CN104241141A - Method for manufacturing embedded silicon-germanium strained PMOS (P-channel metal oxide semiconductor) device - Google Patents
Method for manufacturing embedded silicon-germanium strained PMOS (P-channel metal oxide semiconductor) device Download PDFInfo
- Publication number
- CN104241141A CN104241141A CN201410509890.9A CN201410509890A CN104241141A CN 104241141 A CN104241141 A CN 104241141A CN 201410509890 A CN201410509890 A CN 201410509890A CN 104241141 A CN104241141 A CN 104241141A
- Authority
- CN
- China
- Prior art keywords
- silicon
- layer
- sige
- pmos
- germanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000577 Silicon-germanium Inorganic materials 0.000 title claims abstract description 112
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 57
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 229910044991 metal oxide Inorganic materials 0.000 title description 3
- 150000004706 metal oxides Chemical class 0.000 title description 3
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 64
- 239000000956 alloy Substances 0.000 claims abstract description 64
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 238000002955 isolation Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 5
- 238000001312 dry etching Methods 0.000 claims description 4
- 229910000078 germane Inorganic materials 0.000 claims description 4
- 125000003963 dichloro group Chemical group Cl* 0.000 claims 1
- 239000003595 mist Substances 0.000 claims 1
- 230000000284 resting effect Effects 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 31
- 238000000407 epitaxy Methods 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 229910000927 Ge alloy Inorganic materials 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 75
- 239000013078 crystal Substances 0.000 description 11
- 238000005530 etching Methods 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910008310 Si—Ge Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 229910008045 Si-Si Inorganic materials 0.000 description 2
- 229910006411 Si—Si Inorganic materials 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/01—Manufacture or treatment
- H10D62/021—Forming source or drain recesses by etching e.g. recessing by etching and then refilling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/797—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/822—Heterojunctions comprising only Group IV materials heterojunctions, e.g. Si/Ge heterojunctions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明公开了一种用于制作嵌入式硅锗应变PMOS器件的方法,通过在对PMOS源漏凹槽内采用选择性外延生长应变硅锗合金应力层前,先在平面的半导体基底上外延生长一层硅锗合金层和单晶硅层,然后,再以此硅锗合金层作为基底,在其上采用选择性外延的方法继续生长应变硅锗合金应力层,避免了在后续外延生长应变硅锗合金应力层时锗和基底硅的直接接触,从而抑制了在SiGe/Si界面处形成缺陷的现象,在确保对PMOS器件的沟道施加适当的应力的同时,又能够抑制现有技术存在的由于SiGe/Si界面处存在缺陷而引起的结漏电现象,进而提高PMOS器件的整体电学性能,并可与现有的工艺很好地兼容。
The invention discloses a method for manufacturing an embedded silicon-germanium strained PMOS device. Before adopting selective epitaxial growth of a strained silicon-germanium alloy stress layer in a PMOS source-drain groove, first epitaxially grows it on a planar semiconductor substrate. A silicon-germanium alloy layer and a single-crystal silicon layer, and then, using the silicon-germanium alloy layer as a substrate, a strained silicon-germanium alloy stress layer is continuously grown on it by a selective epitaxy method, which avoids the subsequent epitaxial growth of strained silicon The direct contact between germanium and the substrate silicon during the germanium alloy stress layer suppresses the formation of defects at the SiGe/Si interface, and while ensuring proper stress is applied to the channel of the PMOS device, it can also suppress the defects existing in the prior art. Due to the junction leakage phenomenon caused by defects at the SiGe/Si interface, the overall electrical performance of the PMOS device is improved, and it is well compatible with existing processes.
Description
技术领域technical field
本发明涉及集成电路技术领域,更具体地,涉及一种用于制作嵌入式硅锗应变PMOS器件的方法。The invention relates to the technical field of integrated circuits, and more specifically, to a method for manufacturing an embedded silicon-germanium strained PMOS device.
背景技术Background technique
随着超大规模集成电路特征尺寸的微缩化持续发展,电路元件的尺寸越来越小,且操作的速度也越来越快。如何改善电路元件的驱动电流显得日益重要。As the miniaturization of VLSI feature sizes continues, circuit elements are getting smaller and operating at faster speeds. How to improve the drive current of circuit components is increasingly important.
在CMOS器件的制造技术中,常规上是将P型金属氧化物半导体场效应(PMOS)晶体管和N型金属氧化物半导体场效应(NMOS)晶体管分开进行处理的。例如,在PMOS器件的制造工艺中采用具有压应力的材料,而在NMOS器件中采用具有张应力的材料,以向沟道区施加适当的应力,从而提高载流子的迁移率。其中,嵌入式硅锗技术(eSiGe)通过在PMOS晶体管的源漏(S/D)区形成应变硅锗合金(SiGe)应力层、能够提高沟道空穴的迁移率而成为PMOS应力工程的主要技术之一。In the manufacturing technology of CMOS devices, conventionally, P-type Metal Oxide Semiconductor Field Effect (PMOS) transistors and N-type Metal Oxide Semiconductor Field Effect (NMOS) transistors are processed separately. For example, materials with compressive stress are used in the manufacturing process of PMOS devices, while materials with tensile stress are used in NMOS devices to apply appropriate stress to the channel region, thereby increasing the mobility of carriers. Among them, embedded silicon germanium technology (eSiGe) has become the mainstay of PMOS stress engineering by forming a strained silicon germanium alloy (SiGe) stress layer in the source and drain (S/D) regions of PMOS transistors, which can improve the mobility of channel holes. One of the techniques.
然而,当需要在外延生长和其他集成工艺过程中应用嵌入式硅锗技术时,就会发生在SiGe/Si界面处产生缺陷的现象,尤其是当SiGe应力层中的Ge原子百分含量较高时。例如,在外延生长工艺过程中应用嵌入式硅锗技术时,现有技术的方法是在Si基底上直接淀积SiGe层。由于Si-Ge化学键具有比Si-Si化学键更大的晶格常数,因此,在SiGe/Si界面处会产生较大的应力聚集,这样生长的薄膜线位错密度极高。同时,源漏(S/D)形貌对应用嵌入式硅锗技术时的影响也很大,这是由于SiGe薄膜在不同晶向上的生长机理有所不同。SiGe在源漏的侧壁的晶向是(110)晶向,在源漏的底部是(001)晶向,而在(110)晶向方向的成核速率要大于在(001)晶向方向的速率。因此,在(110)晶向方向的SiGe平整度会比较粗糙,从而导致整个SiGe薄膜的缺陷较多。However, when embedded silicon germanium technology is required for epitaxial growth and other integration processes, defects can occur at the SiGe/Si interface, especially when the SiGe stress layer has a high atomic percentage of Ge hour. For example, when the embedded silicon germanium technology is applied in the epitaxial growth process, the method in the prior art is to directly deposit the SiGe layer on the Si substrate. Since the Si-Ge chemical bond has a larger lattice constant than the Si-Si chemical bond, a large stress concentration will occur at the SiGe/Si interface, and the grown film has a very high line dislocation density. At the same time, the source-drain (S/D) morphology has a great influence on the application of embedded silicon germanium technology, because the growth mechanism of SiGe thin film in different crystal orientations is different. The crystal orientation of SiGe on the sidewall of the source and drain is (110) crystal orientation, and the bottom of the source and drain is (001) crystal orientation, and the nucleation rate in the (110) crystal orientation direction is greater than that in the (001) crystal orientation direction s speed. Therefore, the flatness of SiGe in the direction of (110) crystal orientation will be relatively rough, resulting in more defects in the entire SiGe film.
上述这些缺陷将会使沟道内的应力减弱,从而影响PMOS晶体管的性能。而且,这些缺陷还会使源漏区与N阱或基底之间的PN结漏电流增加,从而使PMOS晶体管的性能进一步地恶化。These defects will weaken the stress in the channel, thereby affecting the performance of the PMOS transistor. Moreover, these defects will also increase the leakage current of the PN junction between the source-drain region and the N-well or the substrate, thereby further deteriorating the performance of the PMOS transistor.
目前,控制上述缺陷的主要手段是控制SiGe中Ge的含量以及优化外延工艺。其中,虽然减少Ge的含量能降低缺陷,但也会使形成的硅锗应力层对沟道区施加的应力随之减少,从而不能达到提高空穴迁移率的效果;而优化外延工艺在减少缺陷方面的效果也很有限。At present, the main means to control the above defects are to control the content of Ge in SiGe and optimize the epitaxial process. Among them, although reducing the content of Ge can reduce defects, it will also reduce the stress exerted by the formed silicon germanium stress layer on the channel region, so that the effect of improving hole mobility cannot be achieved; and optimizing the epitaxy process can reduce defects. The effect is also very limited.
因此,在现有的硅锗外延生长技术中,在控制SiGe/Si界面处缺陷生成的同时,无法保证形成的应变硅锗合金应力层对PMOS器件的沟道区施加的应力免受不利影响。鉴于以上原因,急需开发一种用于制作嵌入式硅锗应变PMOS器件结构的方法,以解决上述问题。Therefore, in the existing silicon germanium epitaxial growth technology, while controlling the generation of defects at the SiGe/Si interface, it is impossible to ensure that the stress exerted by the strained silicon germanium alloy stress layer on the channel region of the PMOS device will not be adversely affected. In view of the above reasons, it is urgent to develop a method for fabricating an embedded silicon germanium strained PMOS device structure to solve the above problems.
发明内容Contents of the invention
本发明的目的在于克服现有技术存在的上述缺陷,提供一种用于制作嵌入式硅锗应变PMOS器件的方法,以控制形成应变硅锗合金应力层时在SiGe/Si界面处产生缺陷,并保证形成的应变硅锗合金应力层对PMOS器件沟道区施加的应力不受影响。The purpose of the present invention is to overcome the above-mentioned defects existing in the prior art, to provide a method for making an embedded silicon-germanium strained PMOS device, to control the generation of defects at the SiGe/Si interface when forming a strained silicon-germanium alloy stress layer, and It is ensured that the stress exerted by the formed strained silicon germanium alloy stress layer on the channel region of the PMOS device is not affected.
为实现上述目的,本发明的技术方案如下:To achieve the above object, the technical scheme of the present invention is as follows:
一种用于制作嵌入式硅锗应变PMOS器件的方法,其特征在于,包括:A method for making an embedded silicon-germanium strained PMOS device, characterized in that it comprises:
步骤一:提供一平面半导体基底,在所述半导体基底上依次形成硅锗合金层和单晶硅层;Step 1: providing a planar semiconductor substrate, on which a silicon germanium alloy layer and a single crystal silicon layer are sequentially formed;
步骤二:形成浅沟槽隔离、栅极及侧墙,所述浅沟槽隔离停留在所述半导体基底;Step 2: forming shallow trench isolations, gates and sidewalls, the shallow trench isolations staying on the semiconductor substrate;
步骤三:形成PMOS源漏凹槽,所述源漏凹槽停留在所述硅锗合金层;Step 3: forming PMOS source and drain grooves, the source and drain grooves stay in the silicon germanium alloy layer;
步骤四:在所述源漏凹槽内继续生长硅锗合金层,以在PMOS源漏区域形成应变硅锗合金应力层。Step 4: Continue growing a silicon-germanium alloy layer in the source-drain groove to form a strained silicon-germanium alloy stress layer in the PMOS source-drain region.
优选的,步骤一中,采用外延生长方法在所述半导体基底上依次淀积形成所述硅锗合金层和所述单晶硅层。Preferably, in step 1, the silicon germanium alloy layer and the single crystal silicon layer are sequentially deposited on the semiconductor substrate by using an epitaxial growth method.
优选的,步骤一中,所述硅锗合金中锗的浓度不大于15%原子百分数。Preferably, in step 1, the concentration of germanium in the silicon-germanium alloy is not greater than 15 atomic percent.
优选的,步骤一中,所述单晶硅层的厚度为400~700A。Preferably, in step 1, the thickness of the single crystal silicon layer is 400-700A.
优选的,步骤三中,采用干法刻蚀方法在所述单晶硅层形成所述PMOS源漏凹槽,并直至露出所述单晶硅层下方的所述硅锗合金层。Preferably, in step 3, the PMOS source-drain groove is formed in the single-crystal silicon layer by dry etching until the silicon-germanium alloy layer under the single-crystal silicon layer is exposed.
优选的,步骤四中,采用选择性外延方法在所述PMOS源漏凹槽内继续淀积生长硅锗合金层。Preferably, in step 4, a silicon-germanium alloy layer is continuously deposited and grown in the PMOS source-drain groove by using a selective epitaxy method.
优选的,步骤四中,采用选择性外延方法在所述PMOS源漏凹槽内继续淀积生长硅锗合金层,直至填满所述PMOS源漏凹槽。Preferably, in step 4, a silicon-germanium alloy layer is continuously deposited and grown in the PMOS source-drain groove by using a selective epitaxial method until the PMOS source-drain groove is filled.
优选的,步骤四中,所述选择性外延方法的反应气体为二氯氢硅、锗烷和氢气的混合气体,工艺温度为610~740℃。Preferably, in step 4, the reaction gas of the selective epitaxy method is a mixed gas of silicon dichlorohydrogen, germane and hydrogen, and the process temperature is 610-740°C.
从上述技术方案可以看出,本发明的优点在于,通过在对PMOS源漏凹槽内采用选择性外延生长应变硅锗合金应力层前,先在平面的半导体基底上外延生长一层硅锗合金层和单晶硅层,并通过控制此硅锗合金层中锗的含量,避免了在SiGe/Si界面处产生较大的应力聚集而引起的缺陷,以及因硅锗合金层在不同晶向上生长速率的不同而引起的成膜缺陷;然后,再通过刻蚀单晶硅层形成PMOS源漏凹槽,并使下方的硅锗合金层露出,以此硅锗合金层作为基底,在其上采用选择性外延的方法继续生长应变硅锗合金应力层,避免了在后续外延生长应变硅锗合金应力层时锗和基底硅的直接接触,从而抑制了在SiGe/Si界面处形成缺陷的现象。因此,本发明在确保对PMOS器件的沟道施加适当的应力的同时,又能够抑制现有技术存在的由于SiGe/Si界面处存在缺陷而引起的结漏电现象,进而提高PMOS器件的整体电学性能。此外,本发明的方法与现有的工艺可以很好地兼容,能够为工艺集成提供较大的灵活性。It can be seen from the above-mentioned technical scheme that the advantage of the present invention is that a layer of silicon-germanium alloy is epitaxially grown on a planar semiconductor substrate before adopting selective epitaxial growth of the strained silicon-germanium alloy stress layer in the PMOS source-drain groove. layer and single crystal silicon layer, and by controlling the content of germanium in the silicon-germanium alloy layer, the defects caused by the large stress concentration at the SiGe/Si interface and the growth of the silicon-germanium alloy layer in different crystal directions are avoided. The film-forming defects caused by the difference in speed; then, the PMOS source and drain grooves are formed by etching the single crystal silicon layer, and the silicon-germanium alloy layer below is exposed, and the silicon-germanium alloy layer is used as the substrate, on which The selective epitaxy method continues to grow the strained silicon-germanium alloy stress layer, avoiding direct contact between germanium and substrate silicon during the subsequent epitaxial growth of the strained silicon-germanium alloy stress layer, thereby suppressing the formation of defects at the SiGe/Si interface. Therefore, while ensuring proper stress is applied to the channel of the PMOS device, the present invention can suppress the junction leakage phenomenon existing in the prior art due to defects at the SiGe/Si interface, thereby improving the overall electrical performance of the PMOS device . In addition, the method of the present invention is well compatible with existing processes and can provide greater flexibility for process integration.
附图说明Description of drawings
图1是本发明一种用于制作嵌入式硅锗应变PMOS器件的方法的流程图;Fig. 1 is a flow chart of a method for making an embedded silicon germanium strained PMOS device of the present invention;
图2~图5是本发明一实施例中应用图1的制作方法制作一种嵌入式硅锗应变PMOS器件的结构示意图。2 to 5 are structural schematic diagrams of an embedded silicon germanium strained PMOS device manufactured by applying the manufacturing method of FIG. 1 in an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图,对本发明的具体实施方式作进一步的详细说明。The specific embodiment of the present invention will be further described in detail below in conjunction with the accompanying drawings.
需要说明的是,在下述的实施例中,利用图2~图5的示意图对本发明的嵌入式硅锗应变PMOS器件结构进行了详细的说明。在详述本发明的实施方式时,为了便于说明,各示意图不依照一般比例绘制,并进行了局部放大及省略处理,因此,应避免以此作为对本发明的限定。It should be noted that, in the following embodiments, the structure of the embedded silicon germanium strained PMOS device of the present invention is described in detail by using the schematic diagrams of FIGS. 2 to 5 . When describing the embodiments of the present invention in detail, for the convenience of illustration, the schematic diagrams are not drawn according to the general scale, and some parts are enlarged and omitted. Therefore, it should be avoided as a limitation of the present invention.
在本实施例中,请参阅图1,图1是本发明一种用于制作嵌入式硅锗应变PMOS器件的方法的流程图;同时,请对照参阅图2~图5,图2~图5是本发明一实施例中应用图1的制作方法制作一种嵌入式硅锗应变PMOS器件的结构示意图。图2~图5中示意的器件结构,分别与图1中的各制作步骤相对应,以便于对本发明方法的理解。In this embodiment, please refer to FIG. 1. FIG. 1 is a flow chart of a method for manufacturing an embedded silicon germanium strained PMOS device according to the present invention; meanwhile, please refer to FIGS. It is a structural schematic diagram of an embedded silicon germanium strained PMOS device manufactured by applying the manufacturing method of FIG. 1 in an embodiment of the present invention. The device structures schematically shown in FIGS. 2 to 5 correspond to the manufacturing steps in FIG. 1 , so as to facilitate the understanding of the method of the present invention.
如图1所示,本发明提供了一种用于制作嵌入式硅锗应变PMOS器件的方法,包括:As shown in Fig. 1, the present invention provides a kind of method for making embedded SiGe strain PMOS device, comprising:
如框1所示,步骤一:提供一平面半导体基底,在所述半导体基底上依次形成硅锗合金层和单晶硅层。As shown in block 1, step 1: provide a planar semiconductor substrate, and sequentially form a silicon germanium alloy layer and a single crystal silicon layer on the semiconductor substrate.
请参考图2,提供一平面半导体基底100,采用外延生长方法,在所述半导体基底100上依次淀积形成一层硅锗合金(SiGe)层101和一层单晶硅层102。淀积硅锗合金层101时,控制所述硅锗合金中锗的浓度在不大于15%原子百分数的较低含量水平,可避免引起硅锗合金层101淀积时产生严重晶格损伤,以及避免引起应变弛豫过程中大量位错和缺陷的释放。同时,先在平面的半导体基底100上外延生长硅锗合金层101,可使硅锗合金在同一晶向上均匀生长,从而避免了现有技术中直接在PMOS源漏凹槽中生长应变硅锗合金时,因硅锗合金层在不同晶向上生长速率的不同而引起的成膜缺陷。所述半导体基底100可为单晶硅、多晶硅或非晶硅形成的硅材料基底,或是绝缘硅材料(SOI)基底,还可以是其他半导体材料或其他结构的基底。淀积单晶硅层102时,所述单晶硅层的厚度为400~700A。Referring to FIG. 2 , a planar semiconductor substrate 100 is provided, and a silicon germanium alloy (SiGe) layer 101 and a single crystal silicon layer 102 are sequentially deposited on the semiconductor substrate 100 by epitaxial growth method. When depositing the silicon-germanium alloy layer 101, controlling the concentration of germanium in the silicon-germanium alloy to a lower content level not greater than 15 atomic percent can avoid serious lattice damage during the deposition of the silicon-germanium alloy layer 101, and Avoid the release of a large number of dislocations and defects during strain relaxation. At the same time, the silicon-germanium alloy layer 101 is epitaxially grown on the planar semiconductor substrate 100 first, so that the silicon-germanium alloy can be grown uniformly in the same crystal direction, thereby avoiding the need to directly grow the strained silicon-germanium alloy in the PMOS source-drain groove in the prior art When the silicon-germanium alloy layer grows differently in different crystal directions, the film-forming defects are caused. The semiconductor substrate 100 may be a silicon material substrate formed of monocrystalline silicon, polycrystalline silicon or amorphous silicon, or a silicon-on-insulator (SOI) substrate, or may be a substrate of other semiconductor materials or other structures. When depositing the single crystal silicon layer 102, the thickness of the single crystal silicon layer is 400˜700 Å.
如框2所示,步骤二:形成浅沟槽隔离、栅极及侧墙,所述浅沟槽隔离停留在所述半导体基底。As shown in box 2, step 2: forming shallow trench isolation, gate and sidewall, and the shallow trench isolation stays on the semiconductor substrate.
请参考图3,采用例如干法刻蚀方法,从所述单晶硅层102向所述半导体基底100方向刻蚀形成浅沟槽隔离103,并停留在所述半导体基底100。然后,在所述浅沟槽隔离103之间的所述单晶硅层102上形成栅极105及侧墙104,可采用现有公知的制作工艺来实现。Referring to FIG. 3 , for example, a dry etching method is used to etch from the single crystal silicon layer 102 toward the semiconductor substrate 100 to form shallow trench isolations 103 , and stay on the semiconductor substrate 100 . Then, the gate 105 and the sidewall 104 are formed on the single crystal silicon layer 102 between the shallow trench isolations 103 , which can be realized by adopting a conventionally known manufacturing process.
如框3所示,步骤三:形成PMOS源漏凹槽,所述源漏凹槽停留在所述硅锗合金层。As shown in block 3, Step 3: forming PMOS source and drain grooves, the source and drain grooves stay in the silicon germanium alloy layer.
请参考图4,采用等离子干法刻蚀方法,在栅极105两侧的所述单晶硅层102刻蚀形成PMOS源漏凹槽106,并停留在所述硅锗合金层101。作为优选,刻蚀PMOS源漏凹槽106时,在所述单晶硅层102下方的所述硅锗合金层101露出时,即可停止对PMOS源漏凹槽106的刻蚀,避免过度刻蚀造成源漏凹槽106底部与基底100之间打通。为保证源漏凹槽106的深度,在淀积单晶硅层102时,所述单晶硅层102的厚度应保持在400~700A。作为一实例,可通过淀积形成640A的单晶硅层102,然后,刻蚀形成源漏凹槽106,在穿过所述单晶硅层102后,在所述硅锗合金层101继续刻蚀20A的深度后停止(图示源漏凹槽106的底面略低于硅锗合金层101的上表面),使PMOS源漏凹槽106的深度约在660A。Referring to FIG. 4 , the single crystal silicon layer 102 on both sides of the gate 105 is etched to form PMOS source-drain grooves 106 by plasma dry etching method, and stay in the silicon-germanium alloy layer 101 . As preferably, when etching the PMOS source and drain groove 106, when the silicon-germanium alloy layer 101 below the single crystal silicon layer 102 is exposed, the etching of the PMOS source and drain groove 106 can be stopped to avoid excessive etching. The etch causes the bottom of the source-drain groove 106 to open up with the substrate 100 . In order to ensure the depth of the source-drain groove 106, when depositing the single-crystal silicon layer 102, the thickness of the single-crystal silicon layer 102 should be kept at 400˜700 Å. As an example, a single crystal silicon layer 102 of 640A may be formed by deposition, and then source and drain grooves 106 are formed by etching. Stop after etching the depth of 20A (the bottom surface of the source-drain groove 106 shown in the figure is slightly lower than the upper surface of the silicon-germanium alloy layer 101), so that the depth of the PMOS source-drain groove 106 is about 660A.
如框4所示,步骤四:在所述源漏凹槽内继续生长硅锗合金层,以在PMOS源漏区域形成应变硅锗合金应力层。As shown in box 4, Step 4: continue to grow a silicon-germanium alloy layer in the source-drain groove, so as to form a strained silicon-germanium alloy stress layer in the PMOS source-drain region.
请参考图5,采用选择性外延方法,在所述PMOS源漏凹槽106内继续淀积生长硅锗合金层107,并填满所述PMOS源漏凹槽106(图示硅锗合金层107的上表面为与源漏凹槽106的开口面保持平齐状态),以在PMOS源漏区域形成应变硅锗合金应力层,形成对沟道区施加必要的应力。优选的,进行工艺时的反应气体为二氯氢硅(DCS)、锗烷(GeH4)和氢气(H2)的混合气体,但不限于此;工艺温度为610~740℃。例如,可采用选择性外延方法,使用二氯氢硅(DCS)、锗烷(GeH4)和氢气(H2)的混合气体作为反应气体,在680℃的工艺温度条件下,继续淀积生长应变硅锗合金应力层107。Please refer to FIG. 5 , using a selective epitaxial method, continue to deposit and grow a silicon-germanium alloy layer 107 in the PMOS source-drain groove 106, and fill up the PMOS source-drain groove 106 (the silicon-germanium alloy layer 107 is shown in the figure). The upper surface of the upper surface of the source-drain groove 106 is flush with the opening surface of the source-drain groove 106), so as to form a strained silicon-germanium alloy stress layer in the source-drain region of the PMOS, so as to apply the necessary stress to the channel region. Preferably, the reaction gas during the process is a mixed gas of dichlorosilane (DCS), germane (GeH 4 ) and hydrogen (H 2 ), but not limited thereto; the process temperature is 610-740°C. For example, a selective epitaxy method can be used, using a mixed gas of dichlorohydrogen silicon (DCS), germane (GeH 4 ) and hydrogen (H 2 ) as a reaction gas, and at a process temperature of 680°C, the deposition and growth can be continued. strained SiGe alloy stress layer 107 .
在完成上述嵌入式硅锗应变PMOS器件的制作之后,可继续进行形成器件的其他步骤。例如,在源极和漏极以及栅极上形成金属硅化物,如NiPt等,形成层间介质,进行接触孔的刻蚀以及执行铜后道工艺。这些工艺步骤可以采用本领域技术人员所熟悉的方法形成,在此不再赘述。After the fabrication of the above-mentioned embedded silicon germanium strained PMOS device is completed, other steps of forming the device can be continued. For example, metal silicides, such as NiPt, are formed on the source, drain, and gate to form interlayer dielectrics, etch contact holes and perform copper back-end processes. These process steps can be formed by methods familiar to those skilled in the art, and will not be repeated here.
需要说明的是,在现有技术中,由于Si-Ge化学键具有比Si-Si化学键更大的晶格常数,因此,如果按传统的方式,直接在PMOS源漏凹槽底部的Si基底上外延生长应变SiGe层,就会在SiGe/Si界面处产生较大的应力聚集,因而在界面处会形成缺陷。这样生长的薄膜线位错密度极高,而且缺乏消除缺陷的手段,只能通过控制SiGe中Ge的含量以及优化外延工艺来降低缺陷率。但减少Ge的含量会使形成的硅锗应力层对沟道区施加的应力随之减少,从而不能达到提高空穴迁移率的效果;而优化外延工艺在减少缺陷方面的效果也很有限。并且,SiGe薄膜的平整度也会比较粗糙,从而导致整个SiGe薄膜的缺陷较多。上述这些缺陷将会使沟道内的应力减弱,从而影响PMOS晶体管的性能。而且,这些缺陷还会使源漏区与N阱或基底之间的PN结漏电流增加,从而使PMOS晶体管的性能进一步地恶化。It should be noted that, in the prior art, since the Si-Ge chemical bond has a larger lattice constant than the Si-Si chemical bond, if the conventional method is used to directly epitaxial on the Si substrate at the bottom of the PMOS source-drain groove Growing a strained SiGe layer will generate a large stress concentration at the SiGe/Si interface, thus forming defects at the interface. The thin film grown in this way has extremely high linear dislocation density and lacks the means to eliminate defects. The defect rate can only be reduced by controlling the content of Ge in SiGe and optimizing the epitaxy process. However, reducing the content of Ge will reduce the stress exerted by the formed silicon germanium stress layer on the channel region, so that the effect of improving hole mobility cannot be achieved; and the effect of optimizing the epitaxial process in reducing defects is also very limited. Moreover, the flatness of the SiGe thin film will be relatively rough, resulting in more defects in the entire SiGe thin film. These defects will weaken the stress in the channel, thereby affecting the performance of the PMOS transistor. Moreover, these defects will also increase the leakage current of the PN junction between the source-drain region and the N-well or the substrate, thereby further deteriorating the performance of the PMOS transistor.
相比于现有技术,本发明在PMOS源漏区域采用选择性外延生长应变SiGe层前,先在平面的半导体基底上外延生长一层硅锗合金层和单晶硅层,并通过控制此硅锗合金层中锗的含量,避免了在SiGe/Si界面处产生较大的应力聚集而引起的缺陷,以及因硅锗合金层在不同晶向上生长速率的不同而引起的成膜缺陷,因此,硅锗合金层成膜均匀、缺陷少;然后,再通过刻蚀单晶硅层形成PMOS源漏凹槽,并使下方的硅锗合金层露出,以此硅锗合金层作为基底,在其上采用选择性外延的方法继续生长应变硅锗合金应力层,避免了在后续外延生长应变硅锗合金应力层时锗和基底硅的直接接触,仅利用反应气体直接生长应变SiGe合金层,新的外延应变SiGe合金层的Si-Ge化学键的晶格常数与作为基底的SiGe合金层的Si-Ge化学键的晶格常数相匹配,不会产生失配位错,从而抑制了原有的会在SiGe/Si界面处形成缺陷的现象。并且,此时新的外延应变SiGe合金层将优先在作为基底的平整的SiGe合金层上均匀地形核生长,整个SiGe薄膜的平整度就较好,使薄膜的质量也得到了保证。因此,本发明在确保对PMOS器件的沟道施加适当的应力的同时,又能够抑制现有技术存在的由于SiGe/Si界面处存在缺陷而引起的结漏电现象,进而提高PMOS器件的整体电学性能。此外,本发明的方法与现有的工艺可以很好地兼容,能够为工艺集成提供较大的灵活性。Compared with the prior art, the present invention first epitaxially grows a silicon-germanium alloy layer and a single crystal silicon layer on a planar semiconductor substrate before using the selective epitaxial growth of the strained SiGe layer in the PMOS source and drain regions, and controls the silicon The content of germanium in the germanium alloy layer avoids the defects caused by the large stress concentration at the SiGe/Si interface, and the film-forming defects caused by the different growth rates of the silicon-germanium alloy layer in different crystal directions. Therefore, The silicon-germanium alloy layer is formed uniformly and has few defects; then, the PMOS source-drain groove is formed by etching the single-crystal silicon layer, and the silicon-germanium alloy layer below is exposed. The strained silicon-germanium alloy stress layer is continued to be grown by selective epitaxy, which avoids the direct contact between germanium and substrate silicon during the subsequent epitaxial growth of the strained silicon-germanium alloy stress layer, and only uses the reactive gas to directly grow the strained SiGe alloy layer. The new epitaxy The lattice constant of the Si-Ge chemical bond of the strained SiGe alloy layer is matched with the lattice constant of the Si-Ge chemical bond of the SiGe alloy layer as the substrate, and no misfit dislocations will be generated, thereby suppressing the original dislocation in SiGe/ The phenomenon of defect formation at the Si interface. Moreover, at this time, the new epitaxial strained SiGe alloy layer will preferentially grow uniformly on the flat SiGe alloy layer as the substrate, and the flatness of the entire SiGe film is better, so that the quality of the film is also guaranteed. Therefore, while ensuring proper stress is applied to the channel of the PMOS device, the present invention can suppress the junction leakage phenomenon existing in the prior art due to defects at the SiGe/Si interface, thereby improving the overall electrical performance of the PMOS device . In addition, the method of the present invention is well compatible with existing processes and can provide greater flexibility for process integration.
以上所述的仅为本发明的优选实施例,所述实施例并非用以限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。The above are only preferred embodiments of the present invention, and the embodiments are not intended to limit the scope of patent protection of the present invention. Therefore, all equivalent structural changes made by using the description and accompanying drawings of the present invention should be included in the same way. Within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410509890.9A CN104241141A (en) | 2014-09-28 | 2014-09-28 | Method for manufacturing embedded silicon-germanium strained PMOS (P-channel metal oxide semiconductor) device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410509890.9A CN104241141A (en) | 2014-09-28 | 2014-09-28 | Method for manufacturing embedded silicon-germanium strained PMOS (P-channel metal oxide semiconductor) device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104241141A true CN104241141A (en) | 2014-12-24 |
Family
ID=52228990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410509890.9A Pending CN104241141A (en) | 2014-09-28 | 2014-09-28 | Method for manufacturing embedded silicon-germanium strained PMOS (P-channel metal oxide semiconductor) device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104241141A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109950153A (en) * | 2019-03-08 | 2019-06-28 | 中国科学院微电子研究所 | Semiconductor structure and method of making the same |
CN111218715A (en) * | 2019-11-28 | 2020-06-02 | 上海华力集成电路制造有限公司 | Method for improving growth of strained silicon under different layout characteristics |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060030093A1 (en) * | 2004-08-06 | 2006-02-09 | Da Zhang | Strained semiconductor devices and method for forming at least a portion thereof |
CN103378132A (en) * | 2012-04-25 | 2013-10-30 | 台湾积体电路制造股份有限公司 | Strained structure of semiconductor device and method of making the strained structure |
US20140246696A1 (en) * | 2013-03-04 | 2014-09-04 | Globalfoundries Inc. | Transistor with embedded strain-inducing material formed in cavities formed in a silicon/germanium substrate |
-
2014
- 2014-09-28 CN CN201410509890.9A patent/CN104241141A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060030093A1 (en) * | 2004-08-06 | 2006-02-09 | Da Zhang | Strained semiconductor devices and method for forming at least a portion thereof |
CN103378132A (en) * | 2012-04-25 | 2013-10-30 | 台湾积体电路制造股份有限公司 | Strained structure of semiconductor device and method of making the strained structure |
US20140246696A1 (en) * | 2013-03-04 | 2014-09-04 | Globalfoundries Inc. | Transistor with embedded strain-inducing material formed in cavities formed in a silicon/germanium substrate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109950153A (en) * | 2019-03-08 | 2019-06-28 | 中国科学院微电子研究所 | Semiconductor structure and method of making the same |
CN109950153B (en) * | 2019-03-08 | 2022-03-04 | 中国科学院微电子研究所 | Semiconductor structure and method of making the same |
CN111218715A (en) * | 2019-11-28 | 2020-06-02 | 上海华力集成电路制造有限公司 | Method for improving growth of strained silicon under different layout characteristics |
CN111218715B (en) * | 2019-11-28 | 2021-04-13 | 上海华力集成电路制造有限公司 | Method for improving growth of strained silicon under different layout characteristics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9390982B2 (en) | CMOS devices with reduced leakage and methods of forming the same | |
CN102931083B (en) | Semiconductor device and manufacture method thereof | |
US10141406B2 (en) | Tensile strained NFET and compressively strained PFET formed on strain relaxed buffer | |
TWI545769B (en) | Semiconductor device structure and forming method thereof | |
CN105448991A (en) | Transistor and method of forming same | |
JP2015008291A (en) | Method for forming a strained semiconductor structure | |
CN104576391A (en) | PMOS device and preparation method thereof | |
CN105551931A (en) | Methods of forming strained epitaxial semiconductor material(s) above a strain-relaxed buffer layer | |
CN102931058B (en) | Method for forming semiconductor structure and method for forming P-channel metal oxide semiconductor (PMOS) transistor | |
US9646830B2 (en) | Semiconductor structure and fabrication method thereof | |
US20170250186A1 (en) | Method of fabricating semiconductor device and semiconductor device fabricated thereby | |
WO2016124110A1 (en) | Semiconductor device and manufacturing method therefor, and electronic device | |
CN104241141A (en) | Method for manufacturing embedded silicon-germanium strained PMOS (P-channel metal oxide semiconductor) device | |
CN104064521A (en) | Semiconductor process method and semiconductor structure | |
CN104851783B (en) | A kind of germanium silicon boron outer layer growth method | |
CN104538448A (en) | PMOS structure with SiGe source and drain area and manufacturing method thereof | |
WO2017067157A1 (en) | Method of manufacturing improving quality of sige source/drain region | |
CN102931082B (en) | Semiconductor device and manufacturing method thereof | |
CN104064448A (en) | Manufacturing method of SiGe source/drain region | |
US20170213897A1 (en) | Method of fabricating pmos devices with embedded sige | |
US9831344B2 (en) | Semiconductor device and method for fabricating the same | |
JP2008078519A (en) | Method for manufacturing semiconductor device | |
EP3244440A1 (en) | Semiconductor structure and fabrication method thereof | |
CN104425379A (en) | Forming method of semiconductor device | |
CN104821336B (en) | For improving the method and system of device surface uniformity using conformal packed layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141224 |
|
WD01 | Invention patent application deemed withdrawn after publication |