CN104195157A - High-efficiency recombination expression and purification method of biological active peptide in prokaryotic cells - Google Patents
High-efficiency recombination expression and purification method of biological active peptide in prokaryotic cells Download PDFInfo
- Publication number
- CN104195157A CN104195157A CN201410410942.7A CN201410410942A CN104195157A CN 104195157 A CN104195157 A CN 104195157A CN 201410410942 A CN201410410942 A CN 201410410942A CN 104195157 A CN104195157 A CN 104195157A
- Authority
- CN
- China
- Prior art keywords
- tev
- phgb1
- plasmid
- recombinant
- recombinant plasmid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Peptides Or Proteins (AREA)
Abstract
本发明公开了生物活性肽在原核细胞中的高效率重组表达和纯化方法,包括构建重组表达载体pHGB1-TEV、生长因子重组表达质粒pHGB1-TEV-hEGF、pHGB1-TEV-mEGF和pHGB1-TEV-LL-37并在大肠杆菌JM109菌株中高效表达和纯化抗菌肽LL-37及人和鼠表皮生长因子的技术。本发明采用现代生物技术,实现人表皮生长因子及抗菌肽的生产。通过这一体统表达的重组蛋白N端带有序列His6-GB1-TEV,六个组氨酸标签便于重组蛋白通过Ni-NTA柱得到纯化,TEV酶切序列使得融合标签能被在TEV酶高效切除,从而得到目的生物活性肽。生物活性肽具有多种功能,具有巨大的市场需求,利用该技术重组表达和纯化生物活性肽具有产量高,活性高,工艺简单,生成成本低廉等优点,具有很高的工业开发价值。
The invention discloses a high-efficiency recombinant expression and purification method of biologically active peptides in prokaryotic cells, including the construction of recombinant expression vector pHGB1-TEV, growth factor recombinant expression plasmids pHGB1-TEV-hEGF, pHGB1-TEV-mEGF and pHGB1-TEV- LL-37 and high-efficiency expression and purification of antimicrobial peptide LL-37 and human and mouse epidermal growth factors in Escherichia coli JM109 strain. The invention adopts modern biotechnology to realize the production of human epidermal growth factor and antibacterial peptide. The N-terminus of the recombinant protein expressed through this system has the sequence His 6 -GB1-TEV. The six histidine tags facilitate the purification of the recombinant protein through the Ni-NTA column. Excision, so as to obtain the target biologically active peptide. Bioactive peptides have multiple functions and have a huge market demand. Using this technology to recombine, express and purify bioactive peptides has the advantages of high yield, high activity, simple process, and low production cost, and has high industrial development value.
Description
技术领域 technical field
本发明涉及利用融合表达技术在原核表达系统中高效表达和纯化抗菌肽LL-37,表皮生长因子等生物活性肽,具体涉及生物活性肽在原核细胞中的高效率重组表达和纯化方法,属于生物工程领域。 The invention relates to the efficient expression and purification of bioactive peptides such as antibacterial peptide LL-37 and epidermal growth factor in a prokaryotic expression system using fusion expression technology, and specifically relates to a high-efficiency recombinant expression and purification method of bioactive peptides in prokaryotic cells, belonging to biological engineering field.
背景技术 Background technique
抗菌肽LL-37 是人体天然免疫系统产生的Cathelicidin类抗菌肽,其前体肽hCAP-18主要由中性粒细胞释放,经丝氨酸蛋白酶切割产生有活性的LL-37, 具有抵御外来微生物入侵,清除体内突变细胞等多种生理功能。LL-37是以两个亮氨酸起始的37肽,分子量为4.5 kDa,空间结构为兼性的α-螺旋。由于LL-37含有较多的 The antimicrobial peptide LL-37 is a cathelicidin antimicrobial peptide produced by the human natural immune system. Its precursor peptide hCAP-18 is mainly released by neutrophils, which is cleaved by serine protease to produce active LL-37, which has the ability to resist the invasion of foreign microorganisms, Eliminate various physiological functions such as mutant cells in the body. LL-37 is a 37-peptide starting with two leucines, with a molecular weight of 4.5 kDa and a facultative α-helix spatial structure. Since LL-37 contains more
碱性氨基酸,分子表面带正电荷,通过和带负电荷的细菌细胞膜相互作用来杀死细菌。 Basic amino acids, with a positive charge on the surface of the molecule, kill bacteria by interacting with the negatively charged bacterial cell membrane.
人和鼠表皮生长因子(Epidermal Growth Factor,简称EGF)都含有53个氨基酸,三对分子内二硫键。EGF是一种多功能细胞生长因子,EGF可以促进细胞有丝分裂以及糖、蛋白质、DNA、RNA合成,因此有着广泛的促进上皮细胞分裂增殖的作用,在临床上与很多疾病,如免疫性皮肤病、创面组织修复及牙周炎等。 Both human and mouse epidermal growth factors (EGF) contain 53 amino acids and three pairs of intramolecular disulfide bonds. EGF is a multifunctional cell growth factor. EGF can promote cell mitosis and the synthesis of sugar, protein, DNA, and RNA. Therefore, it has a wide range of effects on promoting the division and proliferation of epithelial cells. It is clinically associated with many diseases, such as immune skin diseases, Wound tissue repair and periodontitis, etc.
传统的生物提取和纯化生物活性肽工艺复杂,过程繁琐且产量低。多肽化学合成法的每一步,都要去掉其副产物,所以随着氨基酸序列的长度越长,多肽的化学合成越繁杂,副产物越多,纯化复杂,价格越昂贵。利用基因工程技术重组表达这些蛋白或多肽是最经济有效的方法。由于很多来源于高等生物体内的生物活性肽空间结构复杂,含有很多的二硫键,或带有很多的表面电荷是的很难直接在原核生物体内表达。探索更好的重组表达系统来表达和纯化生物活性肽具有巨大的理论价值和经济价值。 The traditional biological extraction and purification of bioactive peptides are complex, cumbersome and low yield. In every step of the chemical synthesis method of peptides, its by-products must be removed, so the longer the length of the amino acid sequence, the more complicated the chemical synthesis of the peptide, the more by-products, the more complicated the purification, and the more expensive the price. It is the most economical and effective method to express these proteins or polypeptides recombinantly by genetic engineering technology. Because many biologically active peptides derived from higher organisms have complex spatial structures, contain many disulfide bonds, or have many surface charges, it is difficult to directly express them in prokaryotic organisms. Exploring better recombinant expression systems to express and purify bioactive peptides has great theoretical and economic value.
发明内容 Contents of the invention
本发明的目的在于克服现有技术的缺陷,提供一种高效、稳定的生物活性肽的重组表达及分离纯化技术,通过融合表达技术实现生物活性肽在原核表达系统中的高效重组表达和快速分离纯化,大大降低了生物活性肽的生产成本。 The purpose of the present invention is to overcome the defects of the prior art, provide a highly efficient and stable recombinant expression and separation and purification technology of biologically active peptides, and realize the efficient recombinant expression and rapid separation of biologically active peptides in prokaryotic expression systems through fusion expression technology Purification greatly reduces the production cost of bioactive peptides.
本发明所提供的生物活性肽在原核细胞中的高效率重组表达和纯化方法,包括以下几个方面: The high-efficiency recombinant expression and purification method of bioactive peptides in prokaryotic cells provided by the present invention includes the following aspects:
(1)构建重组质粒pHGB1-TEV (1) Construction of recombinant plasmid pHGB1-TEV
提取质粒pET-22b (+), 经限制性内切酶NdeI和BamHI双酶切处理,胶回收得到大片段(pET-22b (+)质粒经双酶切后的线性片段); Plasmid pET-22b (+) was extracted, treated with restriction endonucleases Nde I and Bam HI, and recovered from the gel to obtain a large fragment (linear fragment of pET-22b (+) plasmid after double digestion);
合成His6-GB1-TEV(TEV proteinase酶切位点)DNA编码序列,其核苷酸序列如SEQ ID NO.1所示,蛋白序列如图2所示。 The His 6 -GB1-TEV (TEV proteinase restriction site) DNA coding sequence was synthesized, its nucleotide sequence is shown in SEQ ID NO.1, and its protein sequence is shown in Figure 2.
用分别带有NdeI和BamHI酶切位点的引物PCR扩增His6-GB1-TEV 编码DNA片段,NdeI和BamHI双酶切处理,胶回收得到小片段(带有限制性内切酶酶切位点的DNA片段(His6-GB1-TEV 编码序列))。 Use primers with Nde I and Bam HI restriction sites to amplify the His 6 -GB1-TEV coding DNA fragment by PCR, Nde I and Bam HI double digestion treatment, gel recovery to obtain small fragments (with restriction endonucleases) The DNA fragment of the enzyme cleavage site (His 6 -GB1-TEV coding sequence)).
大片段和小片段按1:5用T4 DNA连接酶连接;将连接产物转化大肠杆菌DH5α感受态,经过氨苄青霉素抗性筛选,挑取阳性克隆子,提取质粒并进行限制性内切酶NdeI和BamHI双酶切鉴定,通过DNA测序确定得到重组质粒:pHGB1-TEV。 Large fragments and small fragments were ligated with T4 DNA ligase at a ratio of 1:5; the ligated products were transformed into Escherichia coli DH5α competent, after ampicillin resistance screening, positive clones were picked, plasmids were extracted and subjected to restriction endonuclease Nde I And Bam HI double digestion identification, through DNA sequencing to determine the recombinant plasmid: pHGB1-TEV.
(2)构建重组质粒pHGB1-TEV-LL-37(或pHGB1-TEV-hEGF或pHGB1-TEV-mEGF) (2) Construction of recombinant plasmid pHGB1-TEV-LL-37 (or pHGB1-TEV-hEGF or pHGB1-TEV-mEGF)
提取重组质粒pHGB1-TEV,经限制性内切酶BamH I和XhoI酶切,1%琼脂糖凝胶电泳,胶回收得到大片段 (pHGB1-TEV经双酶切后的线性片段)。 The recombinant plasmid pHGB1-TEV was extracted, digested with restriction endonucleases Bam H I and Xho I, electrophoresed on 1% agarose gel, and a large fragment was recovered from the gel (the linear fragment of pHGB1-TEV after double digestion).
合成LL-37(Gene ID: 820),hEGF(Gene ID: 1950)及mEGF(Gene ID: 13645)基因片段,其核苷酸序列如SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4所示。用分别带有BamH I和XhoI酶切位点的引物PCR扩增LL-37,hEGF及mEGF基因片段;PCR产物经BamH I和XhoI双酶切处理后和大片段连接;将连接产物转化 Synthesized LL-37 (Gene ID: 820), hEGF (Gene ID: 1950) and mEGF (Gene ID: 13645) gene fragments, the nucleotide sequences of which are SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO .4 shown. LL-37, hEGF and mEGF gene fragments were amplified by PCR using primers with Bam H I and Xho I restriction sites respectively; the PCR products were double digested with Bam H I and Xho I and ligated with large fragments; the ligated products were transformed into
大肠杆菌DH5α感受态,经过氨苄青霉素抗性筛选,挑取阳性克隆子,提取质粒并进行限制性内切酶BamH I和XhoI双酶切鉴定,通过DNA测序确定得到重组质粒pHGB1-TEV-LL-37(或pHGB1-TEV-hEGF或pHGB1-TEV-mEGF) Escherichia coli DH5α was competent, after ampicillin resistance screening, positive clones were picked, the plasmid was extracted and identified by restriction endonuclease Bam H I and Xho I double digestion, and the recombinant plasmid pHGB1-TEV-LL was confirmed by DNA sequencing -37 (or pHGB1-TEV-hEGF or pHGB1-TEV-mEGF)
(3)LL-37(或mEGF或hEGF)的表达和纯化 (3) Expression and purification of LL-37 (or mEGF or hEGF)
重组质粒pHGB1-TEV-LL-37 (或pHGB1-TEV-hEGF或pHGB1-TEV-mEGF)转化到大肠杆菌JM109感受态中,得到融合表达LL-37 (或mEGF或hEGF)的工程菌株。 The recombinant plasmid pHGB1-TEV-LL-37 (or pHGB1-TEV-hEGF or pHGB1-TEV-mEGF) was transformed into Escherichia coli JM109 competent to obtain an engineered strain expressing LL-37 (or mEGF or hEGF).
挑LL-37(或mEGF或hEGF)的单克隆工程菌株于LB液体培养基中,37℃振荡过夜培养。将过夜培养物按1:100比例转接到新的含氨苄青霉素的LB液体培养基中,37℃振荡培养约3-4小时,待OD600值0.6时加入IPTG至终浓度0.2 mM,22℃诱导过夜。 Pick the monoclonal engineered strain of LL-37 (or mEGF or hEGF) in LB liquid medium and culture overnight at 37°C with shaking. Transfer the overnight culture to a new LB liquid medium containing ampicillin at a ratio of 1:100, culture with shaking at 37°C for about 3-4 hours, add IPTG to a final concentration of 0.2 mM when the OD600 value is 0.6, and store at 22°C Induce overnight.
5000 rpm 15分钟离心收菌,弃上清倒置1分钟使残余培养基流尽。用破菌缓冲液(50 mM NaH2PO4,500 mM NaCl,pH8.0)重悬沉淀,5000 rpm 10分钟离心收菌,弃上清。取50 mL破菌缓冲液加入到沉淀中并吹打均匀,1:200加入PMSF(苯甲基磺酰氟),超声波破菌15-20分钟,至半透明。细菌破碎液15000 rpm 15分钟离心,取上清。上Ni-NTA柱纯化,样品缓慢滴下使蛋白更好地与柱子结合。上样完毕,先用破菌缓冲液洗5个柱体积。再用洗脱缓冲液(50 mM NaH2PO4,500 mM NaCl,250 mM咪唑,pH8.0)洗脱,15%SDS-PAGE检测蛋白洗脱情况。Ni-NTA洗脱下来了的蛋白用快速蛋白液相色谱(FPLC)进一步纯化。纯化的融合蛋白,加入TEV酶(带有His6标签)100 μg 混匀4 °C过夜酶切(ENLYFQ↓ G), 酶切缓冲液为:(50 mM Tris-HCl,0.5 mM EDTA,1mM DTT, pH 8.0)酶切产物再缓慢流过Ni-NTA柱,收集流出的蛋白溶液即为切下的没有His6 标签的LL-37(或mEGF或hEGF)。 Collect the bacteria by centrifugation at 5000 rpm for 15 minutes, discard the supernatant and invert for 1 minute to drain the residual medium. Resuspend the pellet with bacteriostasis buffer (50 mM NaH 2 PO 4 , 500 mM NaCl, pH 8.0), centrifuge at 5000 rpm for 10 minutes to collect the bacteria, and discard the supernatant. Add 50 mL of bacteriostasis buffer to the pellet and pipette evenly, add PMSF (phenylmethylsulfonyl fluoride) at a ratio of 1:200, and ultrasonically destruct the bacteria for 15-20 minutes until translucent. Centrifuge the bacterial disruption liquid at 15,000 rpm for 15 minutes, and take the supernatant. Purify on a Ni-NTA column, and slowly drop the sample to make the protein better bind to the column. After loading the sample, first wash 5 column volumes with bacteriostasis buffer. Then use elution buffer (50 mM NaH 2 PO 4 , 500 mM NaCl, 250 mM imidazole, pH8.0) to elute, and detect the protein elution by 15% SDS-PAGE. The protein eluted with Ni-NTA was further purified by fast protein liquid chromatography (FPLC). To the purified fusion protein, add 100 μg of TEV enzyme (with His 6 tag) and mix well at 4 °C for overnight enzyme digestion (ENLYFQ↓ G). The enzyme digestion buffer is: (50 mM Tris-HCl, 0.5 mM EDTA, 1mM DTT , pH 8.0) digested product slowly flowed through the Ni-NTA column, and the collected protein solution was the cleaved LL-37 (or mEGF or hEGF) without His 6 tag.
其中,步骤(3)中所述TEV特异性切割酶由以下方法制备得到: Wherein, the TEV-specific cutting enzyme described in step (3) is prepared by the following method:
重组表达质粒pET-28b-TEV protease(本实验室保存)转化到大肠杆菌JM109感受态中,得到表达TEV protease的工程菌株。挑取单克隆于10mL含卡那霉素的LB液体培养基中,37℃振荡过夜培养。将过夜培养物按1:100比例转接到新的1L含卡那霉素的LB液体培养基中,37℃振荡培养约3-4小时,待OD600值0.6时加入IPTG至终浓度0.2 mM,22℃诱导过夜。 The recombinant expression plasmid pET-28b-TEV protease (preserved in our laboratory) was transformed into Escherichia coli JM109 competent to obtain an engineering strain expressing TEV protease. Pick a single clone in 10 mL of LB liquid medium containing kanamycin and culture overnight at 37°C with shaking. Transfer the overnight culture to a new 1L LB liquid medium containing kanamycin at a ratio of 1:100, culture with shaking at 37°C for about 3-4 hours, and add IPTG to a final concentration of 0.2 mM when the OD600 value is 0.6 , induced overnight at 22°C.
5000 rpm 15分钟离心收菌,弃上清倒置1分钟使残余培养基流尽。用破菌缓冲液(50 mM NaH2PO4,500 mM NaCl,pH8.0)重悬沉淀,5000 rpm 10分钟离心收菌,弃上清。取50 ml破菌缓冲液加入到沉淀中并吹打均匀,1:200加入PMSF(苯甲基磺酰氟),超声波破菌15-20分钟,至半透明。细菌破碎液15000 rpm离心15分钟,取上清。上Ni-NTA柱纯化,样品缓慢滴下使蛋白更好地与柱子结合。上样完毕,先用破菌缓冲液洗5个柱体积,再用洗脱缓冲液(50 mM NaH2PO4,500 mM NaCl,250 mM咪唑,pH8.0)洗脱,15%SDS-PAGE检测蛋白洗脱情况。 Ni-NTA洗脱下来了的蛋白用快速蛋白液相色谱(FPLC)进一步纯化。 Collect the bacteria by centrifugation at 5000 rpm for 15 minutes, discard the supernatant and invert for 1 minute to drain the residual medium. Resuspend the pellet with bacteriostasis buffer (50 mM NaH 2 PO 4 , 500 mM NaCl, pH 8.0), centrifuge at 5000 rpm for 10 minutes to collect the bacteria, and discard the supernatant. Take 50 ml of bacteriostasis buffer and add it to the pellet and pipette evenly, add PMSF (phenylmethylsulfonyl fluoride) at a ratio of 1:200, ultrasonicate for 15-20 minutes to destruct the bacteria until translucent. Bacterial disruption solution was centrifuged at 15,000 rpm for 15 minutes, and the supernatant was taken. Purify on a Ni-NTA column, and slowly drop the sample to make the protein better bind to the column. After sample loading, wash 5 column volumes with bacteriostasis buffer, then elute with elution buffer (50 mM NaH 2 PO 4 , 500 mM NaCl, 250 mM imidazole, pH8.0), 15% SDS-PAGE Check protein elution. The protein eluted with Ni-NTA was further purified by fast protein liquid chromatography (FPLC).
本发明的有益效果: Beneficial effects of the present invention:
本发明采用现代生物技术,构建了原核重组表达载体pHGB1-TEV,在此基础上克隆表达LL-37,mEGF,hEGF等生物活性肽。该融合表达技术中,融合的GB1结构域能大大提高重组蛋白的表达量和水溶性, His6标签方便纯化,TEV蛋白酶酶切位点的引入使得这些融合表达的序列很方便的被切除。采用本发明来生产生物活性肽快速高效,成本低,产量高,活性高,具有非常广阔的市场前景。 The present invention adopts modern biotechnology to construct the prokaryotic recombinant expression carrier pHGB1-TEV, and clone and express LL-37, mEGF, hEGF and other bioactive peptides on this basis. In this fusion expression technology, the fused GB1 domain can greatly increase the expression level and water solubility of the recombinant protein, the His 6 tag is convenient for purification, and the introduction of the TEV protease cleavage site makes these fusion expressed sequences very convenient to be excised. Using the invention to produce bioactive peptides is fast and efficient, has low cost, high yield and high activity, and has very broad market prospects.
附图说明 Description of drawings
图1为PCR扩增His6-GB1-TEV 编码序列结果图,图中,左边泳道为分子量marker,右边泳道为His6-GB1-TEV 编码序列。 Figure 1 is a diagram showing the results of PCR amplification of the His 6 -GB1-TEV coding sequence. In the figure, the left lane is the molecular weight marker, and the right lane is the His 6 -GB1-TEV coding sequence.
图2 为His6-GB1-TEV 编码序列的蛋白序列示意图,图中中间序列部分为GB1编码序列,前后序列分别为His6及TEV酶识别位点的编码序列。 Figure 2 is a schematic diagram of the protein sequence of the His 6 -GB1-TEV coding sequence. The middle sequence in the figure is the GB1 coding sequence, and the front and rear sequences are the coding sequences of His 6 and TEV enzyme recognition sites, respectively.
图3为重组质粒pHGB1-TEV的构建图谱。 Fig. 3 is a construction map of the recombinant plasmid pHGB1-TEV.
图4为重组质粒pHGB1-TEV-LL-37 的构建图谱。 Figure 4 is a construction map of the recombinant plasmid pHGB1-TEV-LL-37.
具体实施方式 Detailed ways
以下通过实施例对本发明进行具体描述或作进一步说明,其目的在于更好的理解本发明的技术内涵,但是本发明的保护范围不限于以下的实施范围。 The present invention is specifically described or further illustrated by the following examples, the purpose of which is to better understand the technical connotation of the present invention, but the protection scope of the present invention is not limited to the following implementation scope.
实施例1:构建重组表达载体:pHGB1-TEVExample 1: Construction of recombinant expression vector: pHGB1-TEV
(1)试验材料 (1) Test material
质粒和菌株:质粒pET-22b (+) 和大肠杆菌DH5α分别购自Novagen和Takara生物科技有限公司。 Plasmids and strains: Plasmid pET-22b (+) and Escherichia coli DH5α were purchased from Novagen and Takara Biotechnology Co., Ltd., respectively.
试剂:限制性内切酶Nde I和BamHI,卡那霉素购自NEB公司。 Reagents: restriction endonucleases Nde I and Bam HI, and kanamycin were purchased from NEB Company.
基因片段:His6-GB1-TEV 编码DNA序列及引物由上海生工合成。 Gene fragment: His 6 -GB1-TEV coding DNA sequence and primers were synthesized by Shanghai Sangong.
(2) 实施方案 (2) Implementation plan
A. 质粒pET-22b (+)的酶切: A. Enzyme digestion of plasmid pET-22b (+):
大量提取质粒pET-22b (+),纯化后加入限制性内切酶Nde I和BamHI置37℃酶切3小时,酶切产物1%琼脂糖凝胶电泳,切胶回收得到大片段(pET-22b (+)质粒经双酶切后的线性片段)。 Plasmid pET-22b (+) was extracted in large quantities. After purification, restriction endonucleases Nde I and Bam HI were added and digested at 37°C for 3 hours. The digested product was electrophoresed on 1% agarose gel, and the large fragment (pET -22b (+) plasmid linear fragment after double digestion).
B. His6-GB1-TEV编码序列酶切片段的获得: B. Obtaining the restriction fragment of His 6 -GB1-TEV coding sequence:
以合成的His6-GB1-TEV 编码序列(如SEQ ID NO.1所示)为模板,设计分别带有Nde I和BamHI酶切位点的正反向引物。PCR扩增后(扩增结果见图1所示,左边泳道为分子量marker,右边泳道为His6-GB1-TEV 编码序列,如箭头所示,片段长度为201bp。)再用Nde I和BamHI双酶切处理,胶回收得到小片段(带有限制性内切酶酶切位点的DNA片段(His6-GB1-TEV 编码序列))待用。 Using the synthetic His 6 -GB1-TEV coding sequence (as shown in SEQ ID NO.1) as a template, design forward and reverse primers with Nde I and Bam HI restriction sites respectively. After PCR amplification (the amplification results are shown in Figure 1, the left lane is the molecular weight marker, and the right lane is the His 6 -GB1-TEV coding sequence, as indicated by the arrow, the fragment length is 201bp.) Then use Nde I and Bam HI Double enzyme digestion treatment, gel recovery to obtain small fragments (DNA fragments with restriction endonuclease sites (His6-GB1-TEV coding sequence)) for use.
引物序列如下:下划线位置为酶切位点。 The primer sequences are as follows: the underlined position is the restriction site.
正向引物F(Nde I): CGGGTTAACCATATGCACCATCATCATCATCACCA Forward primer F ( Nde I): CGGGTTAAC CATATG CACCATCATCATCATCACCA
反向引物R(BamHI):GTTGGATCCCTGGAAATACAGATTTTCTT Reverse primer R ( Bam HI): GTT GGATCC CTGGAAATACAGATTTTCTT
C. 重组质粒pHGB1-TEV的构建: C. Construction of recombinant plasmid pHGB1-TEV:
大片段和小片段按1:5用T4 DNA连接酶连接;将连接产物转化大肠杆菌DH5α感受态,经过氨苄霉素抗性筛选,挑取阳性克隆子,提取质粒并进行限制性内切酶Nde I和BamHI双酶切鉴定,通过DNA测序确定得到重组质粒:pHGB1-TEV。 Large fragments and small fragments were ligated with T4 DNA ligase at a ratio of 1:5; the ligated products were transformed into Escherichia coli DH5α competent, after screening for ampicillin resistance, positive clones were picked, plasmids were extracted and subjected to restriction endonuclease Nde I and Bam HI double digestion identification, through DNA sequencing to determine the recombinant plasmid: pHGB1-TEV.
重组质粒pHGB1-TEV的构建图谱见图3。 The construction map of the recombinant plasmid pHGB1-TEV is shown in Figure 3.
实施例2:重组质粒pHGB1-TEV-LL-37 (或pHGB1-TEV-hEGF或pHGB1-TEV-mEGF)的构建Example 2: Construction of recombinant plasmid pHGB1-TEV-LL-37 (or pHGB1-TEV-hEGF or pHGB1-TEV-mEGF)
(1)试验材料 (1) Test material
质粒和菌株:大肠杆菌DH5α购自Takara生物科技有限公司。 Plasmid and strain: Escherichia coli DH5α was purchased from Takara Biotechnology Co., Ltd.
试剂:限制性内切酶BamH I和Xho I,卡那霉素购自NEB公司。 Reagents: restriction endonucleases Bam H I and Xho I, and kanamycin were purchased from NEB Company.
基因片段:LL-37(或hEGF或mEGF)编码DNA序列(如SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4所示)及引物由上海生工合成。 Gene fragment: LL-37 (or hEGF or mEGF) coding DNA sequence (as shown in SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO.4) and primers were synthesized by Shanghai Sangon.
(2) 实施方案 (2) Implementation plan
A. 质粒pHGB1-TEV的酶切 A. Enzyme digestion of plasmid pHGB1-TEV
大量提取质粒pHGB1-TEV,纯化后加入限制性内切酶BamH I和Xho I置于37℃酶切3小时,酶切产物1%琼脂糖凝胶电泳,切胶回收得到大片段(pHGB1-TEV经双酶切后的线性片段)。 A large amount of plasmid pHGB1-TEV was extracted, and after purification, restriction endonucleases Bam H I and Xho I were added to digest at 37°C for 3 hours. The digested product was electrophoresed on 1% agarose gel, and the large fragment (pHGB1-TEV linear fragment after double digestion).
B. LL-37(或hEGF或mEGF)基因酶切片段的获得 B. Obtaining LL-37 (or hEGF or mEGF) gene restriction fragments
合成LL-37(Gene ID: 820),hEGF(Gene ID: 1950)及mEGF(Gene ID: 13645)基因片段,其核苷酸序列如SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4所示。 Synthesized LL-37 (Gene ID: 820), hEGF (Gene ID: 1950) and mEGF (Gene ID: 13645) gene fragments, the nucleotide sequences of which are SEQ ID NO.2, SEQ ID NO.3, SEQ ID NO .4 shown.
分别以合成的LL-37(或hEGF或mEGF)编码序列为模板,设计分别带有BamH I和Xho I酶切位点的正反向引物。PCR扩增后再用BamH I和Xho I双酶切处理,胶回收得到小片段待用。 Using the synthetic LL-37 (or hEGF or mEGF) coding sequence as a template, design forward and reverse primers with Bam H I and Xho I restriction sites, respectively. After PCR amplification, double digestion with Bam HI and Xho I was performed, and small fragments were recovered from the gel for use.
扩增 LL-37的引物序列: Primer sequences for amplifying LL-37:
正向引物F(BamHI):GTTGGATCCCTGCTGGGTGATTTCTTC Forward primer F ( Bam HI): GTT GGATCC CTGCTGGGTGATTTCTTC
反向引物R(XhoI):CCGCTCGAGCTAGGACTCTGTCCTGGGTA Reverse primer R ( Xho I): CCG CTCGAG CTAGGACTCTGTCCTGGGTA
扩增hEGF的引物序列: Primer sequences for amplifying hEGF:
正向引物F(BamHI):GTTGGATCCAATAGTGACTCTGAATGT Forward primer F ( Bam HI): GTT GGATCC AATAGTGACTCTGAATGT
反向引物R(XhoI):CCGCTCGAGCTAGCGCAGTTCCCACCACTT Reverse primer R ( Xho I): CCG CTCGAG CTAGCGCAGTTCCCACCACTT
扩增mEGFF的引物序列: Primer sequences for amplifying mEGFF:
正向引物F(BamHI):GTTGGATCCAATAGTTATCCAGGATGC Forward primer F ( Bam HI): GTT GGATCC AATAGTTATCCAGGATGC
反向引物R(XhoI):CCGCTCGAGCTAACGCAGCTCCCACCATCG Reverse primer R ( Xho I): CCG CTCGAG CTAACGCAGCTCCCACCATCG
C. 重组质粒pHGB1-TEV-LL-37 (或pHGB1-TEV-hEGF或pHGB1-TEV-mEGF)的构建 C. Construction of recombinant plasmid pHGB1-TEV-LL-37 (or pHGB1-TEV-hEGF or pHGB1-TEV-mEGF)
大片段和小片段按1:5用T4 DNA连接酶连接;将连接产物转化大肠杆菌DH5α感受态,经过氨苄霉素抗性筛选,挑取阳性克隆子,提取质粒并进行限制性内切酶BamH I和Xho I双酶切鉴定,通过DNA测序确定得到重组质粒:pHGB1-TEV-LL-37 (或pHGB1-TEV-hEGF或pHGB1-TEV-mEGF)。 Large fragments and small fragments were ligated with T4 DNA ligase at a ratio of 1:5; the ligated products were transformed into Escherichia coli DH5α competent, after screening for ampicillin resistance, positive clones were picked, plasmids were extracted and subjected to restriction endonuclease Bam H I and Xho I double enzyme digestion identification, through DNA sequencing to determine the recombinant plasmid: pHGB1-TEV-LL-37 (or pHGB1-TEV-hEGF or pHGB1-TEV-mEGF).
重组质粒的构建以pHGB1-TEV—LL-37为例,如图4所示。 The construction of the recombinant plasmid takes pHGB1-TEV-LL-37 as an example, as shown in FIG. 4 .
实施例3:LL-37(或hEGF或mEGF)的表达和纯化Example 3: Expression and purification of LL-37 (or hEGF or mEGF)
(1)试验材料 (1) Test material
质粒和菌株:大肠杆菌BL21(DE3)购自Takara生物科技有限公司。 Plasmid and strain: Escherichia coli BL21 (DE3) was purchased from Takara Biotechnology Co., Ltd.
试剂:氨苄青霉素、IPTG购自NEB公司。 Reagents: Ampicillin and IPTG were purchased from NEB Company.
(2)实施方案 (2) Implementation plan
A.LL-37(或hEGF或mEGF)融合蛋白的诱导表达 A. Inducible expression of LL-37 (or hEGF or mEGF) fusion protein
重组质粒pHGB1-TEV-LL-37 (或pHGB1-TEV-hEGF或pHGB1-TEV-mEGF)转化到大肠杆菌JM109感受态中,得到融合表达LL-37 (或mEGF或hEGF)工程菌株。 The recombinant plasmid pHGB1-TEV-LL-37 (or pHGB1-TEV-hEGF or pHGB1-TEV-mEGF) was transformed into Escherichia coli JM109 competent to obtain a fusion expression LL-37 (or mEGF or hEGF) engineering strain.
挑LL-37(或hEGF或mEGF)的单克隆工程菌株于LB液体培养基中,37℃振荡过夜培养。将过夜培养物按1:100比例转接到新的1L含氨苄青霉素的LB液体培养基中,37℃振荡培养约3-4小时,待OD600值0.6时加入IPTG至终浓度0.2mM,22℃诱导过夜。 Pick the monoclonal engineered strain of LL-37 (or hEGF or mEGF) in LB liquid medium and culture overnight at 37°C with shaking. Transfer the overnight culture to a new 1L LB liquid medium containing ampicillin at a ratio of 1:100, culture with shaking at 37°C for about 3-4 hours, and add IPTG to a final concentration of 0.2mM when the OD600 value is 0.6, 22 °C induction overnight.
B. LL-37(或hEGF或mEGF)的纯化 B. Purification of LL-37 (or hEGF or mEGF)
5000 rpm 15分钟离心收菌,弃上清倒置1分钟使残余培养基流尽。用破菌缓冲液(50 mM NaH2PO4,500 mM NaCl,pH8.0)重悬沉淀,5000 rpm 10分钟离心收菌,弃上清。取50ml破菌缓冲液加入到沉淀中并吹打均匀,1:200加入PMSF(苯甲基磺酰氟),超声波破菌15-20分钟,至半透明。细菌破碎液15000 rpm 15分钟离心,取上清。上Ni-NTA柱纯化,样品缓慢滴下使蛋白更好地与柱子结合。上样完毕,先用破菌缓冲液洗5个柱体积。 Collect the bacteria by centrifugation at 5000 rpm for 15 minutes, discard the supernatant and invert for 1 minute to drain the residual medium. Resuspend the pellet with bacteriostasis buffer (50 mM NaH 2 PO 4 , 500 mM NaCl, pH 8.0), centrifuge at 5000 rpm for 10 minutes to collect the bacteria, and discard the supernatant. Take 50ml of bacteriostasis buffer and add it to the precipitate and pipette evenly, add PMSF (phenylmethylsulfonyl fluoride) at a ratio of 1:200, and ultrasonicate for 15-20 minutes until translucent. Centrifuge the bacterial disruption liquid at 15,000 rpm for 15 minutes, and take the supernatant. Purify on a Ni-NTA column, and slowly drop the sample to make the protein better bind to the column. After loading the sample, first wash 5 column volumes with bacteriostasis buffer.
再用洗脱缓冲液(50 mM NaH2PO4,500 mM NaCl,250 mM咪唑,pH8.0)洗脱,15%SDS-PAGE检测蛋白洗脱情况。Ni-NTA洗脱下来了的蛋白用快速蛋白液相色谱(FPLC)进一步纯化。纯化的融合蛋白,加入TEV酶(带有His tag)100 μg 混匀4°C过夜酶切(ENLYFQ↓ G), 酶切缓冲液为:(50 mM Tris-HCl,0.5 mM EDTA,1 mM DTT,pH 8.0))酶切产物再缓慢流过Ni-NTA柱,收集流出的蛋白溶液即为酶切下的没有His 标签的LL-37(或hEGF或mEGF)。 Then use elution buffer (50 mM NaH 2 PO 4 , 500 mM NaCl, 250 mM imidazole, pH8.0) to elute, and detect the protein elution by 15% SDS-PAGE. The protein eluted with Ni-NTA was further purified by fast protein liquid chromatography (FPLC). To the purified fusion protein, add 100 μg of TEV enzyme (with His tag) and mix well at 4°C for overnight enzyme digestion (ENLYFQ↓ G). The enzyme digestion buffer is: (50 mM Tris-HCl, 0.5 mM EDTA, 1 mM DTT , pH 8.0)) and then slowly flow the digested product through the Ni-NTA column, and the collected protein solution is the digested LL-37 (or hEGF or mEGF) without His tag.
实施例4:MTT法测定纯化后的hEGF或mEGF蛋白的活性Embodiment 4: MTT method measures the activity of hEGF or mEGF protein after the purification
(1)试验材料 (1) Test material
细胞:小鼠胚胎成纤维细胞(Balb/C 3T3细胞)购自ATCC。 Cells: Mouse embryonic fibroblasts (Balb/C 3T3 cells) were purchased from ATCC.
试剂: Reagent:
RPMI 1640培养基1000 mL 加青霉素105IU和链霉素105IU,再加NaHCO3 Add 10 5 IU of penicillin and 10 5 IU of streptomycin to 1000 mL of RPMI 1640 medium, then add NaHCO 3
2.1g,溶解后,混匀,除菌过滤,4°C保存;取胎牛血清(FBS) 4 mL加入1000mL RPMI 1640培养基得到维持培养液;取胎牛血清(FBS)100 mL 加入1000 mLRPMI1640培养基得到完全培养液;PBS:称NaCl 8 g,KCl 0.2 g,Na2HPO3 1.44 g,KH2PO3 0.24 g,加水至1000 mL,121°C 灭菌15分钟;噻唑蓝(MTT)溶液:取MTT粉末0.1g 加PBS 20mL溶解,经0.22 μm滤膜过滤除菌,4°C避光保存。 2.1g, dissolved, mixed, sterilized and filtered, stored at 4°C; take 4 mL of fetal bovine serum (FBS) and add 1000 mL of RPMI 1640 medium to obtain maintenance culture medium; take 100 mL of fetal bovine serum (FBS) and add 1000 mL of RPMI1640 Culture medium to obtain complete culture solution; PBS: weigh 8 g of NaCl, 0.2 g of KCl, 1.44 g of Na 2 HPO 3 , 0.24 g of KH 2 PO 3 , add water to 1000 mL, and sterilize at 121°C for 15 minutes; thiazolyl blue (MTT) Solution: Dissolve 0.1 g of MTT powder in 20 mL of PBS, filter through a 0.22 μm filter membrane, and store in the dark at 4°C.
(2) 实施方案 (2) Implementation plan
A. 取重组人表皮生长因子标准品按说明书复溶后,用维持培养液稀释至每1mL含50 IU。在96孔细胞培养板中,做4倍系列稀释,共8个稀释度,每个浓度做2个控。无菌操作; A. Take the recombinant human epidermal growth factor standard product and reconstitute it according to the instructions, and then dilute it with maintenance medium to contain 50 IU per 1 mL. In a 96-well cell culture plate, 4-fold serial dilutions were made, a total of 8 dilutions, and 2 controls were made for each concentration. Aseptic operation;
B. 取样品复溶后,用维持培养液稀释。在96孔细胞培养板中,做4倍系列稀释,共8个稀释度,每个浓度做2个控。无菌操作; B. After the sample is reconstituted, it is diluted with maintenance medium. In a 96-well cell culture plate, 4-fold serial dilutions were made, a total of 8 dilutions, and 2 controls were made for each concentration. Aseptic operation;
C. Balb/c 3T3细胞株用完全培养液于37°C,5% CO2培养,控制细胞浓度为每1 mL含1.0×105-5.0×105个细胞,传代后24-36 h用于生物活性测定。弃去培养瓶中的培养液,消化和收集细胞,用完全培养液配成每1 mL含5.0×104-8.0×104个细胞的细胞悬液,接种于96孔细胞培养板中,每孔100 μL。在37°C,5% CO2培养培养15-24h。制备的细胞培养板弃去维持液,加入标准品溶液和样品溶液,每孔100μL。于37°C,5% CO2培养60-72 h。每孔加入MTT溶液20 μL,于37°C,5% CO2培养2-8 h。以上操作在无菌条件下进行。弃去培养液中的液体后,向每孔中加入二甲基亚砜(DMSO)100 μL,混匀后在酶标仪上,以630 nm为参比波长,于波长570 nm处测定吸光度,记录测定结果。 C. The Balb/c 3T3 cell line is cultured with complete culture medium at 37°C, 5% CO 2 , the control cell concentration is 1.0×10 5 -5.0×10 5 cells per 1 mL, and it is used 24-36 hours after passage in the determination of biological activity. Discard the culture medium in the culture flask, digest and collect the cells, use the complete culture medium to make a cell suspension containing 5.0×10 4 -8.0×10 4 cells per 1 mL, and inoculate in a 96-well cell culture plate. Well 100 μL. Incubate at 37°C, 5% CO 2 for 15-24h. For the prepared cell culture plate, discard the maintenance solution, add standard solution and sample solution, 100 μL per well. Incubate at 37°C, 5% CO 2 for 60-72 h. Add 20 μL of MTT solution to each well, and incubate at 37°C, 5% CO 2 for 2-8 h. The above operations were carried out under sterile conditions. After discarding the liquid in the culture medium, add 100 μL of dimethyl sulfoxide (DMSO) to each well, mix well, and measure the absorbance at a wavelength of 570 nm on a microplate reader with 630 nm as the reference wavelength. Record the measurement results.
Balb/C 3T3细胞的活性测定实验显示与标准品相比hEGF样品具有较高生物学活性,检测到hEGF及mEGF样品的活性分别为3×105 U/mg及3.5×105 U/mg。 The activity assay of Balb/C 3T3 cells showed that the hEGF sample had higher biological activity than the standard product, and the detected activities of the hEGF and mEGF samples were 3×10 5 U/mg and 3.5×10 5 U/mg, respectively.
实施例5:LL-37的抗菌活性实验Embodiment 5: the antibacterial activity experiment of LL-37
(1)试验材料 (1) Test material
细胞:伤寒沙门菌S.typhi,由本实验室保存。 Cells: Salmonella typhi S.typhi, preserved by our laboratory.
试剂:普通LB液体培养基,抗菌肽LL-37,多粘菌素(PxB)。 Reagents: ordinary LB liquid medium, antimicrobial peptide LL-37, polymyxin (PxB).
(2)实施方案 (2) Implementation plan
从LB平板上挑取伤寒沙门菌野生株单菌落于2 mL LB液体培养基中,37℃振摇过夜,然后以1:100的比例分别转接入20 mL LB液体培养基,加了抗菌肽LL-37(终浓度50 μg/mL)以及加了同样浓度多粘菌素(PxB)的20 mL LB液体培养基。 37℃振摇培养,每隔1 h测定各自的OD600,绘制生长曲线图。结果表明用该方法表达纯化的LL-37具有比多粘菌素(PxB)更高的抑制细菌生长(抗菌)活性。 Pick a single colony of Salmonella typhi wild strain from the LB plate and place it in 2 mL LB liquid medium, shake overnight at 37°C, then transfer to 20 mL LB liquid medium at a ratio of 1:100, add antimicrobial peptides LL-37 (final concentration 50 μg/mL) and 20 mL LB liquid medium added with the same concentration of polymyxin (PxB). Shake the culture at 37°C, measure the OD 600 every 1 h, and draw the growth curve. The results showed that LL-37 expressed and purified by this method had higher antibacterial (antibacterial) activity than polymyxin (PxB).
SEQUENCE LISTING SEQUENCE LISTING
the
<110> 江苏大学 <110> Jiangsu University
the
<120> 生物活性肽在原核细胞中的高效率重组表达和纯化方法 <120> High-efficiency recombinant expression and purification method of bioactive peptides in prokaryotic cells
the
<160> 4 <160> 4
the
<170> PatentIn version 3.3 <170> PatentIn version 3.3
the
<210> 1 <210> 1
<211> 201 <211> 201
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<400> 1 <400> 1
caccatcatc atcatcacca gtacaagctt gctctgaacg gtaaaaccct gaaaggtgaa 60 caccatcatc atcatcacca gtacaagctt gctctgaacg gtaaaaccct gaaaggtgaa 60
the
accaccaccg aagctgttga cgctgctacc gcggaaaaag ttttcaaaca gtacgctaac 120 accaccaccg aagctgttga cgctgctacc gcggaaaaag ttttcaaaca gtacgctaac 120
the
gacaacggtg ttgacggtga atggacctac gacgacgcta ccaaaacctt cacggtaacc 180 gacaacggtg ttgacggtga atggacctac gacgacgcta ccaaaacctt cacggtaacc 180
the
gaagaaaatc tgtatttcca g 201 gaagaaaatc tgtatttcca g 201
the
the
<210> 2 <210> 2
<211> 114 <211> 114
<212> DNA <212> DNA
<213> Homo sapiens <213> Homo sapiens
the
<400> 2 <400> 2
ctgctgggtg atttcttccg gaaatctaaa gagaagattg gcaaagagtt taaaagaatt 60 ctgctgggtg atttcttccg gaaatctaaa gagaagattg gcaaagagtt taaaagaatt 60
the
gtccagagaa tcaaggattt tttgcggaat cttgtaccca ggacagagtc ctag 114 gtccagagaa tcaaggattt tttgcggaat cttgtaccca ggacagagtc ctag 114
the
the
<210> 3 <210> 3
<211> 159 <211> 159
<212> DNA <212> DNA
<213> Homo sapiens <213> Homo sapiens
the
<400> 3 <400> 3
aatagtgact ctgaatgtcc cctgtcccac gatgggtact gcctccatga tggtgtgtgc 60 aatagtgact ctgaatgtcc cctgtcccac gatgggtact gcctccatga tggtgtgtgc 60
the
atgtatattg aagcattgga caagtatgca tgcaactgtg ttgttggcta catcggggag 120 atgtatattg aagcattgga caagtatgca tgcaactgtg ttgttggcta catcggggag 120
the
cgatgtcagt accgagacct gaagtggtgg gaactgcgc 159 cgatgtcagt accgagacct gaagtggtgg gaactgcgc 159
the
the
<210> 4 <210> 4
<211> 159 <211> 159
<212> DNA <212> DNA
<213> Mus musculus <213> Mus musculus
the
<400> 4 <400> 4
aatagttatc caggatgccc atcctcatat gatggatact gcctcaatgg tggcgtgtgc 60 aatagttatc caggatgccc atcctcatat gatggatact gcctcaatgg tggcgtgtgc 60
the
atgcatattg aatcactgga cagctacaca tgcaactgtg ttattggcta ttctggggat 120 atgcatattg aatcactgga cagctacaca tgcaactgtg ttattggcta ttctggggat 120
the
cgatgtcaga ctcgagacct acgatggtgg gagctgcgt 159 cgatgtcaga ctcgagacct acgatggtgg gagctgcgt 159
the
the
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410410942.7A CN104195157A (en) | 2014-08-20 | 2014-08-20 | High-efficiency recombination expression and purification method of biological active peptide in prokaryotic cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410410942.7A CN104195157A (en) | 2014-08-20 | 2014-08-20 | High-efficiency recombination expression and purification method of biological active peptide in prokaryotic cells |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104195157A true CN104195157A (en) | 2014-12-10 |
Family
ID=52080525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410410942.7A Pending CN104195157A (en) | 2014-08-20 | 2014-08-20 | High-efficiency recombination expression and purification method of biological active peptide in prokaryotic cells |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104195157A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106754808A (en) * | 2017-01-13 | 2017-05-31 | 中国药科大学 | A kind of expression of heparosan sulphation modification enzyme |
CN108164593A (en) * | 2018-01-15 | 2018-06-15 | 天津大学 | A kind of method for purifying proteins based on calmodulin property |
CN112094861A (en) * | 2020-10-26 | 2020-12-18 | 南京林业大学 | A kind of expression and purification method of green algae plant ferritin and its application |
CN114276413A (en) * | 2022-01-26 | 2022-04-05 | 中国石油大学(华东) | A kind of preparation method of artificial antimicrobial peptide G3 |
CN117417407A (en) * | 2023-10-20 | 2024-01-19 | 宜兴食品与生物技术研究院有限公司 | Method for forming reversible membraneless organelle in microorganism |
-
2014
- 2014-08-20 CN CN201410410942.7A patent/CN104195157A/en active Pending
Non-Patent Citations (2)
Title |
---|
MATTHEW D. DAUGHERTY ET AL.: "A solution to limited genomic capacity: using adaptable binding surfaces to assemble the functional HIV Rev oligomer on RNA", 《 MOL CELL.》 * |
姚雅楠: "猪肠三叶肽TFF3基因的克隆与原核表达", 《中国优秀硕士学位论文全文数据库 农业科技辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106754808A (en) * | 2017-01-13 | 2017-05-31 | 中国药科大学 | A kind of expression of heparosan sulphation modification enzyme |
CN108164593A (en) * | 2018-01-15 | 2018-06-15 | 天津大学 | A kind of method for purifying proteins based on calmodulin property |
CN112094861A (en) * | 2020-10-26 | 2020-12-18 | 南京林业大学 | A kind of expression and purification method of green algae plant ferritin and its application |
CN114276413A (en) * | 2022-01-26 | 2022-04-05 | 中国石油大学(华东) | A kind of preparation method of artificial antimicrobial peptide G3 |
CN117417407A (en) * | 2023-10-20 | 2024-01-19 | 宜兴食品与生物技术研究院有限公司 | Method for forming reversible membraneless organelle in microorganism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113980112B (en) | Expression vector and expression product of cobra antibacterial peptide OH-CATH30 and construction preparation method thereof | |
CN107245494A (en) | Efficient Soluble Expression and Purification of Aβ42 in Escherichia coli | |
CN104195157A (en) | High-efficiency recombination expression and purification method of biological active peptide in prokaryotic cells | |
CN109797155B (en) | Portunus trituberculatus mannose binding lectin PtMBL gene and encoding protein and application thereof | |
CN106497897A (en) | A kind of engineered strain construction method for improving Heparinase I activity | |
CN108085306A (en) | A kind of zearalenone degrading enzyme mutants and its encoding gene and application | |
CN110724187B (en) | Recombinant engineering bacterium for efficiently expressing liraglutide precursor and application thereof | |
US10202607B2 (en) | Cleavable fusion tag for protein overexpression and purification | |
CN111349177B (en) | A kind of preparation method and application of fusion antimicrobial peptide CAT | |
Ramos et al. | Escherichia coli expression and purification of LL37 fused to a family III carbohydrate-binding module from Clostridium thermocellum | |
US20160168226A1 (en) | Process for production of insulin and insulin analogues | |
KR100961528B1 (en) | Mass production method of active human epidermal growth factor in Escherichia coli | |
CN107446941A (en) | Cecropin A antibacterial peptide based on self-aggregation short-peptide induction and preparation method thereof | |
CN104342445A (en) | Vector for efficiently secreting and expressing heterogenous protein, and its application | |
CN111499759A (en) | A kind of zinc finger protein-lactoferrin fusion protein with cell penetrability and its preparation and application | |
Feng et al. | Expression and Purification of an Antimicrobial Peptide, Bovine Lactoferricin Derivative LfcinB-W10 in Escherichia á coli | |
JP7016552B2 (en) | How to increase the secretion of recombinant proteins | |
CN109182366A (en) | Preparation method of thermosensitive uracil-DNA glycosylase | |
KR20230165291A (en) | Constructs and methods for increasing expression of polypeptides | |
CN110305887A (en) | Anti-fungus peptide Drosomycin, preparation method and applications | |
CN108779152B (en) | Insoluble fusion protein comprising antimicrobial peptide and method for producing antimicrobial peptide using same | |
CN101775404A (en) | Method for highly expressing basic protein with prokaryotic expression system | |
CN101831432A (en) | Biosynthesis method and application of bone morphogenetic protein-2 | |
KR101622373B1 (en) | Method for producing antimicrobial peptide using insoluble green fluorescent protein as a scaffold | |
KR102667373B1 (en) | A novel fusion tag system promising soluble expression and purification in Escherichia coli using CBM66 and levan, and their applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141210 |