公司 System and method for monitoring physiological parameters
US11540735B2 (en) 2015-03-31 2023-01-03 Vita-Course Technologies Co., Ltd. System and method for physiological parameter monitoring
CN107847153A (en) * 2015-07-03 2018-03-27 深圳市长桑技术有限公司 A kind of system and method for physiological compensation effects
CN107847153B (en) * 2015-07-03 2020-12-04 深圳市长桑技术有限公司 System and method for monitoring physiological parameters
CN106419878B (en) * 2015-08-11 2021-02-26 三星电子株式会社 Blood pressure estimation apparatus and method
CN106419878A (en) * 2015-08-11 2017-02-22 三星电子株式会社 Blood pressure estimating apparatus and method
CN107072555A (en) * 2015-08-14 2017-08-18 华为技术有限公司 A kind of processing method and processing device of blood-pressure measurement data
CN107072555B (en) * 2015-08-14 2021-10-01 华为技术有限公司 Calibration method and device for blood pressure measurement data
US10357165B2 (en) 2015-09-01 2019-07-23 Samsung Electronics Co., Ltd. Method and apparatus for acquiring bioinformation and apparatus for testing bioinformation
CN109496137A (en) * 2016-07-25 2019-03-19 皇家飞利浦有限公司 Optics vital sign sensors
WO2018039995A1 (en) * 2016-08-31 2018-03-08 华为技术有限公司 Method, apparatus and device for determining blood pressure calibration period
US10729338B2 (en) 2016-09-28 2020-08-04 Boe Technology Group Co., Ltd. Blood pressure measurement device and calibration method thereof
CN107865647A (en) * 2016-09-28 2018-04-03 京东方科技集团股份有限公司 The bearing calibration of blood pressure detector and blood pressure detector
CN107865647B (en) * 2016-09-28 2020-01-14 京东方科技集团股份有限公司 Blood pressure detection device and method for calibrating blood pressure detection device
CN109963503A (en) * 2016-10-10 2019-07-02 皇家飞利浦有限公司 Device and method for determining the calibration parameter for blood pressure measurement device
CN109963503B (en) * 2016-10-10 2022-09-20 皇家飞利浦有限公司 Device and method for determining calibration parameters for a blood pressure measuring device
US10820858B2 (en) 2016-10-12 2020-11-03 Samsung Electronics Co., Ltd. Apparatus and method for estimating biometric information
US11666277B2 (en) 2016-10-12 2023-06-06 Samsung Electronics Co., Ltd. Apparatus and method for estimating biometric information
US11375908B2 (en) 2016-10-21 2022-07-05 Huawei Technologies Co., Ltd. Blood pressure detection signal sampling and compensation method and apparatus, and blood pressure signal collection system
WO2018113442A1 (en) * 2016-12-21 2018-06-28 天津普仁万合信息技术有限公司 Continuous ambulatory blood pressure monitoring device and method based on pulse wave transit
CN106901708A (en) * 2017-03-01 2017-06-30 天津普仁万合信息技术有限公司 Signal imitation method and device based on pulse wave conduction speed PWV
CN110573067A (en) * 2017-03-02 2019-12-13 安科医疗私人有限公司 Non-invasive brachial artery blood pressure measurement
CN110381818A (en) * 2017-03-15 2019-10-25 欧姆龙株式会社 Vital information measurement device, methods and procedures
CN110430806A (en) * 2017-03-15 2019-11-08 欧姆龙株式会社 Human body information measurement device, methods and procedures
CN110868922A (en) * 2017-06-21 2020-03-06 卫保数码有限公司 Apparatus and method for monitoring a person's pulse
CN107638121A (en) * 2017-09-04 2018-01-30 广东美的环境电器制造有限公司 Toilet lid and toilet with same
CN111565626B (en) * 2017-12-22 2024-05-24 法国公立援助医院 System for measuring mean arterial pressure
CN111565626A (en) * 2017-12-22 2020-08-21 法国公立援助医院 System for measuring mean arterial pressure
CN108577820A (en) * 2018-03-26 2018-09-28 何史林 A kind of quick early warning system of real-time blood pressure and its method
CN109805914A (en) * 2019-02-18 2019-05-28 中国航天员科研训练中心 Non-invasive blood pressure monitor dynamic calibrator
CN109805914B (en) * 2019-02-18 2021-04-23 中国航天员科研训练中心 Non-invasive blood pressure monitor dynamic calibrator
CN110974199A (en) * 2019-11-27 2020-04-10 英华达(上海)科技有限公司 Calibration method, device and system for blood pressure measurement, electronic equipment and storage medium
CN110974199B (en) * 2019-11-27 2022-07-08 英华达(上海)科技有限公司 Calibration method, device and system for blood pressure measurement, electronic equipment and storage medium
CN112168155A (en) * 2020-10-28 2021-01-05 广东小天才科技有限公司 Blood pressure detection method, wearable device and computer readable storage medium
CN112998674A (en) * 2021-02-22 2021-06-22 天津工业大学 Continuous blood pressure measuring device and self-calibration method
CN116350195A (en) * 2023-03-02 2023-06-30 杭州电子科技大学 Blood pressure measurement method and system based on flexible piezoelectric material

Similar Documents

Publication Publication Date Title
CN104257371A (en) Research of dynamic blood pressure detection and calibration method of radial artery
TWI653029B (en) Pulse detection module and blood pressure measuring device therewith
US11576583B2 (en) Noninvasive blood pressure measurement method and device
CN107865647B (en) Blood pressure detection device and method for calibrating blood pressure detection device
CN104873186B (en) A kind of wearable artery detection device and its data processing method
CN100560019C (en) Initial calibration device for measuring arterial blood pressure by pulse wave transmission time method
CN103637787B (en) The method of blood pressure real-time measurement apparatus and in real time measurement pulse wave transmission time difference
CN104173036A (en) Pulse wave acquisition device, and non-invasive blood pressure continuous beat-to-beat measuring system and method
CN104000573B (en) Central artery pulse wave monitoring system and method based on body surface two-point pulse wave
CN101006915A (en) Non-contact method for measuring key physiological parameters
CN104042200B (en) A kind of non-invasive monitoring devices and methods therefor of arteriotony by shooting
CN103637788B (en) Blood pressure real-time measurement apparatus
CN102688024A (en) Blood pressure noninvasive measuring method
WO2017092020A1 (en) Blood pressure measurement method and apparatus
CN204542117U (en) A kind of multi-mode continuous blood pressure measurer
CN112890790B (en) Wearable noninvasive dynamic blood pressure tracking and monitoring method
CN106923807A (en) Based on the method and system that temperature is corrected to blood pressure measurement
US12059234B2 (en) Method and a system for estimating a measure of cardiovascular health of a subject
CN103637789B (en) Blood pressure real-time measurement apparatus
CN112218575A (en) Device for determining stress and/or pain level
CN204562131U (en) High-precision blood pressure measuring device
CN110755060A (en) Intelligent personal portable blood pressure measurement system and blood pressure correction method
US20120108985A1 (en) Cuffless blood pressure monitor
TWI644628B (en) Physiology detecting garment and method thereof
EP4076165A1 (en) Continuous non-invasive blood pressure measurement device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150107