[go: up one dir, main page]

CN104197948A - Navigation system and method based on traffic information prediction - Google Patents

Navigation system and method based on traffic information prediction Download PDF

Info

Publication number
CN104197948A
CN104197948A CN201410461054.8A CN201410461054A CN104197948A CN 104197948 A CN104197948 A CN 104197948A CN 201410461054 A CN201410461054 A CN 201410461054A CN 104197948 A CN104197948 A CN 104197948A
Authority
CN
China
Prior art keywords
navigation
traffic
route
information
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410461054.8A
Other languages
Chinese (zh)
Inventor
陈建斌
李德敏
廖小飞
张晓露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201410461054.8A priority Critical patent/CN104197948A/en
Publication of CN104197948A publication Critical patent/CN104197948A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3415Dynamic re-routing, e.g. recalculating the route when the user deviates from calculated route or after detecting real-time traffic data or accidents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种基于交通信息预测的导航系统,其特征在于,包括车载导航终端和导航服务器,车载导航终端包括GPS定位模块、电子地图模块和导航处理模块,导航服务器包括实时交通信息收集模块、交通信息预测模块、交通信息存储模块和导航路径规划模块,GPS定位模块将车辆位置信息和速度信息发送至实时交通信息收集模块,交通信息存储模块将实时及预测的交通信息发送至电子地图模块,导航路径规划模块将导航路径信息发送至导航处理模块,导航处理模块将处理好后的导航路径信息发回至导航路径规划模块。本发明考虑未来的交通路况变化和本车的道路选择对交通的影响,使导航路径更接近真正的最优路径的特点。

The invention discloses a navigation system based on traffic information prediction, which is characterized in that it includes a vehicle navigation terminal and a navigation server, the vehicle navigation terminal includes a GPS positioning module, an electronic map module and a navigation processing module, and the navigation server includes a real-time traffic information collection module , traffic information prediction module, traffic information storage module and navigation path planning module, the GPS positioning module sends vehicle position information and speed information to the real-time traffic information collection module, and the traffic information storage module sends real-time and predicted traffic information to the electronic map module , the navigation path planning module sends the navigation path information to the navigation processing module, and the navigation processing module sends the processed navigation path information back to the navigation path planning module. The present invention considers the influence of future traffic condition changes and the road selection of the vehicle on the traffic, so that the navigation path is closer to the real optimal path.

Description

一种基于交通信息预测的导航系统及导航方法A navigation system and navigation method based on traffic information prediction

技术领域technical field

本发明涉及一种基于交通信息预测的导航系统及导航方法,属于车辆导航领域。The invention relates to a navigation system and a navigation method based on traffic information prediction, belonging to the field of vehicle navigation.

背景技术Background technique

车辆导航系统包括车辆定位、电子地图和路径规划几个部分。导航要解决的问题就是根据电子地图提供的道路等相关交通信息,确定导航对象在电子地图上的当前位置,并根据导航的目的地、交通信息和用户设定的优化目标来搜寻最优路径。Vehicle navigation system includes vehicle positioning, electronic map and path planning. The problem to be solved in navigation is to determine the current position of the navigation object on the electronic map according to the relevant traffic information such as roads provided by the electronic map, and to search for the optimal route according to the navigation destination, traffic information and optimization goals set by the user.

传统的导航系统主要是单机离线导航系统,它具有GPS定位功能,预储存的电子地图和导航路径计算能力,根据固定的电子地图提供的道路信息来进行导航,也可以根据历史信息来避开经常拥堵的路段。这种导航系统在一般情况下效果良好,但由于不能获得实时的在线交通信息,在时有拥堵的城市交通中不能得到最佳的导航路径。The traditional navigation system is mainly a stand-alone offline navigation system, which has GPS positioning function, pre-stored electronic map and navigation path calculation ability, and can navigate according to the road information provided by the fixed electronic map, and can also avoid frequent traffic based on historical information. congested road. This kind of navigation system works well under normal circumstances, but because it cannot obtain real-time online traffic information, it cannot obtain the best navigation route in the urban traffic with congestion from time to time.

现在的导航系统大都具有无线连接,可以通过无线网络来得到实时的交通信息,通过实时的交通信息来进行导航路径的选择。实时的交通信息可以很大程度解决了单机导航系统的实时信息获取问题。Most of the current navigation systems have a wireless connection, and real-time traffic information can be obtained through the wireless network, and the navigation route can be selected through the real-time traffic information. Real-time traffic information can largely solve the problem of real-time information acquisition of stand-alone navigation systems.

但是,随着导航系统的大量使用,带来了一个新的问题:那就是在交通高峰时期使用导航系统的车辆比例越高,交通拥堵情况会越严重。这是由于导航系统使用的是统一的算法,车辆选择的最优路径是高度一致的,由于车辆都选择了当前时刻的“最优路径”,在下一个时刻,该路径就反倒变成了最拥堵的路径。为了解决这个问题,有文献提出了对多条可能的导航路径进行随机选择。多路径的随机选择虽然在一定程度上解决了“最优路径”冲突的问题,但是由于路径的随机选择,路径不管是从单个车辆还是全路网来说都不一定是最优。这样会降低用户对导航系统的信任度,使导航系统一定程度上失去意义。However, with the extensive use of navigation systems, a new problem has been brought: the higher the proportion of vehicles using navigation systems during peak traffic hours, the more serious the traffic jams will be. This is because the navigation system uses a unified algorithm, and the optimal routes selected by the vehicles are highly consistent. Since the vehicles all choose the "optimal route" at the current moment, at the next moment, the route will instead become the most congested. path of. In order to solve this problem, some literatures propose to randomly select multiple possible navigation paths. Although the random selection of multi-paths solves the problem of "optimal path" conflicts to a certain extent, due to the random selection of paths, the paths are not necessarily optimal whether it is a single vehicle or the entire road network. This will reduce the user's trust in the navigation system and make the navigation system meaningless to a certain extent.

发明内容Contents of the invention

本发明要解决的技术问题是:提供了一种通过对将来时间的交通信息预测和道路选择,从而得到最优路径的基于交通信息预测的导航系统及导航方法,解决了传统导航系统的算法统一,车辆选择的最优路径是高度一致,导致该路径交通拥堵的问题。The technical problem to be solved by the present invention is to provide a navigation system and navigation method based on traffic information prediction that obtains the optimal path through traffic information prediction and road selection in the future, and solves the unification of algorithms in traditional navigation systems. , the optimal path chosen by the vehicle is highly consistent, leading to the problem of traffic congestion on this path.

为了解决上述技术问题,本发明的技术方案是提供了一种基于交通信息预测的导航系统,其特征在于,包括车载导航终端和导航服务器,车载导航终端包括GPS定位模块、电子地图模块和导航处理模块,导航服务器包括实时交通信息收集模块、交通信息预测模块、交通信息存储模块和导航路径规划模块,GPS定位模块将车辆位置信息和速度信息发送至实时交通信息收集模块,交通信息存储模块将实时及预测的交通信息发送至电子地图模块,导航路径规划模块将导航路径信息发送至导航处理模块,导航处理模块将处理好后的导航路径信息发回至导航路径规划模块。In order to solve the above technical problems, the technical solution of the present invention is to provide a navigation system based on traffic information prediction, which is characterized in that it includes a vehicle-mounted navigation terminal and a navigation server, and the vehicle-mounted navigation terminal includes a GPS positioning module, an electronic map module and a navigation processing module. The navigation server includes a real-time traffic information collection module, a traffic information prediction module, a traffic information storage module and a navigation path planning module. The GPS positioning module sends the vehicle position information and speed information to the real-time traffic information collection module, and the traffic information storage module sends real-time And the predicted traffic information is sent to the electronic map module, the navigation route planning module sends the navigation route information to the navigation processing module, and the navigation processing module sends the processed navigation route information back to the navigation route planning module.

一种基于交通信息预测的导航系统的导航方法,其特征在于,包括以下两种情况:A navigation method for a navigation system based on traffic information prediction, characterized in that it includes the following two situations:

第一种是基于交通信息预测的导航系统在正常交通路况下的导航方法,其包括以下步骤:The first is a navigation method for a navigation system based on traffic information prediction under normal traffic conditions, which includes the following steps:

步骤11:取得当前的实时交通路况信息;取得当前已经进行路径规划的车辆导航路径信息;Step 11: Obtain the current real-time traffic condition information; obtain the vehicle navigation route information that has already been route-planned;

步骤12:使用当前的实时交通路况信息以及已进行路径规划的车辆导航路径信息进行未来各路径的各时段交通路况预测;Step 12: Use the current real-time traffic condition information and the vehicle navigation path information that has been route-planned to predict the traffic conditions of each route in each period in the future;

步骤13:通过GPS定位当前位置,根据车辆导航请求以及预测的将来各时段各条路径交通路况信息进行车辆导航路径计算并进行导航路径选择;Step 13: Locate the current position by GPS, calculate the vehicle navigation route and select the navigation route according to the vehicle navigation request and the predicted traffic and road condition information of each route in each time period in the future;

步骤14:储存车辆导航路径,以备后续车辆选择导航路径使用;Step 14: store the vehicle navigation path for subsequent vehicles to select a navigation path;

第二种是基于交通信息预测的导航系统在突发交通路况下的导航方法,其包括以下步骤:The second is a navigation method for a navigation system based on traffic information prediction under sudden traffic conditions, which includes the following steps:

步骤21:发送突发交通路况信息取得实时交通路况信息,并清除经过该路段的车辆导航路径,并把突发交通事故路段的通行时间设为无穷大;Step 21: Send sudden traffic accident information to obtain real-time traffic traffic information, and clear the vehicle navigation path passing through the road section, and set the transit time of the sudden traffic accident road section to infinity;

步骤22:对规划路径经过突发交通事故路段的车辆中离突发交通路况点最近的车辆重新进行路径规划;Step 22: Carry out route planning again for the vehicle closest to the sudden traffic road condition point among the vehicles whose planned route passes through the sudden traffic accident road section;

步骤23:根据当前的实时交通路况信息和已经重新规划路线的车辆导航路径信息,进行将来各路径的各时段交通路况预测;Step 23: According to the current real-time traffic road condition information and the vehicle navigation route information of the re-planned route, carry out the traffic road condition prediction of each time period of each route in the future;

步骤24:判断是否存在无导航路径的车辆;Step 24: judging whether there is a vehicle without a navigation path;

步骤25:如果存在,跳到步骤26;如果不存在则结束;Step 25: If it exists, skip to step 26; if it does not exist, it ends;

步骤26:根据预测的将来各时段各条路径交通路况信息进行车辆导航路径计算并进行导航路径选择;Step 26: Carry out vehicle navigation route calculation and navigation route selection according to the predicted traffic and road condition information of each route in each time period in the future;

步骤27:储存车辆导航路径,以备后续车辆选择导航路径使用,重复步骤22-步骤25。Step 27: Store the vehicle navigation route for subsequent vehicle selection of a navigation route, and repeat steps 22-25.

现有的导航路径规划算法一般只根据当前的实时交通信息进行导航,而并不考虑未来的交通路况变化和本车的道路选择对交通的影响。而本发明涉及实时交通信息采集、车辆定位及导航终端和服务器端进行交通信息预测和路径规划的方法。其导航系统化及路径规划算法有以下优点:Existing navigation route planning algorithms generally only navigate based on current real-time traffic information, and do not consider the impact of future traffic conditions changes and the vehicle's road choice on traffic. The present invention relates to the method of real-time traffic information collection, vehicle positioning, and navigation terminal and server end traffic information prediction and path planning. Its navigation system and path planning algorithm have the following advantages:

1.由于交通路况是与时间相关的,通过对将来时间的交通信息预测,可以得到更接近真实情况的交通信息,从而使导航路径更接近真正的最优路径。1. Since traffic conditions are time-dependent, traffic information closer to the real situation can be obtained by predicting traffic information in the future, so that the navigation path is closer to the real optimal path.

2.考虑本车辆的路径选择对未来道路状况的影响,避免所有车辆都选择在现在时刻最优的路径导致最优路径反而最拥堵。2. Consider the impact of the vehicle's route selection on future road conditions, and avoid all vehicles choosing the optimal route at the moment, resulting in the most congested optimal route instead.

附图说明Description of drawings

图1为一种基于交通信息预测的导航系统在正常交通路况下的工作流程;Fig. 1 is the workflow of a navigation system based on traffic information prediction under normal traffic conditions;

图2为一种基于交通信息预测的导航系统在突发交通路况下的工作流程;Fig. 2 is the workflow of a navigation system based on traffic information prediction under sudden traffic conditions;

图3为一种基于交通信息预测的导航系统的系统结构示意图;Fig. 3 is a system structure diagram of a navigation system based on traffic information prediction;

图4为实时交通路况的示意图;Fig. 4 is the schematic diagram of real-time traffic condition;

图5为预测交通路况的示意图;Fig. 5 is the schematic diagram of predicting traffic conditions;

图6为普通导航系统大量车辆选路的示意图;Fig. 6 is a schematic diagram of route selection of a large number of vehicles in a common navigation system;

图7为本发明导航系统大量车辆选路的示意图。Fig. 7 is a schematic diagram of route selection of a large number of vehicles in the navigation system of the present invention.

具体实施方式Detailed ways

为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。In order to make the present invention more comprehensible, preferred embodiments are described in detail below with accompanying drawings.

本发明的导航方法根据当前的实时交通信息以及当前已经进行路径选择的车辆路径信息,预测未来各路径的交通路况,并根据预测的交通路况来进行当前车辆的路径选择,选出当前时刻的最优路径。由于后续各车辆的导航都是基于当前已有的导航路径进行选择的,因此不会产生现有导航系统的“最优路径”冲突问题。The navigation method of the present invention predicts the traffic road conditions of each path in the future according to the current real-time traffic information and the vehicle route information that has already been routed, and selects the route of the current vehicle according to the predicted traffic conditions, and selects the best route at the current moment. optimal path. Since the navigation of each subsequent vehicle is selected based on the currently existing navigation path, there will be no conflict of the "optimal path" of the existing navigation system.

本发明的正常交通路况下的导航方法,如图1所示,包括以下步骤:The navigation method under the normal traffic condition of the present invention, as shown in Figure 1, comprises the following steps:

步骤11:取得当前的实时交通路况信息;取得当前已经进行路径规划的车辆导航路径信息;Step 11: Obtain the current real-time traffic condition information; obtain the vehicle navigation route information that has already been route-planned;

步骤12:使用当前的实时交通路况信息以及已进行路径规划的车辆导航路径信息进行未来各路径的各时段交通路况预测;Step 12: Use the current real-time traffic condition information and the vehicle navigation path information that has been route-planned to predict the traffic conditions of each route in each period in the future;

步骤13:通过GPS定位当前位置,根据车辆导航请求(即输入目的地)以及预测的将来各时段各条路径交通路况信息进行车辆导航路径计算并进行导航路径选择;Step 13: Position the current position by GPS, calculate the vehicle navigation route and select the navigation route according to the vehicle navigation request (that is, input the destination) and the predicted traffic and road condition information of each route in each time period in the future;

步骤14:储存车辆导航路径(即存储当前车辆的路径选择信息),以备后续车辆选择导航路径使用。Step 14: Store the vehicle navigation route (that is, store the route selection information of the current vehicle) for future vehicle selection of a navigation route.

本发明中的交通路况预测采用宏观交通流模型来进行;也可以采用时间序列模型、神经网络以及支持向量机等任何其他方法来进行交通信息预测。The traffic road condition prediction in the present invention is carried out by macro traffic flow model; any other methods such as time series model, neural network and support vector machine can also be used to carry out traffic information prediction.

本发明中的基于交通信息预测的车辆导航路径计算采用时间依赖网络最短路径算法实现;路径规划也可以采用其他路径规划算法来进行。The vehicle navigation path calculation based on traffic information prediction in the present invention is realized by using the time-dependent network shortest path algorithm; path planning can also be carried out by using other path planning algorithms.

为了便于计算机处理并减少交通路况预测的运算量和储存量,本发明的系统采用分时间段来进行实时交通数据的采集和预测。时间段的选择可以根据交通路况的复杂度和变化的快慢来选取,比如快速变化的市中心道路每1分钟计算一次,而郊区的道路可以每5分钟计算一次。In order to facilitate computer processing and reduce the amount of computation and storage for traffic road condition prediction, the system of the present invention uses time segments to collect and predict real-time traffic data. The choice of time period can be selected according to the complexity of traffic conditions and the speed of change. For example, fast-changing downtown roads can be calculated every 1 minute, while suburban roads can be calculated every 5 minutes.

本发明还提出了一种在发生突发交通路况(如交通事故、道路毁坏、交通管制等导致道路中断)时的车辆导航路径分配方法,如图2所示,该分配方法的步骤为:The present invention also proposes a vehicle navigation route allocation method when sudden traffic conditions (such as traffic accidents, road damage, traffic control, etc. cause road interruptions) occur, as shown in Figure 2, the steps of the allocation method are:

步骤21:发送突发交通路况信息取得实时交通路况信息,并清除经过该路段的车辆导航路径,并把突发交通事故路段的通行时间设为无穷大;Step 21: Send sudden traffic accident information to obtain real-time traffic traffic information, and clear the vehicle navigation path passing through the road section, and set the transit time of the sudden traffic accident road section to infinity;

步骤22:对规划路径经过突发交通事故路段的车辆中离突发交通路况点最近的车辆重新进行路径规划;Step 22: Carry out route planning again for the vehicle closest to the sudden traffic road condition point among the vehicles whose planned route passes through the sudden traffic accident road section;

步骤23:根据当前的实时交通路况信息和已经重新规划路线的车辆导航路径信息,进行将来各路径的各时段交通路况预测;Step 23: According to the current real-time traffic road condition information and the vehicle navigation route information of the re-planned route, carry out the traffic road condition prediction of each time period of each route in the future;

步骤24:判断是否存在无导航路径的车辆;Step 24: judging whether there is a vehicle without a navigation path;

步骤25:如果存在,跳到步骤26;如果不存在则结束,即所有原导航路径经过突发交通路况点的车辆都重新规划导航路径;Step 25: If it exists, skip to step 26; if it does not exist, it will end, that is, all vehicles whose original navigation path passes through the sudden traffic point will re-plan the navigation path;

步骤26:根据预测的将来各时段各条路径交通路况信息进行车辆导航路径计算并进行导航路径选择;Step 26: Carry out vehicle navigation route calculation and navigation route selection according to the predicted traffic and road condition information of each route in each time period in the future;

步骤27:储存车辆导航路径,以备后续车辆选择导航路径使用,重复步骤22-步骤25。Step 27: Store the vehicle navigation route for subsequent vehicle selection of a navigation route, and repeat steps 22-25.

为了提高效率,也可以采用交通流分配算法,按照距离拥堵点的远近,分配进行交通流分配。比如先对交通拥堵点500米范围内的车辆运行一次交通流分配算法,然后对1000米范围内的车辆进行一次分配算法。In order to improve efficiency, a traffic flow allocation algorithm can also be used to allocate traffic flow according to the distance from the congestion point. For example, first run a traffic flow allocation algorithm for vehicles within a range of 500 meters from a traffic congestion point, and then perform an allocation algorithm for vehicles within a range of 1,000 meters.

本发明的一种基于交通信息预测的导航系统,其包括车载导航终端和导航服务器两个部分,如图3所示,车载导航终端包括GPS定位模块、电子地图模块和导航处理模块,车载导航终端向导航服务器发送源和目的地信息进行导航请求,根据从导航服务器得到的导航路径信息和电子地图信息进行路径导航。同时,车载导航终端根据导航服务器端的要求定时报告通过GPS定位模块得到的实时车辆位置信息和速度信息。导航服务器包括实时交通信息收集模块、交通信息预测模块、交通信息存储模块和导航路径规划模块,导航服务器的实时交通信息收集模块收集使用本导航系统的车辆位置信息和速度信息,从交通部门获得,以及其他途径获得的实时交通信息数据。交通信息预测模块通过实时交通信息、历史交通信息以及使用本导航系统的车辆路径规划信息,通过预测算法得到未来各个时间段的交通路况预测信息。交通信息存储模块将实时及预测的交通信息发送至电子地图模块,导航路径规划模块将导航路径信息发送至导航处理模块,导航处理模块将处理好后的导航路径信息发回至导航路径规划模块。A kind of navigation system based on traffic information prediction of the present invention, it comprises two parts of vehicle navigation terminal and navigation server, as shown in Figure 3, vehicle navigation terminal comprises GPS positioning module, electronic map module and navigation processing module, vehicle navigation terminal Send the source and destination information to the navigation server for navigation request, and perform route navigation according to the navigation route information and electronic map information obtained from the navigation server. At the same time, the vehicle navigation terminal regularly reports the real-time vehicle position information and speed information obtained through the GPS positioning module according to the requirements of the navigation server. The navigation server includes a real-time traffic information collection module, a traffic information prediction module, a traffic information storage module and a navigation path planning module. The real-time traffic information collection module of the navigation server collects the vehicle position information and speed information using the navigation system, and obtains them from the traffic department. And real-time traffic information data obtained by other means. The traffic information prediction module uses real-time traffic information, historical traffic information, and vehicle route planning information using the navigation system to obtain traffic road condition prediction information for each time period in the future through a prediction algorithm. The traffic information storage module sends real-time and predicted traffic information to the electronic map module, the navigation route planning module sends the navigation route information to the navigation processing module, and the navigation processing module sends the processed navigation route information back to the navigation route planning module.

交通信息存储模块对历史的实际交通信息,本时间段交通信息和预测的交通信息进行存储,以用于后续的交通信息预测和导航路径规划。The traffic information storage module stores the historical actual traffic information, the current time period traffic information and the predicted traffic information for subsequent traffic information prediction and navigation route planning.

导航路径规划模块接受导航终端用户的请求,根据交通信息存储模块的现在及未来各时间段交通信息进行导航路径规划,以得到与时间相关的最优的导航路径,存储导航路径以备下一步交通信息预测用。The navigation path planning module accepts the request of the navigation terminal user, and plans the navigation path according to the current and future traffic information of the traffic information storage module in order to obtain the optimal navigation path related to time, and store the navigation path for the next traffic For information forecasting.

如图4-图7所示,打叉符号表示拥堵路段,其他表示通畅路段。其中用粗长线表示的南北向道路5及东西向道路C为快速道路,其他道路为普通道路。As shown in Figures 4-7, the cross symbol indicates a congested road section, and the others indicate a smooth road section. The north-south road 5 and the east-west road C represented by thick and long lines are express roads, and other roads are ordinary roads.

从图4中可以看出C2-C3路段从西向东和A3-B3路段从北向南由于交通流量大导致交通拥堵。如图5所示,为预测交通路况的示意图,C2-C3路段的车辆开行到C3-C4路段,导致C3-C4路段从西向东拥堵;A3-B3路段的车辆开行到B3-C3路段导致B3-C3路段从北向南拥堵。It can be seen from Figure 4 that the road section C2-C3 is from west to east and the road section A3-B3 is from north to south due to the large traffic flow leading to traffic congestion. As shown in Figure 5, it is a schematic diagram of predicting traffic conditions. Vehicles on the C2-C3 road section drive to the C3-C4 road section, causing congestion on the C3-C4 road section from west to east; vehicles on the A3-B3 road section driving to the B3-C3 road section cause B3 - Section C3 is congested from north to south.

车辆导航情景1:假设有一辆车需要从B2出发到D4,如图4-图5所示。Vehicle navigation scenario 1: Assume that a vehicle needs to travel from B2 to D4, as shown in Figure 4-Figure 5.

对于现有的采用普通导航系统的路径规划,路径选择将是避开C2-C3路段,选择B2->B3->C3->C4->D4。但是,由于交通路况是会随时间变化的,当车辆到达B3-C3的时候,该路段开始拥堵,并且前方路段C3-C4也开始拥堵,显然该路径不是最优的路径。For the existing route planning using a common navigation system, the route selection will be to avoid the C2-C3 road section and choose B2->B3->C3->C4->D4. However, since the traffic condition changes with time, when the vehicle arrives at B3-C3, the road section starts to be congested, and the road section C3-C4 ahead also starts to be congested, obviously this path is not the optimal path.

而对于采用本发明导航系统的车辆,由于导航路径是综合实时和预测交通路况选择的,系统将选择B2->C2->D2->D3->D4以动态避开拥堵路段。And for the vehicle that adopts the navigation system of the present invention, since the navigation route is selected comprehensively in real time and predicted traffic conditions, the system will select B2->C2->D2->D3->D4 to dynamically avoid congested road sections.

车辆导航情景2:下班高峰期,有大量车辆需要从A3、A4开往F5、F6,从A5、A6开往F3、F4,如图6-图7所示。不同的线条表示不同的车流导航路径。Vehicle navigation scenario 2: During rush hours, a large number of vehicles need to drive from A3 and A4 to F5 and F6, and from A5 and A6 to F3 and F4, as shown in Figure 6-7. Different lines represent different traffic navigation paths.

如果所有车辆均采用普通导航系统,那么所有车辆将选择南北向快速道路5,而大量的车辆同时涌向快速路5,将导致南北向道路5拥堵,所有车辆都堵在现在看起来为畅通的道路5上,如图6所示。If all vehicles adopt the common navigation system, then all vehicles will choose the north-south expressway 5, and a large number of vehicles will flock to the expressway 5 at the same time, which will cause the north-south road 5 to be congested, and all vehicles will be blocked in what seems to be a smooth road now. on road 5, as shown in Figure 6.

而采用本发明导航系统的车辆,将根据已选择导航路径车辆对未来交通路况的影响,依次分别选择南北向道路3、5、6以及东西向快速道路C(例如,A3->C3->C6->F6,A6->C6->C3->F3),提高路网的利用率,同时使所有用户都快速到达目的地,如图7所示。And the vehicle that adopts the navigation system of the present invention will select respectively the north-south direction road 3,5,6 and the east-west direction expressway C (for example, A3->C3->C6 according to the impact of the selected navigation path vehicle on the future traffic road conditions) ->F6, A6->C6->C3->F3), improve the utilization rate of the road network, and at the same time make all users reach the destination quickly, as shown in Figure 7.

Claims (2)

1.一种基于交通信息预测的导航系统,其特征在于,包括车载导航终端和导航服务器,车载导航终端包括GPS定位模块、电子地图模块和导航处理模块,导航服务器包括实时交通信息收集模块、交通信息预测模块、交通信息存储模块和导航路径规划模块,GPS定位模块将车辆位置信息和速度信息发送至实时交通信息收集模块,交通信息存储模块将实时及预测的交通信息发送至电子地图模块,导航路径规划模块将导航路径信息发送至导航处理模块,导航处理模块将处理好后的导航路径信息发回至导航路径规划模块。1. a navigation system based on traffic information prediction, it is characterized in that, comprises vehicle-mounted navigation terminal and navigation server, and vehicle-mounted navigation terminal comprises GPS positioning module, electronic map module and navigation processing module, and navigation server comprises real-time traffic information collection module, traffic Information prediction module, traffic information storage module and navigation path planning module, GPS positioning module sends vehicle position information and speed information to real-time traffic information collection module, traffic information storage module sends real-time and predicted traffic information to electronic map module, navigation The route planning module sends the navigation route information to the navigation processing module, and the navigation processing module sends the processed navigation route information back to the navigation route planning module. 2.一种基于交通信息预测的导航系统的导航方法,其特征在于,包括以下两种情况:2. A navigation method of a navigation system based on traffic information prediction, characterized in that it comprises the following two situations: 第一种是基于交通信息预测的导航系统在正常交通路况下的导航方法,其包括以下步骤:The first is a navigation method for a navigation system based on traffic information prediction under normal traffic conditions, which includes the following steps: 步骤11:取得当前的实时交通路况信息;取得当前已经进行路径规划的车辆导航路径信息;Step 11: Obtain the current real-time traffic condition information; obtain the vehicle navigation route information that has already been route-planned; 步骤12:使用当前的实时交通路况信息以及已进行路径规划的车辆导航路径信息进行未来各路径的各时段交通路况预测;Step 12: Use the current real-time traffic condition information and the vehicle navigation path information that has been route-planned to predict the traffic conditions of each route in each period in the future; 步骤13:通过GPS定位当前位置,根据车辆导航请求以及预测的将来各时段各条路径交通路况信息进行车辆导航路径计算并进行导航路径选择;Step 13: Locate the current position by GPS, calculate the vehicle navigation route and select the navigation route according to the vehicle navigation request and the predicted traffic and road condition information of each route in each time period in the future; 步骤14:储存车辆导航路径,以备后续车辆选择导航路径使用;Step 14: store the vehicle navigation path for subsequent vehicles to select a navigation path; 第二种是基于交通信息预测的导航系统在突发交通路况下的导航方法,其包括以下步骤:The second is a navigation method for a navigation system based on traffic information prediction under sudden traffic conditions, which includes the following steps: 步骤21:发送突发交通路况信息取得实时交通路况信息,并清除经过该路段的车辆导航路径,并把突发交通事故路段的通行时间设为无穷大;Step 21: Send sudden traffic accident information to obtain real-time traffic traffic information, and clear the vehicle navigation path passing through the road section, and set the transit time of the sudden traffic accident road section to infinity; 步骤22:对规划路径经过突发交通事故路段的车辆中离突发交通路况点最近的车辆重新进行路径规划;Step 22: Carry out route planning again for the vehicle closest to the sudden traffic road condition point among the vehicles whose planned route passes through the sudden traffic accident road section; 步骤23:根据当前的实时交通路况信息和已经重新规划路线的车辆导航路径信息,进行将来各路径的各时段交通路况预测;Step 23: According to the current real-time traffic road condition information and the vehicle navigation route information of the re-planned route, carry out the traffic road condition prediction of each time period of each route in the future; 步骤24:判断是否存在无导航路径的车辆;Step 24: judging whether there is a vehicle without a navigation path; 步骤25:如果存在,跳到步骤26;如果不存在则结束;Step 25: If it exists, skip to step 26; if it does not exist, it ends; 步骤26:根据预测的将来各时段各条路径交通路况信息进行车辆导航路径计算并进行导航路径选择;Step 26: Carry out vehicle navigation route calculation and navigation route selection according to the predicted traffic and road condition information of each route in each time period in the future; 步骤27:储存车辆导航路径,以备后续车辆选择导航路径使用,重复步骤22-步骤25。Step 27: Store the vehicle navigation route for subsequent vehicle selection of a navigation route, and repeat steps 22-25.
CN201410461054.8A 2014-09-11 2014-09-11 Navigation system and method based on traffic information prediction Pending CN104197948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410461054.8A CN104197948A (en) 2014-09-11 2014-09-11 Navigation system and method based on traffic information prediction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410461054.8A CN104197948A (en) 2014-09-11 2014-09-11 Navigation system and method based on traffic information prediction

Publications (1)

Publication Number Publication Date
CN104197948A true CN104197948A (en) 2014-12-10

Family

ID=52083276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410461054.8A Pending CN104197948A (en) 2014-09-11 2014-09-11 Navigation system and method based on traffic information prediction

Country Status (1)

Country Link
CN (1) CN104197948A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567907A (en) * 2015-01-22 2015-04-29 四川汇源吉迅数码科技有限公司 Method for real-time path planning based on dynamic feedback
CN104949684A (en) * 2015-06-23 2015-09-30 西华大学 Vehicle-mounted navigation system based on vehicle access collaboration
CN105046983A (en) * 2015-08-14 2015-11-11 奇瑞汽车股份有限公司 Traffic flow prediction system and method based on vehicle-road cooperation
CN105716622A (en) * 2016-04-12 2016-06-29 玉环看知信息科技有限公司 Navigation method and navigation server
CN106197442A (en) * 2016-06-24 2016-12-07 深圳市元征科技股份有限公司 Air navigation aid and equipment
CN106327900A (en) * 2016-09-08 2017-01-11 惠州Tcl移动通信有限公司 Method and system for processing and prompting driving path based on cloud server
CN106327899A (en) * 2016-08-29 2017-01-11 徐月明 Road traffic path guide method and system and road traffic information service platform
CN106556408A (en) * 2016-10-31 2017-04-05 余必亚 A kind of navigation system and method
CN106781592A (en) * 2017-01-04 2017-05-31 成都四方伟业软件股份有限公司 A kind of traffic navigation system and method based on big data
CN106935034A (en) * 2017-05-08 2017-07-07 西安电子科技大学 Towards the regional traffic flow forecasting system and method for car networking
CN107084741A (en) * 2017-03-29 2017-08-22 昆明理工大学 An embedded vehicle route real-time recommendation system and method
CN107246880A (en) * 2017-08-02 2017-10-13 合肥四书电子商务有限公司 A kind of distance based on big data plans anti-congestion system
CN108198413A (en) * 2017-12-20 2018-06-22 河南中裕广恒科技股份有限公司 Blocking method is delayed in the intelligent transportation of a kind of big data and autonomous deep learning
CN105571604B (en) * 2016-01-14 2018-08-14 北京师范大学 Coevolution method for optimizing route under dynamic road network environment
CN108831148A (en) * 2018-06-12 2018-11-16 邱惠崧 The highway network management-control method and system of peak congestion under a kind of Toll Free
CN109945879A (en) * 2017-12-20 2019-06-28 上海博泰悦臻网络技术服务有限公司 Guidance path control method, system, navigation terminal and storage medium
CN110364010A (en) * 2019-08-22 2019-10-22 三星电子(中国)研发中心 A navigation method and system for predicting road conditions
CN110411469A (en) * 2019-07-29 2019-11-05 北京百度网讯科技有限公司 Navigation programming method, apparatus, equipment and medium
CN111089600A (en) * 2018-10-24 2020-05-01 上海博泰悦臻网络技术服务有限公司 Route planning method, mobile terminal, server and route planning system
CN111966108A (en) * 2020-09-02 2020-11-20 成都信息工程大学 Extreme weather unmanned control system based on navigation system
CN114882720A (en) * 2021-01-21 2022-08-09 广州汽车集团股份有限公司 Intelligent road network pushing method and device and vehicle
CN115457759A (en) * 2022-07-22 2022-12-09 中智行(苏州)科技有限公司 Road traffic real-time road condition information analysis system and method based on vehicle-road cooperation
CN116597640A (en) * 2023-04-06 2023-08-15 上海垚棋大数据科技有限公司 Traffic flow control system and method based on big data
CN119146997A (en) * 2024-11-13 2024-12-17 江苏如娟新材料科技有限公司 Non-contact vehicle-mounted navigation system and navigation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317422A (en) * 2001-04-28 2001-10-17 陈新愚 Method and equipment for vehicle pilot and road network management
US20020040270A1 (en) * 2000-09-16 2002-04-04 Kwak Dong Hoon Method and apparatus for vehicle navigation service using DSRC system
CN1611917A (en) * 2003-10-28 2005-05-04 日本先锋公司 Device, system and method for reporting a traffic condition and program and recording medium
CN101482419A (en) * 2008-01-11 2009-07-15 上海邮电设计院有限公司 Vehicle dynamic navigation service system based on A-GPS and 3G network
CN102356415A (en) * 2009-03-17 2012-02-15 新科电子(资讯通信系统)私人有限公司 Determining a traffic route using predicted traffic congestion
CN103106787A (en) * 2012-12-21 2013-05-15 周晓东 System for proactively solving urban traffic congestion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020040270A1 (en) * 2000-09-16 2002-04-04 Kwak Dong Hoon Method and apparatus for vehicle navigation service using DSRC system
CN1317422A (en) * 2001-04-28 2001-10-17 陈新愚 Method and equipment for vehicle pilot and road network management
CN1611917A (en) * 2003-10-28 2005-05-04 日本先锋公司 Device, system and method for reporting a traffic condition and program and recording medium
CN101482419A (en) * 2008-01-11 2009-07-15 上海邮电设计院有限公司 Vehicle dynamic navigation service system based on A-GPS and 3G network
CN102356415A (en) * 2009-03-17 2012-02-15 新科电子(资讯通信系统)私人有限公司 Determining a traffic route using predicted traffic congestion
CN103106787A (en) * 2012-12-21 2013-05-15 周晓东 System for proactively solving urban traffic congestion

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567907A (en) * 2015-01-22 2015-04-29 四川汇源吉迅数码科技有限公司 Method for real-time path planning based on dynamic feedback
CN104949684A (en) * 2015-06-23 2015-09-30 西华大学 Vehicle-mounted navigation system based on vehicle access collaboration
CN105046983A (en) * 2015-08-14 2015-11-11 奇瑞汽车股份有限公司 Traffic flow prediction system and method based on vehicle-road cooperation
CN105046983B (en) * 2015-08-14 2019-01-25 奇瑞汽车股份有限公司 A kind of traffic flow forecasting system and method based on bus or train route collaboration
CN105571604B (en) * 2016-01-14 2018-08-14 北京师范大学 Coevolution method for optimizing route under dynamic road network environment
CN105716622A (en) * 2016-04-12 2016-06-29 玉环看知信息科技有限公司 Navigation method and navigation server
CN105716622B (en) * 2016-04-12 2019-06-04 玉环看知信息科技有限公司 A kind of air navigation aid and navigation server
CN106197442A (en) * 2016-06-24 2016-12-07 深圳市元征科技股份有限公司 Air navigation aid and equipment
CN106327899A (en) * 2016-08-29 2017-01-11 徐月明 Road traffic path guide method and system and road traffic information service platform
CN106327899B (en) * 2016-08-29 2019-08-27 徐月明 Road traffic paths chosen method, system and Traffic Information service platform
CN106327900A (en) * 2016-09-08 2017-01-11 惠州Tcl移动通信有限公司 Method and system for processing and prompting driving path based on cloud server
CN106556408A (en) * 2016-10-31 2017-04-05 余必亚 A kind of navigation system and method
CN106781592A (en) * 2017-01-04 2017-05-31 成都四方伟业软件股份有限公司 A kind of traffic navigation system and method based on big data
CN106781592B (en) * 2017-01-04 2019-07-23 成都四方伟业软件股份有限公司 A kind of traffic navigation system and method based on big data
CN107084741A (en) * 2017-03-29 2017-08-22 昆明理工大学 An embedded vehicle route real-time recommendation system and method
CN106935034A (en) * 2017-05-08 2017-07-07 西安电子科技大学 Towards the regional traffic flow forecasting system and method for car networking
CN107246880A (en) * 2017-08-02 2017-10-13 合肥四书电子商务有限公司 A kind of distance based on big data plans anti-congestion system
CN108198413A (en) * 2017-12-20 2018-06-22 河南中裕广恒科技股份有限公司 Blocking method is delayed in the intelligent transportation of a kind of big data and autonomous deep learning
CN109945879A (en) * 2017-12-20 2019-06-28 上海博泰悦臻网络技术服务有限公司 Guidance path control method, system, navigation terminal and storage medium
CN108831148A (en) * 2018-06-12 2018-11-16 邱惠崧 The highway network management-control method and system of peak congestion under a kind of Toll Free
CN111089600A (en) * 2018-10-24 2020-05-01 上海博泰悦臻网络技术服务有限公司 Route planning method, mobile terminal, server and route planning system
CN110411469A (en) * 2019-07-29 2019-11-05 北京百度网讯科技有限公司 Navigation programming method, apparatus, equipment and medium
CN110364010A (en) * 2019-08-22 2019-10-22 三星电子(中国)研发中心 A navigation method and system for predicting road conditions
CN111966108A (en) * 2020-09-02 2020-11-20 成都信息工程大学 Extreme weather unmanned control system based on navigation system
CN114882720A (en) * 2021-01-21 2022-08-09 广州汽车集团股份有限公司 Intelligent road network pushing method and device and vehicle
CN115457759A (en) * 2022-07-22 2022-12-09 中智行(苏州)科技有限公司 Road traffic real-time road condition information analysis system and method based on vehicle-road cooperation
CN116597640A (en) * 2023-04-06 2023-08-15 上海垚棋大数据科技有限公司 Traffic flow control system and method based on big data
CN116597640B (en) * 2023-04-06 2024-09-27 山东高速信联科技股份有限公司 Traffic flow control system and method based on big data
CN119146997A (en) * 2024-11-13 2024-12-17 江苏如娟新材料科技有限公司 Non-contact vehicle-mounted navigation system and navigation method

Similar Documents

Publication Publication Date Title
CN104197948A (en) Navigation system and method based on traffic information prediction
CN110361024B (en) Method and system for dynamic lane-level vehicle navigation with vehicle group identification
US8755991B2 (en) Method and structure for vehicular traffic prediction with link interactions and missing real-time data
CN105096643B (en) Real-time public transport arrival time Forecasting Methodology based on multi-line front truck service data
Liu et al. Dynamic shared autonomous taxi system considering on-time arrival reliability
JP6094543B2 (en) Origin / Destination Extraction Device, Origin / Destination Extraction Method
Chang et al. A study on traffic signal control at signalized intersections in vehicular ad hoc networks
EP3555569A1 (en) Vehicle route guidance
US10594806B2 (en) Management of mobile objects and resources
CN107063278A (en) A kind of Vehicular navigation system, air navigation aid and its vehicle
JPWO2014024264A1 (en) Traffic prediction apparatus and method
EP4002322B1 (en) System and method for determining dynamic road capacity data for traffic condition
JP2013200809A (en) Congestion prediction method and congestion prediction device
CN107957267B (en) Method and device for determining navigation path prompt information
RU2664034C1 (en) Traffic information creation method and system, which will be used in the implemented on the electronic device cartographic application
EP3118836A1 (en) A method and a device for providing driving suggestions
JP2019028526A (en) Congestion prediction device
CN104680829A (en) Bus arrival time prediction system and method based on multi-user cooperation
US20170178268A1 (en) Management of mobile objects and resources
Hans et al. Clustering approach for assessing the travel time variability of arterials
CN115083198A (en) Multi-vehicle transport capacity resource scheduling method and device
GB2556876A (en) Vehicle route guidance
Stan et al. Smart driving methodology for connected cars
JP2019020799A (en) Traffic management device, traffic management system, and traffic management method
GB2560487A (en) Vehicle route guidance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141210

WD01 Invention patent application deemed withdrawn after publication