CN104207861A - Manufacturing process of digital custom-made skeleton implant - Google Patents
Manufacturing process of digital custom-made skeleton implant Download PDFInfo
- Publication number
- CN104207861A CN104207861A CN201410446732.3A CN201410446732A CN104207861A CN 104207861 A CN104207861 A CN 104207861A CN 201410446732 A CN201410446732 A CN 201410446732A CN 104207861 A CN104207861 A CN 104207861A
- Authority
- CN
- China
- Prior art keywords
- bone
- implant
- composite material
- manufacturing process
- implanted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007943 implant Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000002131 composite material Substances 0.000 claims abstract description 15
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 13
- 238000010586 diagram Methods 0.000 claims abstract description 11
- 238000005094 computer simulation Methods 0.000 claims abstract description 4
- 230000001771 impaired effect Effects 0.000 claims 1
- 210000000988 bone and bone Anatomy 0.000 abstract description 38
- 238000000034 method Methods 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
Landscapes
- Prostheses (AREA)
Abstract
本发明公开了一种数字化定制骨骼植入物的制造工艺,其具体步骤为:(1)利用计算机模拟制图软件模拟出骨骼未受损时的健康的状态图,再结合等待植入的破损骨骼状态图,模拟出须植入的骨骼形态图;(2)利用计算机CAD三维模型制作软件,绘制出完整的须植入的骨骼形态的三维立体图形;(3)计算机相应材料库选择确定骨骼植入物的材料:再计算出在相应地区相应气候下聚醚醚酮—羟基磷灰石复合材料的具体配比及重量;(4)采用3D打印机打印出本次骨骼植入物。本发明的制造工艺定制骨骼植入物的时间较快,效率较高,同时制作材料的配料较为精准,使得制作出的骨骼植入物的质量较好。
The invention discloses a manufacturing process of a digital customized bone implant. The specific steps are as follows: (1) using computer simulation drawing software to simulate a healthy state diagram when the bone is not damaged, and then combining the damaged bone waiting to be implanted The state diagram simulates the bone shape diagram to be implanted; (2) utilizes computer CAD three-dimensional model making software to draw a complete three-dimensional figure of the bone shape to be implanted; (3) the computer corresponding material library selects and determines the bone implant The material of the implant: then calculate the specific ratio and weight of the polyetheretherketone-hydroxyapatite composite material in the corresponding climate in the corresponding region; (4) Print out the bone implant with a 3D printer. The manufacturing process of the present invention has a faster time for customizing bone implants and higher efficiency, and at the same time, the batching of manufacturing materials is more accurate, so that the quality of the manufactured bone implants is better.
Description
技术领域technical field
本发明涉及一种骨骼植入物的制造工艺,尤其涉及一种数字化定制骨骼植入物的制造工艺,属于骨科技术领域。The invention relates to a manufacturing process of a bone implant, in particular to a manufacturing process of a digitally customized bone implant, and belongs to the technical field of orthopedics.
背景技术Background technique
骨骼植入物由于需要量身定做,因此在工序上显得十分麻烦,目前常用的方法是采用石膏定型的方式,先制作一个模型,然后根据模型再来制作骨骼植入物,该方法制作周期长,并且制作尺寸较大的骨骼植入物还行,但要制作尺寸较小的骨骼植入物往往显得有些粗糙,导致和植入位置不能匹配。Because bone implants need to be customized, the process is very troublesome. At present, the commonly used method is to use plaster to shape the shape. First, a model is made, and then bone implants are made according to the model. This method has a long production cycle. And it is okay to make larger bone implants, but it is often a bit rough to make smaller bone implants, resulting in a mismatch with the implantation position.
发明内容Contents of the invention
本发明就是针对上述问题,提供一种数字化定制骨骼植入物的制造工艺,该制造工艺定制骨骼植入物的时间较快,效率较高,同时制作材料的配料较为精准,使得制作出的骨骼植入物的质量较好。In view of the above problems, the present invention provides a manufacturing process for digitally customizing bone implants. The time for customizing bone implants in this manufacturing process is relatively fast and the efficiency is high. Implants are of good quality.
为达到上述技术目的,本发明采用了一种数字化定制骨骼植入物的制造工艺,其具体步骤为:In order to achieve the above-mentioned technical purpose, the present invention adopts a manufacturing process of a digitally customized bone implant, and its specific steps are:
(1)利用计算机模拟制图软件模拟出骨骼未受损时的健康的状态图,再结合等待植入的破损骨骼状态图,模拟出须植入的骨骼形态图;(1) Use computer simulation drawing software to simulate the healthy state diagram of the bone when it is not damaged, and then combine the state diagram of the damaged bone waiting to be implanted to simulate the shape diagram of the bone to be implanted;
(2)利用计算机CAD三维模型制作软件,绘制出完整的须植入的骨骼形态的三维立体图形;(2) Utilize computer CAD three-dimensional modeling software to draw a complete three-dimensional figure of the bone form to be implanted;
(3)计算机相应材料库选择确定骨骼植入物的材料:聚醚醚酮—羟基磷灰石复合材料,然后用计算软件计算出在相应地区相应气候下聚醚醚酮—羟基磷灰石复合材料的具体配比,并且计算出制作本次骨骼植入物的聚醚醚酮—羟基磷灰石复合材料具体重量;(3) The corresponding material library of the computer selects and determines the material of the bone implant: polyetheretherketone-hydroxyapatite composite material, and then calculates the polyetheretherketone-hydroxyapatite composite material in the corresponding climate in the corresponding region with the calculation software. The specific ratio of materials, and calculate the specific weight of the polyetheretherketone-hydroxyapatite composite material used to make this bone implant;
(4)将配比好的聚醚醚酮—羟基磷灰石复合材料放入3D打印机内,采用3D打印机打印出本次骨骼植入物。(4) Put the well-proportioned PEEK-hydroxyapatite composite material into the 3D printer, and use the 3D printer to print out this bone implant.
上述工艺摈弃了以往繁琐的骨骼植入物的制作工艺,步骤大大简化,提高了制作效率;由于全程采用计算机相关软件辅助,使得骨骼植入物的精度大大提高;同时,采用计算机辅助系统帮助计算聚醚醚酮—羟基磷灰石复合材料的具体配比以及具体重量,使得采用聚醚醚酮—羟基磷灰石复合材料制作出的骨骼植入物质量更好。The above-mentioned process abandons the previous cumbersome bone implant production process, greatly simplifies the steps, and improves the production efficiency; because the whole process is assisted by computer-related software, the accuracy of the bone implant is greatly improved; at the same time, a computer-aided system is used to help calculate The specific ratio and specific weight of the polyetheretherketone-hydroxyapatite composite material make the quality of the bone implant made of the polyetheretherketone-hydroxyapatite composite material better.
附图说明Description of drawings
图1所示的是本发明的工艺流程图;What Fig. 1 shows is process flow diagram of the present invention;
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明作进一步详细地说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
结合图1可知,一种数字化定制骨骼植入物的制造工艺,其具体步骤为:Combining with Figure 1, it can be seen that a manufacturing process of digitally customized bone implants, the specific steps are:
(1)首先利用计算机模拟制图软件模拟出骨骼未受损时的健康的状态图,再结合等待植入的破损骨骼状态图,模拟出须植入的骨骼形态图;这一步比较关键,直接影响到后续步骤的操作;(1) First use the computer simulation drawing software to simulate the healthy state diagram of the bone when it is not damaged, and then combine the state diagram of the damaged bone waiting to be implanted to simulate the shape diagram of the bone to be implanted; this step is more critical and directly affects to follow-up steps;
(2)接着利用计算机CAD三维模型制作软件,绘制出完整的须植入的骨骼形态的三维立体图形;改步骤是建立在步骤(1)的基础上,若步骤(1)没做好的话,该步骤制作出的模型就会有偏差甚至报废;(2) Then use the computer CAD three-dimensional model making software to draw a complete three-dimensional figure of the bone form to be implanted; the steps are based on the step (1), if the step (1) is not done well, The model produced in this step will be deviated or even scrapped;
(3)接下来采用计算机相应材料库选择确定骨骼植入物的材料:聚醚醚酮—羟基磷灰石复合材料,该材料的各种指标均和人体骨骼比较接近甚至一致,因此是比较理想的制作骨骼植入物的材料;然后用计算软件计算出在相应地区相应气候下聚醚醚酮—羟基磷灰石复合材料的具体配比,并且计算出制作本次骨骼植入物的聚醚醚酮—羟基磷灰石复合材料具体重量;因为在不同地区不同的气候下,材料的配比都会产生微妙的变化,因此,在相应气候下采用相应合适的配比,有助于提高产品的质量;(3) Next, use the corresponding material library of the computer to select and determine the material of the bone implant: polyetheretherketone-hydroxyapatite composite material. The various indicators of this material are relatively close to or even consistent with human bones, so it is ideal The materials for making bone implants; then use the calculation software to calculate the specific ratio of polyetheretherketone-hydroxyapatite composite materials in the corresponding climate in the corresponding region, and calculate the polyether ether used for making the bone implants. The specific weight of ether ketone-hydroxyapatite composite material; because in different regions and different climates, the proportion of materials will change subtly. Therefore, using a corresponding appropriate proportion in the corresponding climate will help improve the product quality;
(4)将配比好的聚醚醚酮—羟基磷灰石复合材料放入3D打印机内,采用3D打印机打印出本次骨骼植入物。(4) Put the well-proportioned PEEK-hydroxyapatite composite material into the 3D printer, and use the 3D printer to print out this bone implant.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410446732.3A CN104207861B (en) | 2014-09-03 | 2014-09-03 | A kind of manufacturing process of digitized customization skeleton implant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410446732.3A CN104207861B (en) | 2014-09-03 | 2014-09-03 | A kind of manufacturing process of digitized customization skeleton implant |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104207861A true CN104207861A (en) | 2014-12-17 |
CN104207861B CN104207861B (en) | 2016-08-31 |
Family
ID=52090048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410446732.3A Expired - Fee Related CN104207861B (en) | 2014-09-03 | 2014-09-03 | A kind of manufacturing process of digitized customization skeleton implant |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104207861B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105726168A (en) * | 2016-01-22 | 2016-07-06 | 张帆 | Individualized customized implantation material shaping device for 3D printing and manufacturing method thereof |
CN107050518A (en) * | 2016-12-13 | 2017-08-18 | 杭州市萧山区中医院 | A kind of Bone Defect Repari bioceramic scaffold material based on photocuring 3D printing technique individuation Custom Prosthesis and preparation method thereof |
CN108261241A (en) * | 2018-01-16 | 2018-07-10 | 河北瑞鹤医疗器械有限公司 | Orthopedic implant method for customizing, apparatus and system |
CN108515695A (en) * | 2018-04-08 | 2018-09-11 | 西安交通大学 | Based on the composite modified polyether-ether-ketone implantation material 3D printing method of bioceramic |
CN109621001A (en) * | 2018-12-30 | 2019-04-16 | 山东百多安医疗器械有限公司 | A kind of polyether-ether-ketone alveolar bone repairing material and personalized production method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020007294A1 (en) * | 2000-04-05 | 2002-01-17 | Bradbury Thomas J. | System and method for rapidly customizing a design and remotely manufacturing biomedical devices using a computer system |
DE10332802A1 (en) * | 2002-07-19 | 2004-03-11 | Mediceram Chirurgische Implantate Gmbh | Production of an oxide ceramic structure used in the production of denture or bone replacement in humans and animals comprises virtually constructing the structure as three-dimensional computer model in computer-aided design arrangement |
CN101032430A (en) * | 2007-04-13 | 2007-09-12 | 中国人民解放军第三军医大学第一附属医院 | Method for preparing integrated frame fabrication of cartilage of tissue-engineered bone having function interface |
CN101927346A (en) * | 2010-09-09 | 2010-12-29 | 上海交通大学医学院附属第九人民医院 | Three-dimensional printing technology based method for forming medical porous pure titanium implant |
CN103284815A (en) * | 2013-05-17 | 2013-09-11 | 中山大学 | 3D-printing fast forming method of nano composite degradable bone repair material |
WO2014019712A1 (en) * | 2012-08-03 | 2014-02-06 | Nobel Biocare Services Ag | Bone regeneration material |
CN103707507A (en) * | 2013-12-13 | 2014-04-09 | 吉林大学 | Polyether-ether-ketone biomimetic artificial bone 3D printing manufacturing method |
CN103977451A (en) * | 2014-05-19 | 2014-08-13 | 吉林大学 | 3D printing manufacturing method for tantalum-coated hierarchical pore polyether-ether-ketone artificial bone scaffold |
-
2014
- 2014-09-03 CN CN201410446732.3A patent/CN104207861B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020007294A1 (en) * | 2000-04-05 | 2002-01-17 | Bradbury Thomas J. | System and method for rapidly customizing a design and remotely manufacturing biomedical devices using a computer system |
DE10332802A1 (en) * | 2002-07-19 | 2004-03-11 | Mediceram Chirurgische Implantate Gmbh | Production of an oxide ceramic structure used in the production of denture or bone replacement in humans and animals comprises virtually constructing the structure as three-dimensional computer model in computer-aided design arrangement |
CN101032430A (en) * | 2007-04-13 | 2007-09-12 | 中国人民解放军第三军医大学第一附属医院 | Method for preparing integrated frame fabrication of cartilage of tissue-engineered bone having function interface |
CN101927346A (en) * | 2010-09-09 | 2010-12-29 | 上海交通大学医学院附属第九人民医院 | Three-dimensional printing technology based method for forming medical porous pure titanium implant |
WO2014019712A1 (en) * | 2012-08-03 | 2014-02-06 | Nobel Biocare Services Ag | Bone regeneration material |
CN103284815A (en) * | 2013-05-17 | 2013-09-11 | 中山大学 | 3D-printing fast forming method of nano composite degradable bone repair material |
CN103707507A (en) * | 2013-12-13 | 2014-04-09 | 吉林大学 | Polyether-ether-ketone biomimetic artificial bone 3D printing manufacturing method |
CN103977451A (en) * | 2014-05-19 | 2014-08-13 | 吉林大学 | 3D printing manufacturing method for tantalum-coated hierarchical pore polyether-ether-ketone artificial bone scaffold |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105726168A (en) * | 2016-01-22 | 2016-07-06 | 张帆 | Individualized customized implantation material shaping device for 3D printing and manufacturing method thereof |
CN107050518A (en) * | 2016-12-13 | 2017-08-18 | 杭州市萧山区中医院 | A kind of Bone Defect Repari bioceramic scaffold material based on photocuring 3D printing technique individuation Custom Prosthesis and preparation method thereof |
CN108261241A (en) * | 2018-01-16 | 2018-07-10 | 河北瑞鹤医疗器械有限公司 | Orthopedic implant method for customizing, apparatus and system |
CN108261241B (en) * | 2018-01-16 | 2020-02-14 | 河北瑞鹤医疗器械有限公司 | Method, device and system for customizing orthopedics endophyte |
CN108515695A (en) * | 2018-04-08 | 2018-09-11 | 西安交通大学 | Based on the composite modified polyether-ether-ketone implantation material 3D printing method of bioceramic |
CN109621001A (en) * | 2018-12-30 | 2019-04-16 | 山东百多安医疗器械有限公司 | A kind of polyether-ether-ketone alveolar bone repairing material and personalized production method |
Also Published As
Publication number | Publication date |
---|---|
CN104207861B (en) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104207861B (en) | A kind of manufacturing process of digitized customization skeleton implant | |
WO2020097578A3 (en) | Boundary based generative design with 2.5-axis subtractive manufacturing constraint for computer aided design and manufacturing | |
CN106504329B (en) | Gum deformation simulation method based on mass point spring model of tooth long axis | |
Yamamoto et al. | Effects of offset values for artificial teeth positions in CAD/CAM complete denture | |
CN107773318B (en) | Design method, system, device and readable storage medium for dental prosthesis | |
CN108986111B (en) | Three-dimensional dental model segmentation method for computer-aided invisible orthodontics | |
CN103156693B (en) | Manufacturing method of tooth implantation operation guide plate based on body image processing | |
CN104943181B (en) | Exterior fixation bracket based on 3D printing technique | |
CN103919631A (en) | Manufacturing method for jaw defect individual restoration | |
CN103777911A (en) | Self-adaptive layering method in 3D (three-dimensional) printing | |
Shi et al. | A porous scaffold design method for bone tissue engineering using triply periodic minimal surfaces | |
CN101828974A (en) | Manufacturing method of implant denture individualized positioning guide plate | |
CN103886145A (en) | Tooth preparation body digital model design method | |
CN105078598A (en) | Digital preparation method of edentulous jaw individual impression tray | |
KR20120110989A (en) | Fabrication method of bio-mimetic scaffold | |
CN107134010A (en) | A kind of pattern effect prediction method of the elastic soft tissue based on finite element | |
CN112184909A (en) | Manufacturing method of mechanical equivalent simulation bone based on finite element grid | |
Goyal et al. | 12 Recent applications of rapid prototyping with 3D printing: a review | |
CN113326588A (en) | Porous bone implant structure design method for simulating biological bone rigidity | |
CN106327570B (en) | A kind of customized insole model generating method and system based on foot's threedimensional model | |
CN110292466A (en) | A kind of the three-dimensional model construction method and its dummy of anatomical structure | |
CN103020344B (en) | Method for designing shoe trees based on geometrical characteristics of feet or shoe trees | |
Oosthuizen et al. | Evaluation of rapid product development technologies for production of prosthesis in developing communities | |
CN106709184A (en) | Generation method of inner model curve face of wing wall panel | |
Kim et al. | In vitro evaluation of marginal and internal adaptation of three-unit fixed dental prostheses produced by stereolithography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160831 Termination date: 20180903 |
|
CF01 | Termination of patent right due to non-payment of annual fee |