CN104252173A - Walking control method of biped walking robot - Google Patents
Walking control method of biped walking robot Download PDFInfo
- Publication number
- CN104252173A CN104252173A CN201310265173.1A CN201310265173A CN104252173A CN 104252173 A CN104252173 A CN 104252173A CN 201310265173 A CN201310265173 A CN 201310265173A CN 104252173 A CN104252173 A CN 104252173A
- Authority
- CN
- China
- Prior art keywords
- walking
- biped
- robot
- walking robot
- biped walking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manipulator (AREA)
Abstract
本发明公开了一种双足步行机器人的步行控制方法,包括以下步骤:步骤一设置双足步行机器人的步行参数;步骤二计算双足步行机器人的质心和参考ZMP的轨迹;步骤三通过逆运动学计算出双足步行机器人的步行模式;步骤四计算双足步行机器人步行不打滑所需的地面摩擦系数,判断双足步行机器人步行是否打滑;步骤五如果双足步行机器人步行打滑,则调节双足步行机器人的步行参数,重复上述步骤二、步骤三和步骤四。本发明双足步行机器人的步行控制方法,可以判断双足步行机器人在低摩擦系数地面是否会打滑,同时通过调节双足步行机器人步行模式的步行参数,减小步行模式所需的最小地面摩擦系数,提高双足步行机器人在低摩擦系数地面的步行能力。
The invention discloses a walking control method of a biped walking robot, which comprises the following steps: step 1 setting the walking parameters of the biped walking robot; step 2 calculating the center of mass of the biped walking robot and the trajectory of the reference ZMP; Learn to calculate the walking pattern of the biped walking robot; Step 4 calculates the ground friction coefficient required for the biped walking robot to walk without slipping, and judge whether the biped walking robot is slipping; Step 5 If the biped walking robot slips, adjust the Step 2, Step 3 and Step 4 above are repeated for the walking parameters of the walking robot. The walking control method of the biped walking robot of the present invention can judge whether the biped walking robot will slip on the ground with low friction coefficient, and at the same time, by adjusting the walking parameters of the walking mode of the biped walking robot, the minimum ground friction coefficient required for the walking mode can be reduced , to improve the walking ability of the biped walking robot on the ground with low friction coefficient.
Description
技术领域technical field
本发明涉及一种机器人的控制方法,具体地说,涉及一种机器人的步行控制方法。The invention relates to a control method of a robot, in particular to a walking control method of a robot.
背景技术Background technique
目前双足步行机器人的稳定性控制方法都是采用ZMP稳定性判据,ZMP是指地面作用力的力矩水平分量为零的作用点,ZMP稳定性判据是指双足步行机器人稳定步行的前提条件是ZMP始终位于支撑多边形中,支撑多边形是指双足机器人的脚与地面接触区域的凸集。满足ZMP稳定性判据的双足步行的直观物理意义,是指双足机器人步行过程中不会发生倾倒。现有的双足机器人的步行控制,都是基于ZMP稳定性判据来规划双足步行机器人的各个关节运动,以满足步行过程中双足步行机器人的ZMP始终位于支撑多边形内。At present, the stability control methods of biped walking robots all use the ZMP stability criterion. ZMP refers to the action point where the horizontal component of the torque of the ground force is zero. The condition is that the ZMP is always located in the supporting polygon, which refers to the convex set of the contact area between the foot of the biped robot and the ground. The intuitive physical meaning of bipedal walking that satisfies the ZMP stability criterion means that the bipedal robot will not fall over during walking. The walking control of the existing biped robot is based on the ZMP stability criterion to plan the motion of each joint of the biped walking robot, so that the ZMP of the biped walking robot is always located within the supporting polygon during the walking process.
然而现有的ZMP稳定性判据具有一定的局限性,日本AIST的知名双足步行机器人专家Kajita曾指出ZMP有三种情况无法应用,其中之一就是机器人脚底与地面发生打滑的情况。事实上,ZMP稳定性判据是以忽略地面摩擦力为前提的,即认为双足机器人脚与地面之间的摩擦力足够大,双足步行机器人的脚与地面之间不可能发生打滑的情况。这一前提在理想环境下是可行的,理所当然,基于ZMP稳定性判据规划的双足步行机器人的步行运动满足步行的稳定性要求。但是对于双足步行机器人的脚与地面之间的摩擦力较小的情况,基于ZMP稳定性判据规划的双足步行机器人的步行运动,只能保证机器人步行过程中不会发生倾倒,但无法保证机器人不会打滑。However, the existing ZMP stability criterion has certain limitations. Kajita, a well-known biped walking robot expert from AIST in Japan, once pointed out that there are three situations where ZMP cannot be applied, one of which is the slippage between the soles of the robot's feet and the ground. In fact, the ZMP stability criterion is based on the premise of ignoring the ground friction, that is, it is considered that the friction between the feet of the biped robot and the ground is large enough, and there is no possibility of slipping between the feet of the biped walking robot and the ground. . This premise is feasible in an ideal environment. Of course, the walking motion of the biped walking robot based on the ZMP stability criterion planning meets the stability requirements of walking. However, for the case where the friction between the feet of the biped walking robot and the ground is small, the walking motion of the biped walking robot based on the ZMP stability criterion planning can only ensure that the robot will not fall during the walking process, but cannot Make sure the robot does not slip.
发明内容Contents of the invention
本发明的目的在于提供一种双足步行机器人的步行控制方法,可以判断双足步行机器人在低摩擦系数地面是否会打滑,同时通过调节双足步行机器人步行模式的步行参数,减小步行模式所需的最小地面摩擦系数,提高双足步行机器人在低摩擦系数地面的步行能力。The purpose of the present invention is to provide a walking control method for a biped walking robot, which can determine whether the biped walking robot will slip on the ground with a low friction coefficient, and at the same time, by adjusting the walking parameters of the walking mode of the biped walking robot, reduce the time required for the walking mode. The required minimum ground friction coefficient can improve the walking ability of the biped walking robot on the ground with low friction coefficient.
为了实现上述目的,本发明所采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
一种双足步行机器人的步行控制方法,包括以下步骤:步骤一:设置所述双足步行机器人的步行参数;步骤二:计算所述双足步行机器人的质心和参考ZMP的轨迹;步骤三:通过逆运动学计算出所述双足步行机器人的步行模式;步骤四:计算所述双足步行机器人步行不打滑所需的地面摩擦系数,判断所述双足步行机器人步行是否打滑;步骤五:如果所述双足步行机器人步行打滑,则调节所述双足步行机器人的所述步行参数,重复上述步骤二、步骤三和步骤四。A walking control method of a biped walking robot, comprising the following steps: Step 1: setting the walking parameters of the biped walking robot; Step 2: calculating the center of mass of the biped walking robot and the trajectory of the reference ZMP; Step 3: Calculate the walking pattern of the biped walking robot by inverse kinematics; step 4: calculate the ground friction coefficient required for the biped walking robot to walk without slipping, and judge whether the biped walking robot is slipping; step 5: If the biped walking robot slips while walking, adjust the walking parameters of the biped walking robot, and repeat the above steps 2, 3 and 4.
进一步,步骤四中根据所述双足步行机器人支撑脚与地面之间作用力的水平力分量和垂直力分量计算出所述双足步行机器人步行不打滑所需的所述地面摩擦系数。Further, in step 4, the ground friction coefficient required for the biped walking robot to walk without slipping is calculated according to the horizontal force component and the vertical force component of the force between the supporting foot of the biped walking robot and the ground.
进一步,步骤四中计算出的所述双足步行机器人步行不打滑所需的所述地面摩擦系数与实际地面摩擦系数相比较,如果所需的所述地面摩擦系数小于所述实际地面摩擦系数,则所述双足步行机器人步行不打滑,反之则打滑。Further, the ground friction coefficient required for the biped walking robot to walk without slipping calculated in step 4 is compared with the actual ground friction coefficient, and if the required ground friction coefficient is less than the actual ground friction coefficient, Then described biped walking robot does not skid while walking, otherwise then skids.
进一步,步骤四中如果所述双足步行机器人步行不打滑,则所规划的所述双足步行机器人的所述步行模式满足ZMP稳定性要求。Further, in step 4, if the biped walking robot walks without slipping, the planned walking pattern of the biped walking robot meets the ZMP stability requirement.
进一步,步骤三中所述双足步行机器人的所述步行模式的生成是以桌子-小车为双足步行机器人的步行模型。Further, the generation of the walking pattern of the biped walking robot in step 3 is based on the table-cart as the walking model of the biped walking robot.
进一步,步骤三中所述双足步行机器人的所述步行模式的生成是以质心的加速度的微分为系统输入。Further, the generation of the walking pattern of the biped walking robot in step 3 takes the differential of the acceleration of the center of mass as the system input.
进一步,步骤三中所述双足步行机器人的所述步行模式的生成是通过评价函数最小化的方法跟踪控制参考ZMP轨迹,评价函数中的参数用于设定所述步行参数。Further, the generation of the walking pattern of the biped walking robot in step three is to track and control the reference ZMP trajectory through the method of minimizing the evaluation function, and the parameters in the evaluation function are used to set the walking parameters.
进一步,所述评价函数中的参数用于设定所述步行参数的步行速度和步长。Further, the parameters in the evaluation function are used to set the walking speed and step length of the walking parameters.
进一步,步骤三中所生成的所述双足步行机器人的所述步行模式满足双足步行的ZMP稳定性判据,与是否打滑稳定判据相结合。Further, the walking pattern of the biped walking robot generated in step 3 satisfies the ZMP stability criterion of biped walking, and is combined with the slipping stability criterion.
与现有技术相比,本发明双足步行机器人的步行控制方法,可以判断双足步行机器人在低摩擦系数地面是否会打滑,同时通过调节双足步行机器人步行模式的步行参数,减小步行模式所需的最小地面摩擦系数,提高双足步行机器人在低摩擦系数地面的步行能力。Compared with the prior art, the walking control method of the biped walking robot of the present invention can judge whether the biped walking robot will slip on the ground with low friction coefficient, and at the same time reduce the walking mode by adjusting the walking parameters of the walking mode of the biped walking robot. The required minimum ground friction coefficient improves the walking ability of the biped walking robot on the ground with low friction coefficient.
附图说明Description of drawings
图1为本发明双足步行机器人的步行控制方法的双足步行机器人的原理图;Fig. 1 is the schematic diagram of the biped walking robot of the walking control method of the biped walking robot of the present invention;
图2为本发明双足步行机器人的步行控制方法的桌子-小车模型的示意图;Fig. 2 is the schematic diagram of the table-car model of the walking control method of biped walking robot of the present invention;
图3为本发明双足步行机器人的步行控制方法的流程示意图。FIG. 3 is a schematic flowchart of the walking control method of the biped walking robot of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明双足步行机器人的步行控制方法作进一步说明。The walking control method of the biped walking robot of the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
本发明提供一种双足步行机器人1在低摩擦系数地面步行的方法,通过设计一种步行速度和步长可调的步行模式生成方法,并结合考虑滑动摩擦力约束的稳定性判据,调节步行模式的参数,设定适合地面摩擦系数的步行模式,完善双足步行机器人1的步行控制方法。The present invention provides a method for a bipedal walking robot 1 to walk on the ground with low friction coefficient. By designing a walking pattern generation method with adjustable walking speed and step length, and in combination with the stability criterion considering the sliding friction constraint, the adjustment The parameter of the walking mode is to set the walking mode suitable for the friction coefficient of the ground, and improve the walking control method of the biped walking robot 1 .
请参阅图1,考虑滑动摩擦力约束时的所述双足步行机器人1步行稳定性的判定方法,具体如下:Please refer to Fig. 1, the determination method of the walking stability of the biped walking robot 1 when considering the sliding friction constraint, as follows:
所述双足步行机器人1在地面上步行时,右脚11R(为支撑脚)与地面之间的作用力为f,其水平分量为ft,垂直分量为fz,地面的摩擦系数为μ,所述右脚11R与地面之间不滑动需满足以下条件When the bipedal walking robot 1 walks on the ground, the force between the right foot 11R (a supporting foot) and the ground is f, its horizontal component is f t , its vertical component is f z , and the friction coefficient of the ground is μ , no sliding between the right foot 11R and the ground needs to meet the following conditions
ft<μfz (1)f t <μf z (1)
对于已知的步行模式,所述双足步行机器人1的动量可表示为For a known walking pattern, the momentum of the biped walking robot 1 can be expressed as
其中mi和ci分别为各个连杆的质量和质心位置。Among them, m i and c i are the mass and centroid position of each connecting rod respectively.
对式(2)微分可得地面作用力f的所述水平分量ft和所述垂直分量fz为The horizontal component f t and the vertical component f z of the ground force f can be obtained by differentiating the formula (2) as
(3)(3)
其中M为所述双足步行机器人1的总体重量,g为重力加速度。Where M is the overall weight of the biped walking robot 1, and g is the acceleration due to gravity.
根据式(3)可得所述双足步行机器人1步行不发生滑动的地面摩擦系数为According to formula (3), it can be obtained that the ground friction coefficient for the biped walking robot 1 to walk without sliding is
当μnec≤μ时,所述双足步行机器人1步行时将不会在地面上滑动,配合ZMP稳定性判据,即当所述双足步行机器人1步行过程中,所述地面作用力f的力矩水平分量为零的点在所述双足步行机器人1支撑脚与地面构成的支撑多边形内,所述双足步行机器人1将不会发生倾倒,可实现所述双足步行机器人1严格意义上的步行稳定。此方法可以作为现有ZMP稳定性判据的扩展,对所述双足步行机器人1的稳定性做出更为严格的判定,使所述双足步行机器人1的应用范围更广。When μ nec ≤ μ, the biped walking robot 1 will not slide on the ground when walking, and the ZMP stability criterion is met, that is, when the biped walking robot 1 is walking, the ground force f The point where the horizontal component of the moment is zero is within the supporting polygon formed by the supporting feet of the biped walking robot 1 and the ground, and the biped walking robot 1 will not topple over, and the strict sense of the biped walking robot 1 can be realized. Walking on is stable. This method can be used as an extension of the existing ZMP stability criterion to make a more stringent judgment on the stability of the biped walking robot 1 , so that the application range of the biped walking robot 1 is wider.
本发明基于上述新的稳定性判据提出一种可调节步行速度和步长的步行模式生成方法,以适应所述双足步行机器人1在地面摩擦系数较小情况下的步行情况,具体如下:The present invention proposes a walking pattern generation method that can adjust walking speed and step length based on the above-mentioned new stability criterion, so as to adapt to the walking situation of the biped walking robot 1 when the ground friction coefficient is small, as follows:
请参阅图1和图2,所述双足步行机器人1在低摩擦系数地面步行时,可以采用经典的桌子-小车模型表示:Please refer to Fig. 1 and Fig. 2, when described biped walking robot 1 walks on the ground of low friction coefficient, can adopt classical table-cart model representation:
(5)(5)
其中x和y表示所述双足步行机器人1质心在水平地面的投影,px和py表示ZMP的位置。Where x and y represent the projection of the center of mass of the biped walking robot 1 on the horizontal ground, and p x and p y represent the position of the ZMP.
假设所述双足步行机器人1质心加速度的微分为系统的输入变量,即Assume that the differential of the acceleration of the center of mass of the biped walking robot 1 is the input variable of the system, namely
(6)(6)
则but
同时,式(5)可以表示为Meanwhile, formula (5) can be expressed as
(8) (8)
结合式(7)和式(8),对其进行离散化可得Combining formula (7) and formula (8), it can be discretized to get
其中in
uxk=ux(kΔt)u xk =u x (kΔt)
uyk=uy(kΔt)u yk =u y (kΔt)
pxk=px(kΔt)p xk =p x (kΔt)
pyk=py(kΔt)p yk =p y (kΔt)
为了使规划的pxk和pyk尽可能的跟踪参考ZMP和这里通过评价函数的最小化来实现跟踪控制,评价函数如下In order to make the planned p xk and p yk track the reference ZMP as much as possible and Here, the tracking control is realized by minimizing the evaluation function, and the evaluation function is as follows
式中Qx,Qy,Rx,Ry为正的加权系数,其中In the formula, Q x , Q y , R x , R y are positive weighting coefficients, where
其中和是与步行速度和步长有关的系数,即通过设定不同的和值可以调节步行的速度和步长,此时系统的输入根据预观控制理论可得in and is a coefficient related to walking speed and step length, that is, by setting different and The value can adjust the walking speed and step length. At this time, the input of the system can be obtained according to the preview control theory
(13)(13)
式中In the formula
K=(R+bTPb)-1bTPA (14)K=(R+b T Pb) -1 b T P A (14)
fi=(R+bTPb)-1bT(A-bK)T×(i-1)cTQf i =(R+b T Pb) -1 b T (A-bK) T×(i-1) c T Q
其中矩阵P是下面方程的解where the matrix P is the solution of the following equation
P=ATPA+cTQc-ATPb(R+bTPb)-1bTPA (15)P=A T PA+c T Qc-A T Pb(R+b T Pb) -1 b T PA (15)
至此可以计算出所述双足步行机器人1的步行模式,即所述双足步行机器人1质心的轨迹和参考ZMP的轨迹,以建立在所述双足步行机器人1的腰部的坐标系∑0为基坐标系,以∑w为世界坐标系,如图1所示。通过逆运动学可以计算出所述双足步行机器人1的步行模式(p0,R0,θ),其中(p0,R0)为基座标系∑0在世界坐标系∑w中的位置和姿态,θ为所述双足步行机器人1各个关节的角度。So far, the walking mode of the biped walking robot 1 can be calculated, that is, the trajectory of the center of mass of the biped walking robot 1 and the trajectory of the reference ZMP, so that the coordinate system Σ0 established on the waist of the biped walking robot 1 is The base coordinate system takes ∑w as the world coordinate system, as shown in Figure 1. The walking mode (p 0 , R 0 , θ) of the biped walking robot 1 can be calculated through inverse kinematics, where (p 0 , R 0 ) is the position of the base frame Σ0 in the world coordinate system Σw position and posture, θ is the angle of each joint of the biped walking robot 1 .
综上所述,请参阅图1和图3,本发明公开的所述双足步行机器人1的步行控制方法,包括以下步骤:In summary, please refer to Fig. 1 and Fig. 3, the walking control method of the biped walking robot 1 disclosed by the present invention includes the following steps:
步骤一S1:设置式(11)和式(12)中所述双足步行机器人1的步行参数的相关系数。Step 1 S1: Set the correlation coefficient of the walking parameters of the biped walking robot 1 described in formula (11) and formula (12).
步骤二S3:根据式(13)计算所述双足步行机器人1的质心和参考ZMP的轨迹。Step 2 S3: Calculate the center of mass of the biped walking robot 1 and the trajectory of the reference ZMP according to formula (13).
步骤三S5:以∑0为基坐标系,∑w为世界坐标系,通过逆运动学计算出所述双足步行机器人1的步行模式(p0,R0,θ)。Step 3 S5: Taking Σ0 as the base coordinate system and Σw as the world coordinate system, calculate the walking pattern (p 0 , R 0 , θ) of the biped walking robot 1 through inverse kinematics.
所述步行模式的生成是以桌子-小车为所述双足步行机器人1的步行模型,以质心的加速度的微分为系统输入,通过评价函数最小化的方法跟踪控制参考ZMP轨迹,评价函数中的参数用于设定步行速度和步长等步行参数。所生成的所述双足步行机器人1的所述步行模式满足双足步行的ZMP稳定性判据,与是否打滑稳定判据相结合,形成更为严格的所述双足步行机器人1步行稳定性判据,拓宽了所述双足步行机器人1在非理想环境中的步行运动。The generation of described walking pattern is to be the walking model of described biped walking robot 1 with desk-cart, take the differential of the acceleration of center of mass as system input, track and control the reference ZMP track by the method for minimizing the evaluation function, in the evaluation function Parameters are used to set walking parameters such as walking speed and step length. The generated walking pattern of the biped walking robot 1 satisfies the ZMP stability criterion of biped walking, and is combined with the slipping stability criterion to form a stricter walking stability of the biped walking robot 1 The criterion broadens the walking motion of the biped walking robot 1 in a non-ideal environment.
步骤四S7:根据式(2)、式(4)和式(7)计算所述双足步行机器人1步行不打滑所需的地面摩擦系数μnec,判断所述双足步行机器人1步行是否打滑。Step 4 S7: Calculate the ground friction coefficient μ nec required for the biped walking robot 1 to walk without slipping according to formula (2), formula (4) and formula (7), and judge whether the biped walking robot 1 is walking slippery .
所述双足步行机器人1在地面步行是否打滑,是根据所述双足步行机器1支撑脚与地面之间作用力f的水平力分量ft和垂直力分量fz计算出所述双足步行机器人1步行不打滑所需的最小地面摩擦系数μnec,并与实际地面摩擦系数μ相比较,如果所需的最小地面摩擦系数μnec小于地面摩擦系数μ,则所述双足步行机器人1不打滑,反之则打滑。如果所述双足步行机器人1步行不打滑,则所规划的所述双足步行机器人1的所述步行模式满足ZMP稳定性要求。Whether the biped walking robot 1 is slipping on the ground is calculated according to the horizontal force component f t and the vertical force component f z of the force f between the supporting feet of the biped walking machine 1 and the ground. The minimum ground friction coefficient μ nec required for the robot 1 to walk without slipping is compared with the actual ground friction coefficient μ. If the required minimum ground friction coefficient μ nec is smaller than the ground friction coefficient μ, the bipedal walking robot 1 does not Skid, and vice versa. If the biped walking robot 1 walks without slipping, the planned walking pattern of the biped walking robot 1 meets the ZMP stability requirement.
步骤五S9:如果所述双足步行机器人1步行打滑,则调节所述双足步行机器人1的所述步行参数,重复上述步骤二、步骤三和步骤四。Step 5 S9: If the biped walking robot 1 slips while walking, adjust the walking parameters of the biped walking robot 1, and repeat the above steps 2, 3 and 4.
本发明所述双足步行机器人1的步行控制方法,可以判断所述双足步行机器人1在低摩擦系数地面是否会打滑,同时通过调节所述双足步行机器人1步行模式的步行参数,减小步行模式所需的最小地面摩擦系数,提高所述双足步行机器人1在低摩擦系数地面的步行能力。The walking control method of the biped walking robot 1 of the present invention can judge whether the biped walking robot 1 will slip on the ground with low friction coefficient, and at the same time, by adjusting the walking parameters of the biped walking robot 1 walking mode, reduce The minimum ground friction coefficient required by the walking mode improves the walking ability of the biped walking robot 1 on ground with a low friction coefficient.
以上详细描述了本发明的较佳具体实施例,应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明构思在现有技术基础上通过逻辑分析、推理或者根据有限的实验可以得到的技术方案,均应该在由本权利要求书所确定的保护范围之中。The preferred specific embodiments of the present invention have been described in detail above, and it should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative work. Therefore, all technical solutions that can be obtained by those skilled in the art based on the concept of the present invention through logical analysis, reasoning or limited experiments on the basis of the prior art should be within the scope of protection defined by the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310265173.1A CN104252173A (en) | 2013-06-27 | 2013-06-27 | Walking control method of biped walking robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310265173.1A CN104252173A (en) | 2013-06-27 | 2013-06-27 | Walking control method of biped walking robot |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104252173A true CN104252173A (en) | 2014-12-31 |
Family
ID=52187180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310265173.1A Pending CN104252173A (en) | 2013-06-27 | 2013-06-27 | Walking control method of biped walking robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104252173A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108345211A (en) * | 2017-01-23 | 2018-07-31 | 深圳市祈飞科技有限公司 | Biped anthropomorphic robot and its non-linear gait planning method and control method |
CN108762257A (en) * | 2018-05-04 | 2018-11-06 | 安徽三弟电子科技有限责任公司 | Robot walking control system based on friction force self-adaptive adjustment |
CN109333506A (en) * | 2018-10-23 | 2019-02-15 | 广东工业大学 | A humanoid intelligent robot system |
CN109703645A (en) * | 2018-12-29 | 2019-05-03 | 深圳市优必选科技有限公司 | Robot centroid position adjusting method and device, robot and data storage medium |
CN112147890A (en) * | 2020-09-04 | 2020-12-29 | 西安交通大学 | A static balance control method for quadruped robot diagonal support based on Acrobot model |
CN112486170A (en) * | 2020-11-23 | 2021-03-12 | 深圳市优必选科技股份有限公司 | Robot control method, device, computer readable storage medium and robot |
CN112731952A (en) * | 2020-12-24 | 2021-04-30 | 深圳市优必选科技股份有限公司 | Robot centroid planning method and device, readable storage medium and robot |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323818A (en) * | 2011-07-12 | 2012-01-18 | 浙江大学 | A Method for Online Generation of Slope Walking Patterns for Humanoid Robots |
KR20120032706A (en) * | 2010-09-29 | 2012-04-06 | 재단법인대구경북과학기술원 | Nonslip hip joint torque range of the legged robot with hip joint actuators and estimation method for frictional coefficient between robot foots and ground |
-
2013
- 2013-06-27 CN CN201310265173.1A patent/CN104252173A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120032706A (en) * | 2010-09-29 | 2012-04-06 | 재단법인대구경북과학기술원 | Nonslip hip joint torque range of the legged robot with hip joint actuators and estimation method for frictional coefficient between robot foots and ground |
CN102323818A (en) * | 2011-07-12 | 2012-01-18 | 浙江大学 | A Method for Online Generation of Slope Walking Patterns for Humanoid Robots |
Non-Patent Citations (3)
Title |
---|
QIANG HUANG 等: ""Planning Walking Patterns for a Biped Robot"", 《IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION》 * |
SHUUJI KAJITA 等: ""Biped Walking on a Low Friction Floor"", 《PROCEEDINGS OF 2004 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS》 * |
包志军 等: ""用Zero Moment Point描述类人型机器人步行稳定的不完善性探讨"", 《上海交通大学学报》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108345211A (en) * | 2017-01-23 | 2018-07-31 | 深圳市祈飞科技有限公司 | Biped anthropomorphic robot and its non-linear gait planning method and control method |
CN108762257A (en) * | 2018-05-04 | 2018-11-06 | 安徽三弟电子科技有限责任公司 | Robot walking control system based on friction force self-adaptive adjustment |
CN109333506A (en) * | 2018-10-23 | 2019-02-15 | 广东工业大学 | A humanoid intelligent robot system |
CN109703645A (en) * | 2018-12-29 | 2019-05-03 | 深圳市优必选科技有限公司 | Robot centroid position adjusting method and device, robot and data storage medium |
CN109703645B (en) * | 2018-12-29 | 2020-05-22 | 深圳市优必选科技有限公司 | Robot centroid position adjusting method and device, robot and data storage medium |
CN112147890A (en) * | 2020-09-04 | 2020-12-29 | 西安交通大学 | A static balance control method for quadruped robot diagonal support based on Acrobot model |
CN112486170A (en) * | 2020-11-23 | 2021-03-12 | 深圳市优必选科技股份有限公司 | Robot control method, device, computer readable storage medium and robot |
CN112731952A (en) * | 2020-12-24 | 2021-04-30 | 深圳市优必选科技股份有限公司 | Robot centroid planning method and device, readable storage medium and robot |
CN112731952B (en) * | 2020-12-24 | 2022-03-01 | 深圳市优必选科技股份有限公司 | Robot centroid planning method and device, readable storage medium and robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104252173A (en) | Walking control method of biped walking robot | |
CN103019096B (en) | A kind of anthropomorphic robot inverse metabolic engineering device optimized based on acceleration | |
CN110281228B (en) | A planning control method for a humanoid robot to cross a vertical barrier | |
US8977397B2 (en) | Method for controlling gait of robot | |
CN113050645B (en) | A spring-loaded inverted pendulum model and gait planning method for a biped robot | |
CN104108433B (en) | A kind of Shared control method taking turns legged type robot | |
US11253993B2 (en) | Method for modeling robot simplified for stable walking control of bipedal robot | |
CN110262510B (en) | A humanoid robot mass center trajectory planning method to reduce walking energy consumption | |
JP2012501739A5 (en) | ||
CN110405763B (en) | Planning method for multi-joint cooperative outbreak jump of humanoid robot | |
CN110405769B (en) | A heuristic humanoid robot fall protection method | |
Bellegarda et al. | Trajectory optimization for a wheel-legged system for dynamic maneuvers that allow for wheel slip | |
CN104898672A (en) | Optimized control method of humanoid robot walking track | |
CN105388755A (en) | Energy efficiency optimization control method for leg swing and step taking of humanoid robot | |
CN105607632B (en) | A kind of drive control method of 3D under-actuated bipods robot jumping | |
Miura et al. | Analysis on a friction based “twirl” for biped robots | |
CN101982809A (en) | Coupling optimization control method for leg-wheel robot | |
CN110109363A (en) | A kind of Neural Network Adaptive Control method that wheeled mobile robot is formed into columns | |
Hanazawa et al. | Active walking robot mimicking flat-footed passive dynamic walking | |
CN102910218B (en) | Double-feet passive walking state control method with knee bending behavior | |
Focchi et al. | Viscosity-based height reflex for workspace augmentation for quadrupedal locomotion on rough terrain | |
CN103568698A (en) | Multi-category geographical environment traveling pedal wheel | |
Peters et al. | Stabilizing a vehicle near rollover: An analogy to cart-pole stabilization | |
CN116560375A (en) | Trajectory Tracking Control Method of Wheeled Mobile Robot Based on Neural Network Observer | |
Huang et al. | Adding segmented feet to passive dynamic walkers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141231 |
|
RJ01 | Rejection of invention patent application after publication |