[go: up one dir, main page]

CN1042181A - 人尿激酶原的生产 - Google Patents

人尿激酶原的生产 Download PDF

Info

Publication number
CN1042181A
CN1042181A CN89108587A CN89108587A CN1042181A CN 1042181 A CN1042181 A CN 1042181A CN 89108587 A CN89108587 A CN 89108587A CN 89108587 A CN89108587 A CN 89108587A CN 1042181 A CN1042181 A CN 1042181A
Authority
CN
China
Prior art keywords
prouk
sequence
pro
plasmid
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN89108587A
Other languages
English (en)
Inventor
安内·布兰德兹
波洛·萨米恩道斯
盖塔诺·沃尔西尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfizer Italia SRL
Original Assignee
Farmitalia Carlo Erba SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Farmitalia Carlo Erba SRL filed Critical Farmitalia Carlo Erba SRL
Publication of CN1042181A publication Critical patent/CN1042181A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6456Plasminogen activators
    • C12N9/6462Plasminogen activators u-Plasminogen activator (3.4.21.73), i.e. urokinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21073Serine endopeptidases (3.4.21) u-Plasminogen activator (3.4.21.73), i.e. urokinase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供一种生产非糖基化单链尿激酶原(prouk)的方法。该方法包括培养已用携带编码prouk之cDNA顺序的质粒转化的大肠杆菌菌株。

Description

本发明涉及生产非糖基化单链尿激酶原(以下简称proUK)的重组DNA方法,特别是涉及生产非糖基化尿激酶原的方法,该方法包括从已建立的细胞系中提取mRNA,基于所说的mRNA制备cDNA,将cDNA插入载体内,再将所得质粒导入细菌细胞中,从而产生转化株并由所说的细菌细胞中回收非糖基化的proUK。本发明还涉及用于上述方法的某些表达质粒。
由于对调节生理血纤维蛋白溶解作用之分子间相互影响的认识逐渐加深,已导致了在了解血凝块溶解机制和开发新的血栓溶解剂方面的重要进展。
在人血纤维蛋白溶解系统中,酶原即血纤维蛋白溶酶原可被几种类型的血纤维蛋白溶酶原激活剂活化成活性酶,即血纤维蛋白溶酶(Collen,D.and        Lijnen,H.R.,CRC        Critical        Reviews        in        oncology/hematology,4,n.3,P.249,1986;Verstraete,M.and        Collen,D.:Blood,67,n.6,P.1529,1986)。血纤维蛋白溶酶是负责降解血凝块中血纤维蛋白成分的主要蛋白酶(Rakoczi,I.,Wiman,B.and        Collen,D.:Biochim.Biophys.Acta,540,P.295,1978;Robbins,K.C.,Summaria,L.,Hsieh,B.;and        Shah,R.S.:J.Biol.Chem.242,P.2333,1967;Wiman,B.;Eur.J.Biochem.76,P.129,1977)。
然而,血纤维蛋白也可对参予凝血途径的几种血浆蛋白,即血纤维蛋白原、因子Ⅴ和Ⅷ发挥其蛋白水解作用(Collen,D.and        Lijnen,H.R.,CRC        Critical        Reviews        in        oncology/hematology,4,n.3,P.249,1986;Verstraete,M.and        Collen,D.:Blood,67,n.6,P.1529,1986;Wiman,B.,Lijnen,H.R.and        Collen,D.;Biochim.Biophys.Acta,579,P.142,1979)。
血纤维蛋白溶酶原的活化可在全身水平上发生,导致循环血纤维蛋白溶酶迅速被α2抗血纤维蛋白溶酶中和,从而不能用于血纤维蛋白溶解作用(Collen,D.and Lijnen,H.R.,CRC Critical Reviews in oncology/hematology,4,n.3,P.249,1986;Verstraete,M.and Collen,D.:Blood,67,n.6,P.1529,1986)。
当α2抗血纤维蛋白溶酶水平明显降低时,血纤维蛋白溶酶被中和的迅速减慢。且不只对血纤维蛋白,还对如前所述的血凝蛋白产生其蛋白溶解作用。
血浆中血纤维蛋白原、因子Ⅴ和Ⅷ的浓度过度降低,加上血纤维蛋白原对止血过程、血小板聚集及血纤维蛋白聚合产生的抑制作用将导致止血缺陷,进而造成出血的危险(Latallo,Z.S.and        Lopaciuk,S.;Thrombos.Diath.Haemouh.,56,P.253,1973;Totty,W.G.,Gilula,L.A.,Mc.Clennman,M.,Ahmed,P.,and        Sherman,L.,Radiology,143,P.59,1982)。另一方面,血纤维蛋白溶酶原的活化可在血纤维蛋白水平上发生(即血纤维蛋白结合的血纤维蛋白溶酶原活化),形成与血纤维蛋白结合的血纤维蛋白溶酶(Collen,D.and Lijnen,H.R.,CRC Critical Reviews in oncology/hematology,4,n.3,P.249,1986;Verstraete,M.and Collen,D.:Blood,67,n.6,P.1529,1986),从而不受α2抗纤维蛋白溶酶的影响,且不能诱发全身性血纤维蛋白原溶解作用。
常规用于人体血栓溶解治疗的血纤维蛋白溶酶原激活剂即尿激酶和链激酶对血纤维蛋白并没有特异活性。两种化合物可相对无差异地活化循环的或与血纤维蛋白结合的血纤维蛋白溶酶原(Zamarron,C.,Lijnen,H.R.,Van        Hoef,B.,and        Collen        D.,Tromb.Haemostas.52,P.19,1984;Samama,M.,and        Kher,A.,Sem.Hop.Paris,61,n.20,P.1423,1985)。因此,在用链激酶和尿激酶治疗时,尽管已证明它们具有临床效果,但由于常常出现全身性止血障碍继而增加出血危险,而限制了这些血栓溶解剂的广泛临床应用(Samama,M.,and        Kher,A.Sem.Hop.Paris,61,n.20,P.1423,1985;Maizel,A.S.,and        Bookstein,J.J.:Cardiovasc.Intervent.Radiol.,9,P.236,1986;Bell,W.R.,Thromb.Haemostas.,35,P.57,1976;Acar,J.,Vahanian,A.,Michel,P.L.,Slama,M.,Cormier,B.and        Roger,V.,Seminavs        in        Thromb.and        Haemost.,13,n.2,P.186,1987;Gruppo        Italiano        Per        lostudio        della        Streptochinase        nell′infartomiocardico(GISSI);Lancet,1,P.397,1986)。
相反,组织型血纤维蛋白溶酶原激活剂(t-PA)(Hoylaertes,M.,Ryken,D.C.,Lijnen,H.R.and Collen,D.J.Biol.Chem.,257,n.6,P.2912,1982)和新近的尿激酶原(pro-UK)(Husain,S.S.,and Gurewich,V.,Arch.Biochem.Biophys.220,P.31,1983)这两种天然蛋白质,被证明是循环血纤维蛋白溶酶原的弱激活剂,是与血纤维蛋白结合之血纤维蛋白溶酶原的强激活剂,它们不会引起全身性止血机制障碍或α2抗血纤维蛋白溶酶与血纤维蛋白溶酶原的消耗,因而在临床应用时出血危险较小。
已根据t-PA通过位于分子内三个二硫键结合的“Kringle区域”中的特异性赖氨酸位点结合血纤维蛋白的能力解释了t-PA的血纤维蛋白特异性血栓溶解活性。
因此,可在没有明显止血障碍的情况下活化血纤维蛋白结合的血纤维蛋白溶酶原(Collen,D.,and        Lijnen,H.R.:Haemostasis;16,n.3,P.25,1986)。另一方面,proUK(也称之为单链尿激酶型血纤维蛋白溶酶原激活剂,scu-PA)并不与血纤维蛋白结合,但它表现有血纤维蛋白特异性血栓溶解活性,且没有全身性止血因子消耗(Pannell,R.and        Gurewich,V.,Blood,67,P.1215,1986;Gurewich        V.,and        Pannell,R.;Seminars        in        Tromb.and        Haemost.,13,n.2,P.146,1987;Lijnen,H.R.,Zamarron,C.,Blader,M.,Winbler,M.E.,and        Collen,D.,J.Biol.Chem.261,P.1253,1986)。
将重组t-PA在急性心肌梗塞病人身上作了多中心临床试用,结果表明其在重新疏通被阻塞之冠状动脉上比链激酶有效得多(The        European        Cooperative        Study        Group        for        Recombinant        Tissue-type        Plasminogen        Activator;Lancet,1,P.842,1985;Sheehan,F.H.,Braunwald,E.,Canner,P.,Doodge,H.T.,Gore,J.,Van        Natta,P.,Passamani,E.R.,Williams,D.O.,Zaret,B.:Circulation,75,4,P.817,1987)。
尿激酶原目前处在早期临床试用阶段,它在血栓溶解活性和安全性方面被认为至少是与t-PA一样有效的(Van        de        Werf,F.,Nobuhara,M.,and        Collen,D.:Annals        of        Internal        Medicine,104,P.345,1986;Van        de        Werf,F.,Vanhaecke,J.,De        Geest,H.,Verstraete,M.,and        Collen,D.:Circulation,74,n.5,P.1066,1986)。
发现尿激酶型血纤维蛋白溶酶原激活剂(u-PAs)在人尿、血浆和各种细胞系的条件培养基中至少有三种不同的存在形式。第一种形式是由410个氨基酸的纤维蛋白溶解活性多肽组成的U-PA,其表观分子量为54000道尔顿,含有两条以二硫键连接的链(Gunzler,W.A.,Steffens,G.J.,Oetting,F.,Kim,SM.A.,Frankus,E.,and        Flohe′,L.:Hoppe-Seyler′s        Z.Physiol.Chem.363,P.1155,1982)。
A链或轻链含有157个氨基酸及一个三重二硫键结合的“Kringle”结构。该链还含有一个正常和肿瘤细胞(单核细胞、类单核细胞及A431表皮细胞)的受体结合区。B链或重链(30000道尔顿)由253个氨基酸组成并含有催化区域。
U-PA的这一分子形式通常被称为尿激酶(UK)、双链尿激酶(TC-UK)或高分子量尿激酶(HMW-UK)(Gunzler,W.A.,Steffens,G.J.,Oetting,F.,Buze,G.,and        Floh′e,L.:Hoppe-Seyler′s        Z.Physiol.Chem.363,P.133,1982)。
第二种形式的U-PA分子量为33000道尔顿,是由HMW形式经血纤维蛋白溶酶或胰蛋白酶的蛋白水解降解而产生的,称为低分子量尿激酶(LMW-UK)。蛋白质顺序测定结果显示,LMW-UK与HMW-UK基本相同,不同的是它没有经血纤维蛋白溶酶或胰蛋白酶的降解作用特异除去的NH2末端135个氨基酸(Steffens,G.J.,Gunzler,W.A.,Oetting,F.,Frankus,E.,and Flohe′,L.,Hoppe-Seyler′s Z.Physiol.Chem.,363,P.1043,1982)。天然尿激酶原(proUK)是单链形式的尿激酶(54000道尔顿),也称为单链尿激酶型血纤维蛋白溶酶原激活剂(scu-PA)。如前所述,proUK表现有血纤维蛋白特异性血栓溶解活性,因此与目前使用的高分子量或低分子量尿激酶相比,其为一种更好的血栓溶解剂。
为了生产尿激酶原,本发明人发展了用于大量制备proUK多肽链的重组DNA方法。
文献中已描述了几种生产proUK的方法(Holmes,W.E.,Pennica,D.,Blaber,M.,Rey,M.W.,Gunzler,W.A.,Steffens,G.J.and        Heynecker,H.L.;Biotechnology,3,P.923,1985;European        Patent        Application        0092182)。虽然本发明所述的方法中利用了在大肠杆菌中表达异源蛋白质的重要参数,但此前却从未将这些组合应用于生产重组proUK。
主要参数(其组合可用于建立大肠杆菌的重组菌株,以产生proUK,并代表了本发明的目的)是大肠杆菌启动子Ptrp、来自噬菌体MS-2的Shine-Dalgarno顺序MS-2,以及作为表达人proUK基因之宿主的大肠杆菌菌株(见下文)。这种组合是很严格的,用其他表达信号取代这些参数中之一,均不能产生这样多的proUK。
因此,本发明的主题是一种制备非糖基化proUK的方法,其特征在于非糖基化proUK是在大肠杆菌B之大肠杆菌启动子Ptrp和Shine-Dalgarno顺序MS-2的控制下表达的。
本发明涉及用遗传工程技术构建能高水平表达人ProUK基因的大肠杆菌菌株。因此,这些重组菌株能够大量合成ProUK多肽链。
为了分离所说的大肠杆菌重组菌株,必须经过下列几个步骤:
-分离编码ProUK的人c        DNA基因;
-将所说的基因插入适当的表达质粒中;
-用工程质粒转化选择的大肠杆菌菌株,并在适当条件下培养转化株。
1)克隆编码ProUK的人c        DNA基因
为了得到编码人尿激酶原的c        DNA克隆,本发明人利用了文献中已发表的蛋白质顺序资料(Gunzler,W.A.,Steffens,G.J.,Oetting,F.,Kim,SM.A.,Frankus,E.,and        Flohe′,L.:Hoppe-Seyler′s        Z.Physiol.Chem.,363,P.1155,1982;Gunzler,W.A.,Steffens,G.J.,Oetting,F.,Buze,G.,and        Flohe′,L.:Hoppe-Seylers′Z.Physiol.Chem.363,P.133,1982;Steffens,G.J.,Gunzler,W.A.,Oetting,F.,Frankus,E.,and        Flohe′,L.,Hoppe-Seylers′Z.Physiol.Chem.,363,P.1043,1982)。
为此,制备了特异性探针并筛选了适用的cDNA文库。
化学合成了编码选择之单链尿激酶型血纤维蛋白溶酶原激活剂肽的寡核苷酸(Caruthers,M.H.,Gassen,H.G.and        Lang,J.A.(eds)Verlag-Chimie,Weinheim,Deefield        Beach,Basel,P.71,1982),以用作监测proUK        mRNA的富集和由富集的cDNA文库中选择含尿激酶原cDNA之克隆的探针。这些寡聚物长度为14至17个单核苷酸(mer),各寡聚物是作为单一顺序(定名为P7)或含两个(定名为P1、P2、P3)或16个(定名为P6)寡核苷酸的储备形式合成的。用Northern杂交法试验这些寡聚物对proUK的特异性(参见图1)。为进行这一分析,从HEP-3类表皮癌中提取含PolyA的RNA(Miskin,R.,Haemostasis(Switzerland),11,No.suppl.1,P.63,1982)。如Suggs等人进行Southem印迹杂交所计算的(Suggs,S.V.,Hirose,T.,Miyake,T.,Kawashima,E.G.,Johnson,M.Y.,Itakura,K.and        Wallach,R.B.,Developmental        Biology        Using        Purified        Genes;Brown,D.D.and        Fox,C.F.(eds),Academic        Press,New        York,P.638,1981),在杂交反应后对每种寡聚物的洗涤温度均调到低于最小熔融温度2-5℃。如图1所示,该试验中有五个proUK探针与一个共同的约2.3Kb的主要癌mRNA带发生了反应,其大小正是预期的proUK        mRNA的大小。
使用从MEp-3类表皮癌中富集的mRNA部分进行克隆。提取RNA制品并经两次连续蔗糖梯度约富集3倍。用Oligo-dT作引物,按已知方法合成cDNA(Efstratiadis,A.,Kafatos,F.C.,Maxam,A.M.and        Maniatis,T.,Cell,7,P.279,1976;Buell,G.N.,Wickens,M.P.,Payvar,F.and        Schimke        R.T.,J.Biol.Chem.,253,P.2471,1978)。用聚丙烯酰胺凝胶电泳法分离较长的分子并电洗脱适当的凝胶部分。然后用标准的苯酚/氯仿提取法提取cDNA并用乙醇沉淀之。
按照改良的Davis方法(Maniatis,T.,Fritsch,E.F.,Sambrook,J.:Molecular Cloning,A Labratory Manual,Cold Spring Harbour Laboratory,Cold Spring Harbour,NY,1982),首先将这些cDNA分子连接到EcoRI接头上,然后再克隆到噬菌体λgt10载体中。如此便构建了含2×105个Pfu(噬斑形成单位)的文库。
在两个对应滤膜上筛选文库的一半,其中一个滤膜带有32P标记的探针P1,另一个滤膜带有探针P3和P6的混合物。总共得到36个阳性克隆,其中七个在两对应滤膜上均显阳性,从而证明cDNA插入物相当于大部分ProUK编码顺序。
与3个探针杂交的重组噬菌体即使用探针P1纯化的噬斑,可用EcoRI限制性酶切法和DNA顺序测定法进一步确定其特征。总cDNA文库中阳性克隆部分表明尿激酶原mRNA在HEp-3类表皮癌中的出现频率约为0.01%。
对四个ProUK        cDNA的顺序分析显示,其中三个克隆有缺失或顺序不与酶的氨基酸顺序一致。只有一个克隆,即λUc17具有与已知的氨基酸顺序完全相符的顺序。
然而,λUc17并不包含mRNA的整个3′非编码端,而且缺少编码顺序的30个核苷酸。将含有5′非编码区和大部分编码顺序的1325bp        λUc17        SmaⅠ-BamHⅠ片段,与含有来自另一个克隆λUc6的其余缺失3′区的BamHⅠ-EcoRⅠ片段连接,即构建成全长前尿激酶原cDNA克隆(图2)。
将该构建物连接到质粒载体pUN121(Nilsson        B.,Uhlen,M.,Josephson        S.,Gatenbeck        S.and        Philipson        L.,Nucleic        Acid        Research        11,P.8019,1983)中,从而除去大部分cI基因,得到质粒pcUK176(图3)。
图4中给出了完整cDNA克隆的DNA顺序。该顺序由2296个核苷酸组成,在5′端包含69个非编码核苷酸,中间有1296个编码核苷酸,3′端则是931个非编码核苷酸,之后有一超过80个残基的Poly(A)尾部。
编码顺序是以编码含“前尿激酶原”之20个氨基酸的60bp开始的(Heyneker,H.L.,Holmes,W.E.and        Vehar,G.A.(1983),European        Patent        Application        Publ.No.0092182),然后是编码完整前尿激酶原蛋白的顺序,此与氨基酸顺序完全符合。
已通过顺序和限制性酶切分析检查了该完整顺序,并将编码成熟之前尿激酶原的顺序插入到用于生产的表达载体中。
2)ProUK表达质粒的构建
使用存在于PcUK176中的原始全长cDNA构建前尿激酶原表达质粒,即pEC44,其中的proUK基因分别处于启动子Ptrp和“Shine-Dalgarno”顺序MS-2的转录与转译控制下。图7中显示了质粒pEC44。
为得到pEC44而构建了几个中间质粒。由pDS20(图5)(Duester,G.,Helfard,R.M.and        Holmes,W.M.:Cell        30,P.855,1982)开始,我们首先用来自M13mp8载体(Vieira,J.and        Messing,I.,Gene19,P.259,1982)的EcoRⅠ-HindⅢ多聚接头顺序取代编码半乳糖操纵子启动子Pga1的EcoRⅠ-HindⅢ片段,得到一新的质粒,定名为PAB1(图5)。
由质粒PDR720(购自Pharmacia公司)中作为EcoRⅠ-SalⅠ限制性片段得到启动子Ptrp。将该片段在EcoRⅠ和Sa1Ⅰ位点之间插到pAB1的多聚接头区中。如此我们得到新质粒pFC10(图5)。
pFC10可被看作是基础载体,在该载体中我们插入了proUK基因及来自噬菌体MS-2的“Shine-Dalgarno”顺序。
为了表达成熟的尿激酶原,必须使由成熟蛋白质第一个密码子开始的ProUK编码顺序融合到起始因子三联体ATG上。这样“Shine-Dalgarno”顺序必定处在这一融合之前。
来自细胞噬菌体MS-2的核糖体结合部位(RBS)是已知的,并且已公开了它们的核苷酸顺序(Fiers,W.,Contreras,R.,Duerinck,F.,Haegeman,G.,Iserentant,D.,Merregaert,J.,Min        Jou,W.,Molemans,F.,Raeymaekers,A.,Van        den        Berghe,A.,Volckaert,G.and        Ysebaert,M.,Nature        260,P.500,1976)。
一般认为它是促使mRNA有效转录的强信号。因此我们选择了这个区域作为生产ProUK的转译信号。为了实现与ProUK基因的正确核苷酸融合,我们合成了直接连接到ProUK基因开始端之MS-2RBS的双链DNA区域。一个TagⅠ位点存在于成熟ProUK顺序的第25个核苷酸上。我们利用了这一位点的优点,并用化学合成方法分离了下列DNA顺序:
HindⅢ
5′-AGCTTTAATAGACGCCGGCCATTCAAACATGAGGATTA
    3′-AATTATCTGCGGCCGGTAAGTTTGTACTCCTAAT
            TaqⅠ
CCCATGAGCAATGAACTTCATCAAGTTCCAT-3′
GGGTAC TCGTTACTTGAAGTAGTTCAAGGTAGC-5′
该顺序上游侧接HindⅢ位点,下游侧接TaqⅠ位点。其中粗体字母显示起始密码子ATG。编码成熟ProUK顺序之起始区的顺序下面划有横线。
合成的片段被用于与下列两个限制性片段的连接反应:
-来自pcUK176的TaqⅠ-Bg1Ⅱ片段(图3),它携从核苷酸155至核苷酸392的ProUK片段(参见图4);
-来自pEC10的大的BamHⅠ-HindⅢ片段(图5),它携带氨苄青霉素抗性基因及启动子Ptrp。
通过这一构建,我们分离了一个新的质粒,定名为pAB8,其构建图解如图6所示。该质粒中,启动子Ptrp和MS-2RBS被融合到成熟proUK基因的前260个核苷酸上(相当于图4中的核苷酸131-391)。另外,pAB8有一独特的NcoⅠ位点,在其中我们通过pcUK176的NcoⅠ-NcoⅠ限制性片段插入了其余的proUK顺序。该连接过程在非编码区中proUK基因的下游造成了NcoⅠ-Bg1Ⅱ片段的重复。但这种重复并不影响质粒的稳定性。通过这一构建信号,现在能够指导完整proUK顺序的合成(参见图6)。
到现在为止,已描述的所有质粒都是基于氨苄青霉素抗性在大肠杆菌K-12宿主菌株C-600galk(ATCC        33955)中选择的。它们确实携带编码β内酰胺酶的基因(β内酰胺酶可在培养基中降解氨苄青霉素)。早期实验表明,可将pEC16成功地插入大肠杆菌B型菌株中,并导致高水平产生重组ProUK。
但为了适应生产重组DNA衍生产品之国际准则的要求,我们修饰了质粒pFC16,以得到能够以高水平表达ProUK基因的新的四环素抗性质粒。具体地说,我们已从已知的质粒pBR322(Maniatis,T.,Fritsch,E.F.,Sambrook,J.:Molecular        Cloning.A        Iaboratory        manual.Cold        Spring        Harbour        Laboratory.Cold        Spring        Harbour,NY,1982)(图6)中分离了一个EcoRⅠ-AvaⅠ片段,并使用DNA聚合酶Ⅰ的Klenow片段将其粘性末端填成平头(Perbal,B.,A        Wiley-Interscience        Publication.John        Wiley        And        Sons,P.231,1984)。如此,我们便用四环素抗性基因取代了β内酰胺酶基因及其控制顺序的氨基末端部分。然后以与ProUK基因相同的取向连接四环素抗性基因。
此外,在PvuⅠ和EcoRⅠ位点之间连接处产生了一个前已填充的新的EcoRⅠ位点。新的质粒PEC44(参见图7)是用于生产重组尿激酶原的最后构建物。
质粒PEC44(有四环素抗性的)和pFC16(有氨苄青霉素抗性的)是本发明的目的之一。有关表达异源蛋白的文献(Remaut        E.,Stranssens        P.and        Fiers        W.,Nucl.Acid.Res.11,P.4677,1983)已经描述了存在于这两个质粒中的表达信号,即启动子Ptrp和Shine-Dalgarno顺序“MS-2”,但此前从未将它们联合用于表达ProUK基因。
3)大肠杆菌B型菌株的转化
本发明的第二个主要目的是使用大肠杆菌B型菌株表达和生产尿激酶原。本发明人发现,在大肠杆菌B型菌株中插入质粒PFC16或PFC44将导致高水平产生ProUK多肽链。令人感兴趣的是,在其他大肠杆菌菌株(K-12型、C型、W型等)中插入质粒PFC16或PFC44则不能产生如此多的ProUK。可见,宿主菌株类型对于成功地生产ProUK似乎是很关键的。
可以得到大肠杆菌的几个B型菌株,并成功地用于表达ProUK基因。优选的菌株是:ATCC        12407、ATCC        11303、NCTC10537。下面是用质粒PFC44转化菌株NCTC10537,继而培养转化株的一个实例。
用Mandel和Higa的氯化钙法(Mandel,M.and Higa,A.,J.Mol.Biol.53,P.154,1970)制备菌株NCTC10537的感受态细胞。用2μl质粒DNA(浓度约5μg/ml)转化约200μl上述细胞制剂(1×109细胞/ml)。在含有12.5μg/ml四环素的L琼脂平板上选择转化体。用木质牙签在含有同种抗生素的L-琼脂板上划线接种两个小菌落(每个牙签划三条长约1cm的线)。37℃保温12小时后,通过接种于10ml LB培养基(含浓度为2.5μg/ml的四环素)并于37℃保温过夜,检查划线部分是否产生人尿激酶原。第二天用含有同浓度四环素的培养基将培养物稀释100倍,并于37℃保温6小时。按Laemmli所述的十二烷基磺酸钠聚丙烯酰胺凝胶电泳法(Laemmli,U.K.,Nature,227,P.680,1970)分析250μl等分培养物中的总细胞蛋白量(O.D.550=1-1.5)。在两份样品中查到分子量相当于非糖基化人尿激酶(45000道尔顿)的一条主要蛋白带(图8)。
随意选出一组相当于菌落No.2(菌落2)的划线,作进一步定性并选为ProUK生产菌株。
材料和方法
生长培养基:按Maniatis等人所述的方法(Maniatis,T.,Fritsch,E.F.,Sambrook,J.:Molecular        Cloning.A        Iaboratory        manual.Cold        Spring        Harbour        Laboratory.Cold        Spring        Harbour,Ny,1982)制备培养基。使用Difcobacto产品制备LB培养基、LB琼脂和MacConkey琼脂。M9培养基中含有:Na2HPO4,6g/l;KH2PO4,3g/l;NaCl,0.5g/l;NH4Cl,1g/l。上述各组分经高压消毒(1大气压,120℃,20分钟)后,每升内加入1M MgSO41ml、1M CaCl20.1ml、22%葡萄糖16ml、0.5mg/ml硫胺素(SIGMA)20ml和2%酪蛋白氨基酸(DIFCO)20ml。所得溶液经过滤除菌。
限制性核酸内切酶及其他酶的使用
限制性核酸内切酶、T4        DNA连接酶及DNA聚合酶Ⅰ(Klenow片段)购自New        England        Biolabs公司和Boehringer        Mannheim公司;这些酶均按制造商要求的条件使用。
质粒DNA的制备:基于Birnboim和Doly的方法(Birnboim,H.C.and        Doly,J.,Nucleic        Acid        Res.7,P.1513,1979)制备质粒DNA,其中包括使用染料-浮力密度离心法(dye-buoyant        density        centrifugation)。
DNA顺序分析:使用Amersham        M13顺序分析试剂盒,按照制造商推荐的方法获得顺序资料。简单地说,这一基于Sanger方法(Senger,F.,Science        214,P.1205,1981)的技术包括在以其单链构型得到的适用M13载体(“mp家族”)中再克隆各限制性片段。单链形式与“通用引物”一起退火后,有可能用DNA聚合酶Ⅰ(Klenow片段)拷贝DNA模板。经在四种二脱氧核苷酸存在下拷贝模板,即可能导致链延伸的随机终止。然后在变性聚丙烯酰胺凝胶上分离截短的片段,并经放射自显影显示电泳图形。
寡核苷酸:使用Applied        Biosystem(ABI)DNA合成仪,按照ABⅠ使用说明书介绍的程序合成用于质粒构建及在DNA顺序分析中用作引物的寡核苷酸。
其他操作:按照Maniatis等人所述的方法(Maniatis,T.,Fritsch,E.F.,Sambrook,J.:Molecular        Cloning.A        laboratory        manual.Cold        Spring        Harbour        Laboratory.Cold        Spring        Harbour,NY,1982)进行核酸的琼脂糖和聚丙烯酰胺凝胶电泳。按照Laemmli所述的方法(Laemmli,U.K.,Nature,227,P.680,1970)经聚丙烯酰胺凝胶电泳分离蛋白质。通过电泳进入透析袋,由琼脂糖凝胶中提取DNA,并经乙醇沉淀浓缩之。
图1显示了探针P1、P2、P3、P6和P7的核苷酸顺序、互补的mRNA顺序以及由探针编码的ProUK肽。
图2显示限制性内切酶裂解产物的大小和定位,这一结果是经用电泳法估计并经DNA顺序分析证实的。黑区代表成熟ProUK蛋白的编码顺序,划斜线的区域代表“前-原”肽编码顺序,白区为5′和3′非转译顺序。mRNA的5′端在左侧。限制图下方的线指示两部分克隆λUc17和λUc6的贡献。
图3显示携带已插入PUN12中以取代大部分cⅠ基因之cDNA克隆的EcoRⅠ-SmaⅠ片段。质粒PcUK176仍带有四环素和氨苄青霉素抗性。cI代表失活的CI蛋白。
图4显示克隆PcUK176的完整cDNA顺序及其相应的转译之氨基酸顺序。已用于质粒构建的限制性位点下面划有横线。成熟ProUK顺序中2264和2277位上的两个聚腺苷酸化位点及Ⅰ位的丝氨酸也以下划横线标示。
图5显示了四个中间构建物。携带通用本底构建元件的起始质粒PDS20经由不同的中间质粒松释了启动子Pga1、galk基因和β内酰胺酶基因。
图6显示包括质粒PFC16的另外三个中间构建物,其中所说的质粒可高水平地表达ProUK(详见正文)。
图7显示PFC44中成熟ProUK的编码顺序处于启动子Ptrp和来自噬菌体MS-2之“核糖体结合位点”的控制下。四环素基因已被插入到β内酰胺酶基因的位置,因此PFC44是对氨苄青霉素敏感的。
图8显示样品的电泳分析结果。按正文所述的方法制备和分析样品,并加于12.5%SDS-聚丙烯酰胺凝胶(丙烯对双丙烯酰胺之比为40∶1)。其中泳道1和2含有用PEC44转化之两个NCTC10537菌株培养物的材料。箭头指示重组尿激酶原蛋白的位置。泳道3显示得自对照宿主菌株NCTC10537的材料。泳道4中显示分子量标准。
本发明涉及生产非糖基化尿激酶原的重组DNA方法。该方法是基于在大肠杆菌菌株中插入编码ProUK的人基因,然后培养所说的转化菌株。
在大肠杆菌中生产异源蛋白质是现代生物工艺学的一个热门课题(Harris        T.J.R.and        Emtage        J.S.Microbiological        Sciences,3,P.28-31,1986)。当今分子生物学家充分利用了启动子、Shine-Dalgarno顺序、终止子等几种表达信号,用以选择表达所需的蛋白质。启动子启动信使RNA的合成,而Shine-Dalgarno顺序将保证mRNA有效地转译成多肽链。
然而,这些参数(信号)的结合是异源基因表达的一个重要特征。例如,将有效的Shine-Dalgarno顺序融合到不同的启动子区,可导致不同的表达水平。此外,携带表达信号之限制性片段的长度常常会影响生产水平(McCarthy        J.E.G.,Sebald        W.,Gross        G.and        Lammers        R.,Gene,41,P.201,1986)。
在建立有效生产方法的过程中,宿主菌株的选择也是一个关键性步骤。事实上,已知在不同菌株内插入同一表达质粒可出现很不相同的表达效率(Harris        T.J.R.and        Emtage        J.S.,Microbiological        Sciences,3,P.28-31,1986)。
虽然本发明描述的表达信号是现有技术中已知的,但它们的结合却从未用于人尿激酶原的特定表达。具体地说,本发明的质粒PFC16和PFC44携带处于大肠杆菌启动子Ptrp和噬菌体Shine-Dalgarno顺序MS-2控制下的ProUK基因。
因此,本发明公开的生产方法是基于使用与以前所述表达质粒不相同的质粒,即PFC16和PFC44,它们代表了本发明的一个新颖方面,也是本发明的目的之一。
另外,本文所公开的方法中利用了大肠杆菌B型菌株的优点。而现有文献中描述的表达方法是基于使用K-12型大肠杆菌菌株完成的。因此,在B型大肠杆菌菌株中生产ProUK代表了本发明的另一个新颖的方面。
该第二个方面是极为重要的。事实上,对宿主生物体的选择可以在几个步骤上影响整体生产过程。
例如,宿主类型可以显著地影响高生物量发酵过程。本发明人及其他小组的研究人员均已发现,B型大肠杆菌菌株要比其他菌株如K-12菌株更易于生长。在K-12菌株如C600传代重组菌株中插入同样的表达质粒,在发酵罐中并不能象重组B型菌株那样有效地生长。换句话说,当使用同样的表达质粒时,B型菌株中重组非糖基化ProUK的产率要更高些。
与选择宿主菌株有关的另一个重要特征是ProUK生产过程中的细菌污染物不同。某些污染物,如蛋白酶,可严重地影响重组产物的产率。
有趣的是,Winkler和Blaber(Winkler,M.E.,Blaber,M.:Biochemistry,25,n.14,P.4041,1986)于1986年已介绍了基于使用K-12菌株294(ATCC        31446)生产Pro-UK的方法。该方法中,作者必须采用多种措施以避免ProUK遭受蛋白水解作用。据作者分析,这些蛋白水解活性是由来自宿主菌株的细菌蛋白酶产生的。与之相反,本发明使用的B型菌株细胞提取物中蛋白水解活性要低得多。特别是发现由K-12菌株C600中提取的Pro-UK要比从B菌株中提取的Pro-UK污染尿激酶的量高。
总之,本发明人相信,与现有技术相比,使用本文描述的方法可获得更高产率的重组Pro-UK,此代表了一个不可预料的结果,并且是对已知方法的一种改进。

Claims (8)

1、一种制备非糖基化Pro-UK的方法,特征在于非糖基化Pro-UK是在大肠杆菌启动子ptrp和Shine-Dalgarno顺序MS-2的控制下由大肠杆菌B表达的。
2、根据权利要求1的方法,其中非糖基化单链尿激酶原分子量约为45000道尔顿。
3、根据权利要求1的方法,特征在于大肠杆菌B主要表达Pro-UK的顺序。
4、根据权利要求1的方法,特征在于Pro-UK的cDNA顺序是由HEp-3类表皮癌细胞的mRNA获得的。
5、根据权利要求1的方法,特征在于启动子Ptrp是由得自质粒PDR-720的EcoRⅠ-Sa1Ⅰ限制性片段构成的。
6、根据权利要求1的方法,特征在于含有Shine-Dalgarno顺序MS-2、ATG起始密码子和Pro-UK基因之起始部分、上游接有HindⅢ位点且下游接有TaqⅠ位点的顺序是:
HindⅢ
5′-AGCTTTAATAGACGCCGGCCATTCAAACATGAGGATTA
    3′-AATTATCTGCGGCCGGTAAGTTTGTACTCCTAAT
            TaqⅠ
CCCATGAGCAATGAACTTCATCAAGTTCCAT-3′
GGGTACTCGTTACTTGAAGTAGTTCAAGGTAGC-5′
7、如图6所示的表达质粒FC-16。
8、如图7所示的表达质粒FC-44。
CN89108587A 1988-10-11 1989-10-10 人尿激酶原的生产 Pending CN1042181A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB888823833A GB8823833D0 (en) 1988-10-11 1988-10-11 Production of human prourokinase
GB8823833.2 1988-10-11

Publications (1)

Publication Number Publication Date
CN1042181A true CN1042181A (zh) 1990-05-16

Family

ID=10645030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89108587A Pending CN1042181A (zh) 1988-10-11 1989-10-10 人尿激酶原的生产

Country Status (15)

Country Link
US (1) US5866358A (zh)
EP (2) EP0365894A1 (zh)
JP (1) JPH03502526A (zh)
KR (1) KR900702020A (zh)
CN (1) CN1042181A (zh)
CA (1) CA2000408A1 (zh)
DK (1) DK141090A (zh)
FI (1) FI902893A0 (zh)
GB (1) GB8823833D0 (zh)
IL (1) IL91919A0 (zh)
MY (1) MY104233A (zh)
PH (1) PH27348A (zh)
PT (1) PT91929B (zh)
WO (1) WO1990004023A1 (zh)
YU (1) YU197489A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789291A (zh) * 2014-02-24 2014-05-14 东北制药集团股份有限公司 一种重组大肠杆菌发酵液中分离纯化重组人尿激酶原的制备工艺

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252773A (ja) * 1996-01-19 1997-09-30 Oriental Yeast Co Ltd ヒトbpgmの免疫測定法
US6380371B1 (en) * 1998-12-10 2002-04-30 The Regents Of The University Of California Endoglycan: a novel protein having selectin ligand and chemokine presentation activity
US7070958B2 (en) * 2003-04-18 2006-07-04 Thrombolytic Science, Inc. Methods of making pro-urokinase mutants
CA2426115A1 (en) * 2003-04-18 2004-10-18 Victor Gurewich Methods, devices, and compositions for lysis of occlusive blood clots while sparing wound sealing clots
US7837992B2 (en) 2006-06-22 2010-11-23 Beth Israel Deaconess Medical Center C-1 inhibitor prevents non-specific plasminogen activation by a prourokinase mutant without impeding fibrin-specific fibrinolysis
US20100143325A1 (en) * 2008-12-09 2010-06-10 Vascular Laboratory, Inc. Composition And Methods Involving Thrombolytic Agents
JP6826040B2 (ja) 2014-11-03 2021-02-03 スロンボリティック・サイエンス・リミテッド・ライアビリティ・カンパニーThrombolytic Science, Llc 安全かつ効果的な血栓溶解(Thrombolysis)のための方法および組成物
WO2018232305A1 (en) 2017-06-16 2018-12-20 Thrombolytic Science, Llc Methods and compositions for thrombolysis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210279B1 (en) * 1985-01-25 1991-08-14 Sagami Chemical Research Center Stabilized human prourokinase
FR2594845B1 (fr) * 1986-02-21 1989-12-01 Genetica Preparation par voie microbiologique de l'activateur tissulaire humain du plasminogene (t-pa) et conversion de l'enzyme ainsi obtenue en sa forme active

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789291A (zh) * 2014-02-24 2014-05-14 东北制药集团股份有限公司 一种重组大肠杆菌发酵液中分离纯化重组人尿激酶原的制备工艺
CN103789291B (zh) * 2014-02-24 2016-08-17 东北制药集团股份有限公司 一种重组大肠杆菌发酵液中分离纯化重组人尿激酶原的制备工艺

Also Published As

Publication number Publication date
PT91929A (pt) 1990-04-30
PT91929B (pt) 1995-05-31
YU197489A (en) 1991-08-31
DK141090A (da) 1990-08-13
KR900702020A (ko) 1990-12-05
IL91919A0 (en) 1990-06-10
DK141090D0 (da) 1990-06-08
EP0365894A1 (en) 1990-05-02
MY104233A (en) 1994-02-28
US5866358A (en) 1999-02-02
EP0407490A1 (en) 1991-01-16
GB8823833D0 (en) 1988-11-16
PH27348A (en) 1993-06-08
CA2000408A1 (en) 1990-04-11
JPH03502526A (ja) 1991-06-13
FI902893A0 (fi) 1990-06-08
WO1990004023A1 (en) 1990-04-19

Similar Documents

Publication Publication Date Title
CA1341449C (en) Poly-kringle plasminogen activator
JP2584192B2 (ja) ヒトウロキナーゼを発現する組換え発現ベクター及び形質転換細胞
JPH0216981A (ja) ヒト組織プラスミノーゲン活性化因子をコードするdna
AU599372B2 (en) Tissue-type plasminogen activator (tPA) derivatives and processes for the preparation thereof
KR970005251B1 (ko) 크링글 치환이 있는 돌연변이 이체 티-피에이
CN1042181A (zh) 人尿激酶原的生产
US5242688A (en) Method of treating thromboembolic disorders by administration of diglycosylated t-pa variants
US5637503A (en) Plasmids, their construction and their use in the manufacture of a plasminogen activator
JP2628345B2 (ja) 新規な線維素溶解酵素
AU603062B2 (en) Novel tissue plasminogen activator derivatives
EP0440709B1 (en) Thrombolytic agents with modified kringle domains
Jiao et al. Characterization of a recombinant chimeric plasminogen activator with enhanced fibrin binding
JP3329340B2 (ja) トロンビン活性化プラスミノーゲン誘導体
AU624869B2 (en) Production of human prourokinase
AU617459B2 (en) Low molecular weight derivatives of prourokinase and pharmaceutical compositions containing the same
US4997766A (en) Poly-kringle plasminogen activator
JPH04252185A (ja) アミド化繊維素溶解酵素及びその前駆体並びにその製造方法
EP0316068A1 (en) Modified low molecular weight plasminogen activator and method of preparation
US5045315A (en) Process for treating thrombosis by administering poly-kringle plasminogen activator
HU209149B (en) Process for producing humane prouroquinase
JP2001505765A (ja) 組織型プラスミノーゲンアクチベーター(t―PA)の変異体:組成物およびその使用方法
Yahara et al. Recombinant variants of tissue-type plasminogen activator containing amino acid substitutions in the finger domain
JPH01160482A (ja) 新規なポリペプチド、その製法及び用途
BG60507B2 (bg) Човешки тъканен плазминогенен активатор
JPS62269688A (ja) 組織プラスミノ−ゲンアクチベ−タ−誘導体、その製法及びこれを含有する凝血溶解剤

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication