[go: up one dir, main page]

CN104251854A - 一种用于制备表面增强拉曼光谱芯片的电解液 - Google Patents

一种用于制备表面增强拉曼光谱芯片的电解液 Download PDF

Info

Publication number
CN104251854A
CN104251854A CN201410476247.0A CN201410476247A CN104251854A CN 104251854 A CN104251854 A CN 104251854A CN 201410476247 A CN201410476247 A CN 201410476247A CN 104251854 A CN104251854 A CN 104251854A
Authority
CN
China
Prior art keywords
electrolyte
electrolytic solution
metal salt
interference
enhanced raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410476247.0A
Other languages
English (en)
Inventor
滕渊洁
刘文涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201410476247.0A priority Critical patent/CN104251854A/zh
Publication of CN104251854A publication Critical patent/CN104251854A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供的一种用于制备表面增强拉曼光谱芯片的电解液,由贵金属盐、含氢离子的酸或盐和水,其中贵金属盐为可溶性或微溶性金属盐。本发明的优点在于电解液的种类、配比的选择,原则上尽可能减少所用的离子种类,所采用的试剂应采用高级别试剂,以降低由于电解液和电化学沉积过程带来的拉曼光谱背景的干扰。本发明所提供的用于制备具有SERS效应的芯片的电解液组合,离子种类少,通过表面清洗很容易消除拉曼光谱的背景干扰,是一种经济、高效、干扰少的电解液组合,具有很大的实际应用价值。

Description

一种用于制备表面增强拉曼光谱芯片的电解液
技术领域
本发明涉及拉曼光谱检测领域,尤其属于一种用于电沉积法制作表面增强拉曼光谱(Surface enhanced raman scattering,SERS)芯片的电解液。 
背景技术
SERS效应即利用激光与金属粒子形成等离共振效应,使待测分子产生的拉曼光谱信号增强,一般可以使检测信号增大约104-106倍甚至更高,在痕量分子的检测中有着很大的应用前景。迄今,已经开发了各种具有SERS效应的基底,如利用氧化还原反应处理后的粗糙金属表面及利用电化学方法制备的基底;用物理蒸镀、溅射等手段将金属纳米粒子沉积于玻璃、聚氯乙烯等不同材质表面的基底;球状、棒状、核壳结构等的金属溶胶;将单分散的金或者银纳米颗粒通过某种方式自组装于惰性衬底形成阵列的MFON;光子晶体衬底等。 
由于电沉积法能够通过简单地控制电流、电压等多种条件在较短时间内使基底表面形成金属纳米颗粒、纳米片、纳米棒等,方法简便、基底易得,现已有很多相关报道。但该类电极界面大多用于电化学催化合成领域,而仅有少量报道应用于拉曼光谱检测领域,如利用AgNO3和柠檬酸作为电解液组装了纳米片的银微球基底,利用Au(SO3)2 3-电解液制得的星形金纳米SERS基底,利用HAuCl4和NaClO4作为电解液的金纳米颗粒镀膜等。利用电沉积金属形成纳米材料表面应用于拉曼光谱检测领域,其中一个难点是电解液的选择及优化配比等问题。由于SERS效应可以使信号增强104以上,在大大提高拉曼信号的检测灵敏度的同时,材料表面所含有的微量杂质亦会产生一定的背景干扰;从微观方面看,若表面存在的杂质,包裹或部分包裹了活性金属表面不能使纳米金属颗粒裸露,必然会降低SERS效应。因此,选择合适的电解液及其优化的配比,是制备获得具有SERS效应又无拉曼背景干扰的芯片的技术关键。 
Ag是已报道的可以获得最大拉曼增强的金属,因此用电沉积法制备的Ag芯片具有很大的实际应用价值。据文献报道,在一定的电流密度下,0.01mol/L Ag2SO4,1.5mol/L KSCN和0-2mol/L NH4Cl的电解液,可得到多孔Ag膜。但用此方法制作的纳米Ag表面,由于表面存在着少量KSCN、Ag2SO4、AgSCN等均会带来一定的拉曼光谱背景的干扰,不能直接用 于拉曼光谱的检测。因此若选择可溶性的Ag+与SCN+配位化合物作为电解液,电极上残留的AgSCN会产生较大的拉曼光谱的背景干扰,由于AgSCN具有较大的稳定常数,且稳定地包裹在材料表面而较难去除。若选择AgNO3和HNO3作为电解液,由于NO3 +在酸性环境下能够将Ag溶解,所以电沉积后,电解液中的HNO3会将电沉积获得的Ag膜溶解,破坏所形成的多孔结构,故排除了以AgNO3为主的电解液。柠檬酸作为电解液,则柠檬酸会带来一定的拉曼光谱背景干扰,而残留在电极表面的柠檬酸难以清洗干净或用其他试剂清洗脱附而清除。 
为了充分利用电化学催化合成领域中广泛使用的电沉积制备Ag电极的成熟技术,同时解决在激光拉曼光谱和表面增强拉曼光谱检测应用中存在的一系列问题,本发明提出了一种适合于制作用于SERS检测的芯片的特殊电解液,以获得高效SERS的芯片。 
发明内容
为了克服现有技术领域中的上述缺陷,本发明提供了一种具有高效SERS效应,且容易去除芯片表面的杂质,以进一步消除拉曼光谱的背景信号的电解液。 
本发明提供的一种用于制备表面增强拉曼光谱芯片的电解液,由贵金属盐、含氢离子的酸或盐和水,其中贵金属盐为可溶性或微溶性金属盐。 
作为优选,电解液由Ag2SO4、H2SO4和水组成。特别是电解液由0.01mol/L的Ag2SO4、0.6mol/L的H2SO4和水组成。优选方案利用银可以获得最大拉曼增强的特性,电解液主要以银离子为主。引入其他阴阳离子时,均需考虑是否会对拉曼光谱产生背景干扰等问题。该优选方案提出采用Ag2SO4和H2SO4作为电解液,制备具有SERS效应的Ag芯片,Ag2SO4虽然属于微溶化合物会残留在电极表面,但由于其沉淀平衡常数(Ksp,溶度积)相对较小,可以采用能够形成更稳定的配位化合物将其洗脱。 
本发明充分利用目前应用于电化学催化合成领域的纳米电极的特性进行改性,利用其金属纳米颗粒、纳米片、纳米棒的属性,使其展现较好的SERS效应,从而实现拉曼光谱痕量分子的检测。本发明专利的优点在于电解液的种类、配比的选择,原则上尽可能减少所用的离子种类,所采用的试剂应采用高级别试剂,以降低由于电解液和电化学沉积过程带来的拉曼光谱背景的干扰。本发明所提供的用于制备具有SERS效应的芯片的电解液组合,离子种类少,通过表面清洗很容易消除拉曼光谱的背景干扰,是一种经济、高效、干扰少的电解液组合,具有很大的实际应用价值。 
附图说明
图1是Ag芯片空白本底未经清洗(a)和清洗后(b)的激光拉曼光谱图。 
具体实施方式
实施例1: 
本实施例对用于电化学催化合成领域的多孔银膜进行改性,以获得具有SERS效应的银芯片。在电解液的制备上做较大地改进,选择尽量少的离子组合,同时采用高级别的试剂。为了获得多孔型的银膜,电解液中必须含有一定量的Ag+和H+。本实施例以Ag2SO4和H2SO4为电解液,该电解液组合可以避免一些不必要的离子干扰,通过控制一定的电流密度和沉积时间,可以获得多孔形貌同时具有SERS效应的银材料表面。 
本实施例制备的电解液由0.01mol/L的Ag2SO4和0.6mol/L的H2SO4和水组成,以0.425A/cm2的恒电流,沉积30s后得到Ag表面基底的拉曼光谱图1中的(a)。可以看到在500cm-1,600cm-1,1000cm-1,1200cm-1和2150cm-1左右各有一个峰,由于电解液中仅有Ag+,SO4 2-,H+这三种离子,对比固体Ag2SO4的拉曼光谱图,可知上述干扰峰是由Ag2SO4所产生。为了消除所制备的Ag芯片表面电沉积时共沉积产生的Ag2SO4,可以采用与Ag+形成更稳定的配位化合物,而将Ag2SO4从电极表面进行清除,得到纯净的活性Ag表面,从而可得到较好的无背景干扰的激光拉曼光谱图,如图1中的(b)所示,同时纳米Ag裸露,具备了较好的SERS效应,可以用于表面增强拉曼光谱的检测需要。 
综上所述,本发明提出了一种用于电化学沉积法制作具备SERS效应的Ag芯片的特殊电解液,该电解液组合离子种类少,经简单的表面处理可以消除产生拉曼光谱背景的干扰物质,是一种经济、高效的特殊电解液,在SERS检测基底的制备中具有较大的实际应用价值。 

Claims (3)

1.一种用于制备表面增强拉曼光谱芯片的电解液,其特征在于:电解液包括贵金属盐、含氢离子的酸或盐和水,其中贵金属盐为可溶性或微溶性金属盐。 
2.根据权利要求1所述的用于制备表面增强拉曼光谱芯片的电解液,其特征在于:电解液由Ag2SO4、H2SO4和水组成。 
3.根据权利要求2所述的用于制备表面增强拉曼光谱芯片的电解液,其特征在于:电解液由0.01mol/L的Ag2SO4、0.6mol/L的H2SO4和水组成。 
CN201410476247.0A 2014-09-18 2014-09-18 一种用于制备表面增强拉曼光谱芯片的电解液 Pending CN104251854A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410476247.0A CN104251854A (zh) 2014-09-18 2014-09-18 一种用于制备表面增强拉曼光谱芯片的电解液

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410476247.0A CN104251854A (zh) 2014-09-18 2014-09-18 一种用于制备表面增强拉曼光谱芯片的电解液

Publications (1)

Publication Number Publication Date
CN104251854A true CN104251854A (zh) 2014-12-31

Family

ID=52186952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410476247.0A Pending CN104251854A (zh) 2014-09-18 2014-09-18 一种用于制备表面增强拉曼光谱芯片的电解液

Country Status (1)

Country Link
CN (1) CN104251854A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109187486A (zh) * 2018-09-20 2019-01-11 天津理工大学 一种银纳米片及其制备方法与用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008445A1 (de) * 1998-08-04 2000-02-17 Alusuisse Technology & Management Ag Trägersubstrat für raman-spektrometrische analysen
CN101024483A (zh) * 2007-03-27 2007-08-29 吉林大学 金属有序结构表面增强基底的构筑方法
TW201111769A (en) * 2009-09-22 2011-04-01 Univ Vanung Surface-enhanced Raman spectroscopy (SERS) specimen having thermal stability and constancy and its manufacturing method thereof
CN102233433A (zh) * 2010-05-08 2011-11-09 中国科学院合肥物质科学研究院 银纳米片构成的微米半球及其制备方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008445A1 (de) * 1998-08-04 2000-02-17 Alusuisse Technology & Management Ag Trägersubstrat für raman-spektrometrische analysen
CN101024483A (zh) * 2007-03-27 2007-08-29 吉林大学 金属有序结构表面增强基底的构筑方法
TW201111769A (en) * 2009-09-22 2011-04-01 Univ Vanung Surface-enhanced Raman spectroscopy (SERS) specimen having thermal stability and constancy and its manufacturing method thereof
CN102233433A (zh) * 2010-05-08 2011-11-09 中国科学院合肥物质科学研究院 银纳米片构成的微米半球及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EMILIANO CORTES等: "Ag modified Au nanocavity SERS substrates", 《PHYS. CHEM. CHEM. PHYS》 *
YU-CHUAN LIU等: "Enhancements in intensity and thermal stability of Raman spectra based on roughened gold substrates modified by underpotential deposition of silver", 《J. RAMAN SPECTROSC》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109187486A (zh) * 2018-09-20 2019-01-11 天津理工大学 一种银纳米片及其制备方法与用途

Similar Documents

Publication Publication Date Title
Erbs et al. Visible-light-induced oxygen generation from aqueous dispersions of tungsten (VI) oxide
Abbasi et al. Electrocatalytic oxidation of ethanol at Pd/Ag nanodendrites prepared via low support electrodeposition and galvanic replacement
Stiger et al. Investigations of electrochemical silver nanocrystal growth on hydrogen-terminated silicon (100)
Ueno et al. Plasmon‐induced water splitting using metallic‐nanoparticle‐loaded photocatalysts and photoelectrodes
Lv et al. Facile and controlled electrochemical route to three-dimensional hierarchical dendritic gold nanostructures
CN101566570A (zh) 有序可控的表面增强拉曼散射活性基底及其制备方法
CN104807802B (zh) 一种表面增强拉曼散射基底及其原位生长方法
CN105004706B (zh) 表面增强拉曼散射活性基底及其制备方法
Clarke et al. Evaluation of an electrodeposited bimetallic Cu/Ag nanostructured screen printed electrode for electrochemical surface-enhanced Raman spectroscopy (EC-SERS) investigations
JP5664370B2 (ja) 触媒微粒子の製造方法
CN103674928B (zh) 表面增强拉曼散射器件及其制备方法和用途
de Oliveira et al. Aggregates of gold nanoparticles with complexes containing ruthenium as modifiers in carbon paste electrodes
Chu et al. Room‐temperature synthesis and characterization of porous CeO2 thin films
Yan et al. On-line Inductively Coupled Plasma Mass Spectrometry Reveals Material Degradation Dynamics of Au and Cu Catalysts during Electrochemical CO2 Reduction
CN104251854A (zh) 一种用于制备表面增强拉曼光谱芯片的电解液
Hope et al. Transient adsorption of sulfate ions during copper electrodeposition
Elabbadi et al. Synthesis of controllable Cu shells on Au nanoparticles with Electrodeposition: A systematic in situ single particle study
Jin et al. SERS-active silver nanoparticle assemblies on branched Cu 2 O crystals through controlled galvanic replacement
Ibañez et al. Electrodeposition of silver nanoparticles in the presence of different complexing agents by time‐resolved Raman spectroelectrochemistry
Gao et al. Selective growth of Ag nanodewdrops on Au nanostructures: a new type of bimetallic heterostructure
Sharma et al. Simultaneous formation of Prussian blue and copper hexacyanoferrate from a solution of Cu2+ and K3 [Fe (CN) 6] in presence of HAuCl4
Soomro et al. Highly sensitive shape dependent electro-catalysis of TNT molecules using Pd and Pd–Pt alloy based nanostructures
JP2016165675A5 (zh)
Islam et al. The Measurement of Mixed Potentials Using Platinum Decorated Nanoporous Gold Electrodes
CN113433110B (zh) 原位置换法生成金银枝晶花状纳米结构衬底的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20141231

RJ01 Rejection of invention patent application after publication