CN104184441A - Clock data recovery circuit - Google Patents
Clock data recovery circuit Download PDFInfo
- Publication number
- CN104184441A CN104184441A CN201410423912.XA CN201410423912A CN104184441A CN 104184441 A CN104184441 A CN 104184441A CN 201410423912 A CN201410423912 A CN 201410423912A CN 104184441 A CN104184441 A CN 104184441A
- Authority
- CN
- China
- Prior art keywords
- voltage
- clock
- control voltage
- module
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 54
- 230000010355 oscillation Effects 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims description 26
- 230000000052 comparative effect Effects 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 description 1
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
一种时脉数据恢复电路,通过锁相回路或延迟锁定回路来达成时脉数据恢复的功能。并且所述的时脉数据恢复电路包括控制电压调整模块,此控制电压调整模块耦接至锁相回路或延迟锁定回路中的时脉框选模块,用以调整控制电压于一个预设电压范围中。通过本发明所公开的时脉数据恢复电路,利用控制电压调整模块判断用来控制延迟时间或振荡频率的控制电压是否低于预设电压范围的下限,由此能够避免发生“锁死”状态。
A clock data recovery circuit achieves the function of clock data recovery through a phase locked loop or a delay locked loop. And the clock data recovery circuit includes a control voltage adjustment module. The control voltage adjustment module is coupled to the clock frame selection module in the phase locked loop or the delay locked loop to adjust the control voltage within a preset voltage range. . Through the clock data recovery circuit disclosed in the present invention, the control voltage adjustment module is used to determine whether the control voltage used to control the delay time or oscillation frequency is lower than the lower limit of the preset voltage range, thereby avoiding the occurrence of a "lock-up" state.
Description
技术领域technical field
本发明涉及一种时脉数据恢复电路,尤其涉及一种具有防锁死机制的时脉数据恢复电路。The invention relates to a clock data recovery circuit, in particular to a clock data recovery circuit with an anti-lock mechanism.
背景技术Background technique
时脉数据恢复电路(Clock and Data Recovery circuit,CDR)被广泛的应用于各种数据传输相关的装置上。在时脉数据恢复电路中往往通过锁相回路(Phase-Locked Loop,PLL)或是延迟锁定回路(Delay-Locked Loop,DLL)来达成时脉数据恢复的功能。然而,锁相回路或延迟锁定回路在运作上都可能发生“锁死”的状态,从而导致整个时脉数据恢复电路乃至于整个数据传输装置的停摆或错误。因此,如何避免发生“锁死”状态,是一个亟待解决的课题。Clock and Data Recovery circuit (CDR) is widely used in various data transmission related devices. In the clock data recovery circuit, the function of clock data recovery is often achieved through a phase-locked loop (Phase-Locked Loop, PLL) or a delay-locked loop (Delay-Locked Loop, DLL). However, both the phase-locked loop and the delay-locked loop may be in a "locked" state in operation, which will lead to a stoppage or error of the entire clock data recovery circuit and even the entire data transmission device. Therefore, how to avoid the "locked" state is an urgent problem to be solved.
发明内容Contents of the invention
有鉴于以上的问题,本发明提出一种时脉数据恢复电路,在判断其中的回路锁死时,重置整个时脉数据恢复电路,以试图让其中的回路正常地锁定。In view of the above problems, the present invention proposes a clock data recovery circuit. When it is judged that the loop in it is locked, the entire clock data recovery circuit is reset to try to make the loop in it lock normally.
依据本发明一个或多个实施例所公开的一种时脉数据恢复电路,包括时脉延迟模块、相位检测模块、时脉框选模块与控制电压调整模块。时脉延迟模块用以接收参考时脉并延迟一延迟时间后,产生第一时脉。相位检测模块耦接至时脉延迟模块,用以比较参考时脉与第一时脉间的相位差。时脉框选模块耦接至相位检测模块与时脉延迟模块,依据相位差以产生控制电压,所述控制电压用以控制前述延迟时间。控制电压调整模块耦接至时脉框选模块与时脉延迟模块,用以调整控制电压于一个预设电压范围中。于本发明一实施例中,当控制电压小于预设电压范围的下限时,控制电压调整模块至少提升控制电压至预设电压范围的上限。与本发明另一实施例中,当控制电压大于预设电压范围的上限时,控制电压调整模块至少降低控制电压至预设电压范围的下限。A clock data recovery circuit disclosed in one or more embodiments of the present invention includes a clock delay module, a phase detection module, a clock frame selection module and a control voltage adjustment module. The clock delay module is used for receiving the reference clock and delaying for a delay time to generate the first clock. The phase detection module is coupled to the clock delay module for comparing the phase difference between the reference clock and the first clock. The clock frame selection module is coupled to the phase detection module and the clock delay module, and generates a control voltage according to the phase difference, and the control voltage is used to control the aforementioned delay time. The control voltage adjustment module is coupled to the clock frame selection module and the clock delay module for adjusting the control voltage within a preset voltage range. In an embodiment of the present invention, when the control voltage is lower than the lower limit of the preset voltage range, the control voltage adjustment module at least increases the control voltage to the upper limit of the preset voltage range. In another embodiment of the present invention, when the control voltage is greater than the upper limit of the preset voltage range, the control voltage adjustment module at least reduces the control voltage to the lower limit of the preset voltage range.
依据本发明一个或多个实施例所公开的另一种时脉数据恢复电路,包括振荡模块、相位频率检测模块、时脉框选模块与控制电压调整模块。振荡模块受控于控制电压,以产生第二时脉。相位频率检测模块耦接至振荡模块,用以比较一个参考时脉与第二时脉间的相位差与频率差。时脉框选模块耦接至相位频率检测模块与振荡模块,依据相位差与频率差以产生前述控制电压。控制电压调整模块耦接至时脉框选模块与振荡模块,用以调整控制电压于一个预设电压范围中。其中当控制电压小于预设电压范围的下限时,控制电压调整模块提升控制电压至预设电压范围的上限。Another clock data recovery circuit disclosed according to one or more embodiments of the present invention includes an oscillation module, a phase frequency detection module, a clock frame selection module and a control voltage adjustment module. The oscillation module is controlled by the control voltage to generate the second clock. The phase frequency detection module is coupled to the oscillation module and is used for comparing the phase difference and the frequency difference between a reference clock and a second clock. The clock frame selection module is coupled to the phase frequency detection module and the oscillation module, and generates the aforementioned control voltage according to the phase difference and the frequency difference. The control voltage adjustment module is coupled to the clock frame selection module and the oscillation module for adjusting the control voltage within a preset voltage range. Wherein when the control voltage is lower than the lower limit of the preset voltage range, the control voltage adjustment module increases the control voltage to the upper limit of the preset voltage range.
通过本发明所公开的时脉数据恢复电路,利用控制电压调整模块判断用来控制延迟时间或振荡频率的控制电压是否低于预设电压范围的下限。并且当控制电压低于预设电压范围的下限时,将控制电压提高至预设电压范围的上限,并由此试图让回路重新达到锁定。由此能够避免发生“锁死”状态。Through the clock data recovery circuit disclosed in the present invention, the control voltage adjustment module is used to judge whether the control voltage used to control the delay time or the oscillation frequency is lower than the lower limit of the preset voltage range. And when the control voltage is lower than the lower limit of the preset voltage range, the control voltage is increased to the upper limit of the preset voltage range, thereby trying to make the loop achieve locking again. In this way, a "locked" state can be avoided.
以上的关于本发明内容的说明及以下的实施方式的说明用以示范与解释本发明的精神与原理,并且提供本发明的权利要求范围更进一步的解释。The above descriptions about the content of the present invention and the following descriptions of the embodiments are used to demonstrate and explain the spirit and principle of the present invention, and provide further explanations of the scope of the claims of the present invention.
附图说明Description of drawings
图1是依据本发明一实施例的时脉数据恢复电路功能方块图。FIG. 1 is a functional block diagram of a clock data recovery circuit according to an embodiment of the present invention.
图2是依据本发明一实施例的时脉延迟模块电路示意图。FIG. 2 is a schematic circuit diagram of a clock delay module according to an embodiment of the invention.
图3是依据本发明一实施例的控制电压调整模块电路示意图。FIG. 3 is a schematic circuit diagram of a control voltage adjustment module according to an embodiment of the invention.
图4是依据本发明一实施例的时脉数据恢复电路功能方块图。FIG. 4 is a functional block diagram of a clock data recovery circuit according to an embodiment of the invention.
图5是依据本发明一实施例的时脉数据恢复电路中各信号的时序图。FIG. 5 is a timing diagram of signals in the clock data recovery circuit according to an embodiment of the invention.
1、4 时脉数据恢复电路1, 4 Clock data recovery circuit
11 时脉延迟模块11 Clock delay module
13 相位检测模块13 Phase detection module
15、45 时脉框选模块15, 45 Clock frame selection module
17、47 控制电压调整模块17, 47 Control voltage adjustment module
171 开关单元171 switch unit
173、175 比较器173, 175 Comparators
177 锁存器177 latch
178、179、182 反相器178, 179, 182 Inverter
180、181 与非门180, 181 NAND gate
183 晶体管183 Transistors
185 温度补偿单元185 Temperature Compensation Unit
41 振荡模块41 Oscillator module
43 相位频率检测模块43 Phase frequency detection module
GND 接地端G ND ground terminal
LOCK 锁定信号LOCK lock signal
R17 电阻R 17 resistor
T1 第一时间点T 1 first time point
T2 第二时间点T 2 second time point
T3 第三时间点T3 The third time point
Vctrl 控制电压V ctrl control voltage
VDD 高电压端点V DD high voltage terminal
VREFH 第一参考电压V REFH first reference voltage
VREFL 第二参考电压V REFL second reference voltage
VXLOCK 锁死指示信号V XLOCK lock indication signal
VLOCK 锁定指示信号V LOCK lock indication signal
Q 输出端Q output terminal
S、R 输入端S, R input terminal
mode1、mode2 模式信号mode1, mode2 mode signal
具体实施方式Detailed ways
以下在实施方式中详细叙述本发明的详细特征以及优点,其内容足以使任何本领域技术人员了解本发明的技术内容并据以实施,且根据本说明书所公开的内容、权利要求及附图,任何本领域技术人员可轻易地理解本发明相关的目的及优点。以下的实施例进一步详细说明本发明的观点,但非以任何观点限制本发明的范畴。The detailed features and advantages of the present invention are described in detail below in the embodiments, the content of which is sufficient for any person skilled in the art to understand the technical content of the present invention and implement it accordingly, and according to the contents disclosed in this specification, claims and accompanying drawings, The related objects and advantages of the present invention can be easily understood by anyone skilled in the art. The following examples further illustrate the concept of the present invention in detail, but do not limit the scope of the present invention in any way.
关于依据本发明一实施例所公开的一种时脉数据恢复电路(clock-datarecovery circuit,DCR)请参照图1,其是依据本发明一实施例的时脉数据恢复电路功能方块图。如图1所示,时脉数据恢复电路1可以包括时脉延迟模块11、相位检测模块13、时脉框选模块15与控制电压调整模块17。其中相位检测模块13耦接至时脉延迟模块11,时脉框选模块15耦接至相位检测模块13与时脉延迟模块11,控制电压调整模块17耦接至时脉框选模块15与时脉延迟模块11。Regarding a clock-data recovery circuit (clock-data recovery circuit, DCR) disclosed according to an embodiment of the present invention, please refer to FIG. 1 , which is a functional block diagram of a clock-data recovery circuit according to an embodiment of the present invention. As shown in FIG. 1 , the clock data recovery circuit 1 may include a clock delay module 11 , a phase detection module 13 , a clock frame selection module 15 and a control voltage adjustment module 17 . The phase detection module 13 is coupled to the clock delay module 11, the clock frame selection module 15 is coupled to the phase detection module 13 and the clock delay module 11, and the control voltage adjustment module 17 is coupled to the clock frame selection module 15 and the clock frame selection module 15. Pulse delay module 11.
时脉延迟模块11用以接收参考时脉并延迟一延迟时间后,产生第一时脉。实现上,请参照图2,其是依据本发明一实施例的时脉延迟模块电路示意图。如图2所示,时脉延迟模块11可以包含三个串联的压控延迟单元(voltage control delay cell)111至115。以压控延迟单元111举例来说,压控延迟单元111的传输延迟(propagation delay)可以依据一个控制电压而在0.1奈秒(nano-second)与0.5奈秒之间变动。因此时脉延迟模块11可以受控于控制电压,而提供0.3奈秒至1.5奈秒的延迟时间。也就是说,当时脉延迟模块11受控于控制电压而提供1.0奈秒的延迟时间,时脉延迟模块11在接收参考时脉后产生第一时脉,并于1.0奈秒后送出第一时脉。The clock delay module 11 is used for receiving a reference clock and delaying for a delay time to generate a first clock. For implementation, please refer to FIG. 2 , which is a schematic circuit diagram of a clock delay module according to an embodiment of the present invention. As shown in FIG. 2 , the clock delay module 11 may include three series-connected voltage control delay cells (voltage control delay cells) 111 to 115 . Taking the voltage-controlled delay unit 111 as an example, the propagation delay of the voltage-controlled delay unit 111 can vary between 0.1 nano-second and 0.5 nano-second according to a control voltage. Therefore, the clock delay module 11 can be controlled by the control voltage to provide a delay time of 0.3 nanoseconds to 1.5 nanoseconds. That is to say, the clock delay module 11 is controlled by the control voltage to provide a delay time of 1.0 nanoseconds, the clock delay module 11 generates the first clock after receiving the reference clock, and sends the first clock after 1.0 nanoseconds pulse.
相位检测模块13用以比较参考时脉与第一时脉以得到参考时脉与第一时脉之间的相位差。在一种实现方式中,相位检测模块13可以包含一个异或门(exclusive-or gate),这个异或门的两个输入端分别用来接收参考时脉与第一时脉。而当参考时脉的逻辑电位(logic level)与第一时脉的逻辑电位不同的时候,这个异或门的输出信号的逻辑电位为高,当参考时脉的逻辑电位与第一时脉的逻辑电位相同的时候,这个异或门的输出信号的逻辑电位为低。由此,可以由这个输出信号的逻辑电位为高的时间区间的长短,来判断并计算第一时脉与参考时脉之间的相位差。The phase detection module 13 is used for comparing the reference clock and the first clock to obtain the phase difference between the reference clock and the first clock. In an implementation manner, the phase detection module 13 may include an exclusive-or gate (exclusive-or gate), and two input terminals of the exclusive-or gate are respectively used to receive the reference clock and the first clock. When the logic level of the reference clock is different from the logic level of the first clock, the logic level of the output signal of the XOR gate is high, and when the logic level of the reference clock is different from that of the first clock When the logic potentials are the same, the logic potential of the output signal of the XOR gate is low. Thus, the phase difference between the first clock and the reference clock can be judged and calculated according to the length of the time interval in which the logic level of the output signal is high.
时脉框选模块15依据相位差以产生控制电压,所述控制电压通过耦接至时脉延迟模块11的一个电压节点而传输给时脉延迟模块11,以控制时脉延迟模块11的延迟时间。在一种实施方式中,时脉框选模块15可以包含一个电荷泵(charge pump)与一个回路滤波器(loop filter)。电荷泵电性连接至相位检测模块13以依据相位差来决定对回路滤波器注入或抽出电荷(电流)的时间长短,回路滤波器因此相应的调整其中的一个电压节点上,要传递给时脉延迟模块11的控制电压。The clock frame selection module 15 generates a control voltage according to the phase difference, and the control voltage is transmitted to the clock delay module 11 through a voltage node coupled to the clock delay module 11 to control the delay time of the clock delay module 11 . In one embodiment, the clock frame selection module 15 may include a charge pump and a loop filter. The charge pump is electrically connected to the phase detection module 13 to determine the length of time for injecting or extracting charge (current) to the loop filter according to the phase difference, and the loop filter accordingly adjusts one of the voltage nodes to be transmitted to the clock The control voltage of the delay module 11.
控制电压调整模块17用以调整控制电压于一个预设电压范围中。于一个实施例中,当该控制电压小于该预设电压范围的下限时,该控制电压调整模块至少提升该控制电压至该预设电压范围的上限。具体而言,于此实施例中,控制电压调整模块17通过将时脉框选模块15中用来将控制电压传送给时脉延迟模块11的那个电压节点耦接到一个高电压端点来将控制电压提升至预设电压范围的上限。于另一个实施例中,当该控制电压大于该预设电压范围的上限时,该控制电压调整模块至少降低该控制电压至该预设电压范围的下限。具体而言,于此实施例中,控制电压调整模块17通过将时脉框选模块15中用来将控制电压传送给时脉延迟模块11的那个电压节点耦接到一个低电压端点来将控制电压提升至预设电压范围的上限。The control voltage adjustment module 17 is used to adjust the control voltage within a preset voltage range. In one embodiment, when the control voltage is lower than the lower limit of the preset voltage range, the control voltage adjustment module at least increases the control voltage to the upper limit of the preset voltage range. Specifically, in this embodiment, the control voltage adjustment module 17 couples the voltage node used to transmit the control voltage to the clock delay module 11 in the clock frame selection module 15 to a high voltage terminal to control The voltage is boosted to the upper limit of the preset voltage range. In another embodiment, when the control voltage is greater than the upper limit of the preset voltage range, the control voltage adjustment module at least reduces the control voltage to the lower limit of the preset voltage range. Specifically, in this embodiment, the control voltage adjustment module 17 couples the voltage node used to transmit the control voltage to the clock delay module 11 in the clock frame selection module 15 to a low voltage terminal to control The voltage is boosted to the upper limit of the preset voltage range.
以下以控制电压调整模块17将时脉框选模块15中用来将控制电压传送给时脉延迟模块11的那个电压节点耦接到一个高电压端点,来将控制电压提升至预设电压范围的上限的实施例来举例说明其运作方式。具体来说,请参照图3,其是依据本发明一实施例的控制电压调整模块电路示意图。如图3所示,控制电压调整模块17可以包括开关单元171、比较器173、比较器175与锁存器(latch)177。其中开关单元171的第一端171a耦接至高电压端点VDD,开关单元171的第二端171b耦接至前述电压节点以用来选择性地在控制电压Vctrl与高电压端点间建立电力路径,使控制电压Vctrl被拉高。比较器173的负输入端连接至前述电压节点,而比较器173的正输入端连接至一个电压源以接收第一参考电压VREFH。比较器175的正输入端连接至前述电压节点,而比较器175的负输入端连接至一个电压源以接收第二参考电压VREFL。In the following, the control voltage adjustment module 17 couples the voltage node used to transmit the control voltage to the clock delay module 11 in the clock frame selection module 15 to a high voltage terminal to increase the control voltage to a preset voltage range. An example of a cap is given to illustrate how it works. Specifically, please refer to FIG. 3 , which is a schematic circuit diagram of a control voltage adjustment module according to an embodiment of the present invention. As shown in FIG. 3 , the control voltage adjustment module 17 may include a switch unit 171 , a comparator 173 , a comparator 175 and a latch 177 . The first terminal 171a of the switch unit 171 is coupled to the high voltage terminal V DD , and the second terminal 171b of the switch unit 171 is coupled to the aforementioned voltage node for selectively establishing a power path between the control voltage V ctrl and the high voltage terminal. , so that the control voltage V ctrl is pulled high. The negative input terminal of the comparator 173 is connected to the aforementioned voltage node, and the positive input terminal of the comparator 173 is connected to a voltage source to receive the first reference voltage V REFH . The positive input terminal of the comparator 175 is connected to the aforementioned voltage node, and the negative input terminal of the comparator 175 is connected to a voltage source to receive the second reference voltage V REFL .
比较器173用来比较第一参考电压VREFH与控制电压Vctrl。而比较器175用来比较第二参考电压VREFL与控制电压Vctrl。由此,可以从比较器173与比较器175一共得到两个比较结果,从这两个比较结果得知控制电压Vctrl的电压值是否介于第一参考电压VREFH的电压值与第二参考电压VREFL的电压值之间。也就是说,如果第一参考电压VREFH的电压值大于第二参考电压VREFL的电压值,则所述的预设电压范围的上限可以是第一参考电压VREFH而下限可以是第二参考电压VREFL。更明确来说,当控制电压Vctrl大于第一参考电压VREFH则比较器173的输出电压的逻辑电位为低电压,而同时因为控制电压Vctrl大于第二参考电压VREFL因此比较器175的输出电压逻辑电位为高电压。当控制电压Vctrl介于第一参考电压VREFH与第二参考电压VREFL之间,则比较器173的输出电压的逻辑电位为高电压,而比较器175的输出电压逻辑电位为高电压。当控制电压Vctrl小于第二参考电压VREFL则比较器173的输出电压的逻辑电位为高电压,而比较器175的输出电压逻辑电位为低电压。因此可以通过两个比较器所输出的电压的逻辑电位,来判断控制电压Vctrl是否介于两个参考电压之间。The comparator 173 is used to compare the first reference voltage V REFH with the control voltage V ctrl . The comparator 175 is used to compare the second reference voltage V REFL with the control voltage V ctrl . Thus, two comparison results can be obtained from the comparator 173 and the comparator 175. From these two comparison results, it can be known whether the voltage value of the control voltage V ctrl is between the voltage value of the first reference voltage V REFH and the second reference voltage. voltage between the voltage values of V REFL . That is, if the voltage value of the first reference voltage V REFH is greater than the voltage value of the second reference voltage V REFL , the upper limit of the preset voltage range may be the first reference voltage V REFH and the lower limit may be the second reference voltage voltage V REFL . More specifically, when the control voltage V ctrl is greater than the first reference voltage V REFH , the logic potential of the output voltage of the comparator 173 is a low voltage, and at the same time, because the control voltage V ctrl is greater than the second reference voltage V REFL , the comparator 175 The output voltage logic potential is a high voltage. When the control voltage V ctrl is between the first reference voltage V REFH and the second reference voltage V REFL , the logic potential of the output voltage of the comparator 173 is a high voltage, and the logic potential of the output voltage of the comparator 175 is a high voltage. When the control voltage V ctrl is less than the second reference voltage V REFL , the logic potential of the output voltage of the comparator 173 is a high voltage, and the logic potential of the output voltage of the comparator 175 is a low voltage. Therefore, it can be determined whether the control voltage V ctrl is between the two reference voltages according to the logic potentials of the voltages output by the two comparators.
锁存器(Latch)177的输入端S接收前述比较器173比较结果,而锁存器177的输入端R接收前述比较器175的比较结果,也就是两个比较器的输出电压的逻辑电位,并且锁存器177的输出端Q耦接至开关单元171的控制端171c。由此,锁存器177根据前述比较器173比较结果与比较器175的比较结果选择性地控制开关单元177的导通与否。于一个具体的实施例中,请一并参照图3与下表一,其中表一是依据本发明一实施例的锁存器的输入输出真值表。The input terminal S of the latch (Latch) 177 receives the comparison result of the aforementioned comparator 173, and the input terminal R of the latch 177 receives the comparison result of the aforementioned comparator 175, that is, the logic potentials of the output voltages of the two comparators, And the output terminal Q of the latch 177 is coupled to the control terminal 171c of the switch unit 171 . Thus, the latch 177 selectively controls whether the switch unit 177 is turned on or not according to the comparison result of the aforementioned comparator 173 and the comparison result of the comparator 175 . In a specific embodiment, please refer to FIG. 3 and Table 1 below together, wherein Table 1 is a truth table of input and output of a latch according to an embodiment of the present invention.
表一Table I
通过如表一的真值表,如图3所示把锁存器177的输入端S耦接到比较器173的输出端,把锁存器177的输入端R耦接到比较器175的输出端,可以把锁存器177的输出端Q还耦接一个反相器(inverter)178的输入端,并且把反相器178的输出端耦接至开关单元171的控制端171c。如果当开关单元171如图3所示是一个P型金属氧化物场效晶体管,则当控制电压Vctrl小于第二参考电压VREFL时,因为反相器178的输出端的逻辑电位会是低电压,所以开关单元171会被导通而在高电压端点VDD与所述电压节点之间形成电力路径,从而将控制电压Vctrl的电压值拉至与高电压端点VDD的电压值接近。接着,当控制电压Vctrl的电压值被拉高到稍微大于第一参考电压VREFH的电压值时,如上述表一可以知道锁存器177的输出端Q的电压电位会是低电压,从而使的反相器178的输出端的逻辑电位会是高电压。因此开关单元171会被截止(cut-off),因此从高电压端点VDD到前述电压节点的电力路径被中断,前述电压节点上的控制电压Vctrl的电压值因此被维持在稍高于第一参考电压VREFH的电压值,如此一来等于整个时脉数据恢复电路1被重置了。之后当相位检测模块13与时脉框选模块15重新开始依据参考时脉与第一时脉来调整控制电压Vctrl时,控制电压Vctrl的电压值会被拉低,而介于第一参考电压VREFH与第二参考电压VREFL之间,此时依据表一的真值表,因为锁存器177的输出端Q的电压电位会延续前一次的电压电位,所以反相器178的输出端的电压电位会保持在高电压,开关单元171因此在这个“正常锁定范围”内不会被导通。于另一个实施例中,也可以直接把栓锁器177的输出端Q’(未绘示)用来控制前述开关单元171。Through the truth table as Table 1, as shown in Figure 3, the input terminal S of the latch 177 is coupled to the output terminal of the comparator 173, and the input terminal R of the latch 177 is coupled to the output of the comparator 175 terminal, the output terminal Q of the latch 177 can also be coupled to the input terminal of an inverter (inverter) 178 , and the output terminal of the inverter 178 can be coupled to the control terminal 171c of the switch unit 171 . If the switch unit 171 is a P-type metal oxide field effect transistor as shown in FIG . , so the switch unit 171 is turned on to form a power path between the high voltage terminal V DD and the voltage node, thereby pulling the voltage value of the control voltage V ctrl close to the voltage value of the high voltage terminal V DD . Next, when the voltage value of the control voltage V ctrl is pulled up to slightly higher than the voltage value of the first reference voltage V REFH , as shown in Table 1 above, it can be known that the voltage potential of the output terminal Q of the latch 177 will be a low voltage, thereby The logic potential of the output terminal of the inverter 178 will be a high voltage. Therefore, the switch unit 171 will be cut-off, so the power path from the high voltage terminal V DD to the aforementioned voltage node is interrupted, and the voltage value of the control voltage V ctrl on the aforementioned voltage node is thus maintained at slightly higher than the first voltage node. A voltage value of the reference voltage V REFH , so that the entire clock data recovery circuit 1 is reset. Afterwards, when the phase detection module 13 and the clock frame selection module 15 start to adjust the control voltage V ctrl again according to the reference clock and the first clock, the voltage value of the control voltage V ctrl will be pulled down, and between the first reference clock between the voltage V REFH and the second reference voltage V REFL , according to the truth table in Table 1, since the voltage potential of the output terminal Q of the latch 177 will continue the previous voltage potential, the output of the inverter 178 The voltage potential at the terminal will remain at a high voltage, and therefore the switch unit 171 will not be turned on within this "normal locking range". In another embodiment, the output terminal Q′ (not shown) of the latch 177 can also be directly used to control the aforementioned switch unit 171 .
于本发明一实施例中,控制电压调整模块17可以还包括耦接于反相器178的输出端的反相器179、与非门180、与非门181、反相器182、晶体管183与电阻R17。其中与非门180的一个输入端耦接至反相器179的输出端以接收锁定指示信号VLOCK,而另一个输入端耦接至一个模式信号mode1。与非门181的一个输入端耦接至与非门180的输出端,而另一个输入端耦接至一个模式信号mode2。反相器182的输入端耦接至与非门181的输出端,而反相器182的输出端耦接至晶体管183的控制端。晶体管183的一端耦接于接地端GND,而晶体管183的另一端与高电压端点VDD之间耦接了电阻R17,由此来输出锁定信号LOCK。当时脉数据恢复电路1发生锁死,则依据锁定指示信号VLOCK、模式信号mode1与模式信号mode2可以调整锁定信号LOCK,以对外部的装置请求送出较易于锁定的参考时脉。In an embodiment of the present invention, the control voltage adjustment module 17 may further include an inverter 179 coupled to the output terminal of the inverter 178, a NAND gate 180, a NAND gate 181, an inverter 182, a transistor 183 and a resistor R 17 . One input terminal of the NAND gate 180 is coupled to the output terminal of the inverter 179 to receive the lock indication signal V LOCK , and the other input terminal is coupled to a mode signal mode1. One input terminal of the NAND gate 181 is coupled to the output terminal of the NAND gate 180 , and the other input terminal is coupled to a mode signal mode2 . The input terminal of the inverter 182 is coupled to the output terminal of the NAND gate 181 , and the output terminal of the inverter 182 is coupled to the control terminal of the transistor 183 . One terminal of the transistor 183 is coupled to the ground terminal G ND , and the resistor R 17 is coupled between the other terminal of the transistor 183 and the high voltage terminal V DD , thereby outputting the lock signal LOCK. When the clock data recovery circuit 1 is locked, the lock signal LOCK can be adjusted according to the lock indication signal V LOCK , the mode signal mode1 and the mode signal mode2, so as to request an external device to send a reference clock that is easier to lock.
于本发明再一实施例中,如图3所示,控制电压调整模块17可以还包括一个用来提供第一参考电压VREFH与第二参考电压VREFL的温度补偿单元185。更明确的说,于此实施例中,第一参考电压VREFH与第二参考电压VREFL不是定值,而会随温度而改变。于一种实现方式中,温度补偿单元185是一个能隙参考电压电路(bandgap reference),其输出电压值与温度的关系可以是一次曲线或二次曲线。于另一种实现方式中,温度补偿单元185可以包括温度感测元件、一个控制电路、一个数字模拟转换器与一个存储元件。其中温度感测元件、存储元件与数字模拟转换器都与控制电路电性连接。温度感测元件用以感测时脉数据恢复电路所在的环境的温度。存储元件中可以存储有第一参考电压VREFH与温度的关系的对照表以及第二参考电压VREFL与温度的关系的对照表。所述的两个对照表可以由时脉数据恢复电路的设计者预先依据实际量策结果来设计并存储。In yet another embodiment of the present invention, as shown in FIG. 3 , the control voltage adjustment module 17 may further include a temperature compensation unit 185 for providing the first reference voltage V REFH and the second reference voltage V REFL . More specifically, in this embodiment, the first reference voltage V REFH and the second reference voltage V REFL are not fixed values, but will change with temperature. In one implementation, the temperature compensation unit 185 is a bandgap reference circuit (bandgap reference), and the relationship between the output voltage and temperature can be a linear curve or a quadratic curve. In another implementation, the temperature compensation unit 185 may include a temperature sensing element, a control circuit, a digital-to-analog converter, and a storage element. The temperature sensing element, the storage element and the digital-to-analog converter are all electrically connected to the control circuit. The temperature sensing element is used for sensing the temperature of the environment where the clock data recovery circuit is located. A comparison table of the relationship between the first reference voltage V REFH and the temperature and a comparison table of the relationship between the second reference voltage V REFL and the temperature may be stored in the storage element. The two comparison tables can be designed and stored in advance by the designer of the clock data recovery circuit according to the actual measurement results.
控制电路接收到温度感测元件所感测到的温度后,从存储元件中查找到对应的第一参考电压VREFH的电压值与第二参考电压VREFL的电压值,而后控制电路据此控制数字模拟转换器输出第一参考电压VREFH与第二参考电压VREFL。于此实施例中,因为第一参考电压VREFH与第二参考电压VREFL会随温度而改变,因此预设电压范围也会随温度而改变。如此的时脉数据恢复电路在高温或低温的环境下,预设电压范围也会对应的改变,从而更能适应高温环境或低温环境。After the control circuit receives the temperature sensed by the temperature sensing element, it finds the corresponding voltage value of the first reference voltage V REFH and the voltage value of the second reference voltage V REFL from the storage element, and then the control circuit controls the digital The analog converter outputs a first reference voltage V REFH and a second reference voltage V REFL . In this embodiment, since the first reference voltage V REFH and the second reference voltage V REFL will change with temperature, the preset voltage range will also change with temperature. In such a clock data recovery circuit, in a high temperature or low temperature environment, the preset voltage range will be correspondingly changed, so as to be more suitable for a high temperature environment or a low temperature environment.
依据本发明一实施例所公开的另一种时脉数据恢复电路,请参照图4,其是依据本发明一实施例的时脉数据恢复电路功能方块图。如图4所示,时脉数据恢复电路4可以包括振荡模块41、相位频率检测模块43、时脉框选模块45与控制电压调整模块47。相位频率检测模块43耦接至振荡模块41,时脉框选模块45耦接至相位频率检测模块43与振荡模块41,控制电压调整模块47耦接至时脉框选模块45与振荡模块41。For another clock data recovery circuit disclosed according to an embodiment of the present invention, please refer to FIG. 4 , which is a functional block diagram of a clock data recovery circuit according to an embodiment of the present invention. As shown in FIG. 4 , the clock data recovery circuit 4 may include an oscillation module 41 , a phase frequency detection module 43 , a clock frame selection module 45 and a control voltage adjustment module 47 . The phase frequency detection module 43 is coupled to the oscillation module 41 , the clock frame selection module 45 is coupled to the phase frequency detection module 43 and the oscillation module 41 , and the control voltage adjustment module 47 is coupled to the clock frame selection module 45 and the oscillation module 41 .
振荡模块41受控于控制电压,以产生第二时脉。具体而言,振荡模块41可以是一个压控振荡器(voltage control oscillator,VCO)。关于压控振荡器(VCO)的技术细节于此不再赘述。The oscillation module 41 is controlled by the control voltage to generate the second clock. Specifically, the oscillation module 41 may be a voltage-controlled oscillator (voltage control oscillator, VCO). The technical details about the voltage-controlled oscillator (VCO) are omitted here.
相位频率检测模块43用以比较一个参考时脉与第二时脉间的相位差与频率差。在一般的作法中,振荡模块41的输出端与相位频率检测模块43之间可以还耦接一个除频器(frequency divider),用来将第二时脉除频,并且相位频率检测模块43比较被除频后的时脉与参考时脉间的相位差与频率差,实现方法大致类似于前述相位检测模块13,于此不再赘述。The phase frequency detection module 43 is used for comparing the phase difference and the frequency difference between a reference clock and a second clock. In a general practice, a frequency divider (frequency divider) may also be coupled between the output terminal of the oscillation module 41 and the phase frequency detection module 43 to divide the frequency of the second clock, and the phase frequency detection module 43 compares The implementation method of the phase difference and frequency difference between the frequency-divided clock and the reference clock is roughly similar to that of the aforementioned phase detection module 13 , and will not be repeated here.
时脉框选模块45依据相位差与频率差以产生前述控制电压。控制电压调整模块47用以调整控制电压于一个预设电压范围中。其中当控制电压小于预设电压范围的下限时,控制电压调整模块提升控制电压至预设电压范围的上限。实现方法分别类似于前述时脉框选模块15与前述控制电压调整模块17,因此不再赘述。The clock frame selection module 45 generates the aforementioned control voltage according to the phase difference and the frequency difference. The control voltage adjustment module 47 is used for adjusting the control voltage within a preset voltage range. Wherein when the control voltage is lower than the lower limit of the preset voltage range, the control voltage adjustment module increases the control voltage to the upper limit of the preset voltage range. The implementation methods are respectively similar to the aforementioned clock frame selection module 15 and the aforementioned control voltage adjustment module 17 , so details are not repeated here.
接下来,请一并参照图1、图3与图5以说明本发明实现上的效果,其中图5是依据本发明一实施例的时脉数据恢复电路中各信号的时序图。如图5所示,在第一时间点T1时,由于参考时脉CLKREF与第一时脉CLK1在系统中受到干扰,导致相位检测模块13没办法检测到正常的相位差,因此导致控制电压Vctrl的电压值从第一时间点开始异常下降,最后在第二时间点T2的时候,控制电压Vctrl-的电压值下降到低于第二参考电压VREFL的电压值。因此,在第二时间点T2开始,控制电压调整模块17中的锁存器177的输出端Q的输出信号,也就是“锁死指示信号VXLOCK”的逻辑电位变成高电压,表示此时整个时脉数据恢复电路1发生了锁死。因此控制电压调整模块17中的开关单元171被导通,而在时脉框选模块15中用来耦接至时脉延迟模块11的电压节点与高电压端点VDD之间形成电力路径,因此可以从图5中看到控制电压Vctrl的电压值从第二时间点T2左右开始上升。而到了第三时间点T3时,控制电压Vctrl的电压值恰好大于第一参考电压VREFH的电压值,此时锁死指示信号VXLOCK的逻辑电位变成低电压,因此开关单元171被截止,而使得从高电压端点VDD到控制电压Vctrl所在的电压节点之间的电力路径中断,也就是控制电压调整模块17停止“重置”控制电压Vctrl,而由相位检测模块13与时脉框选模块15来重新试图调整控制电压Vctrl以使整个时脉数据恢复电路1重新锁定。Next, please refer to FIG. 1 , FIG. 3 and FIG. 5 to illustrate the effect of the present invention. FIG. 5 is a timing diagram of signals in a clock data recovery circuit according to an embodiment of the present invention. As shown in FIG. 5, at the first time point T1 , because the reference clock CLKREF and the first clock CLK1 are disturbed in the system, the phase detection module 13 cannot detect the normal phase difference, thus causing the control voltage The voltage value of V ctrl drops abnormally from the first time point, and finally at the second time point T 2 , the voltage value of the control voltage V ctrl − drops below the voltage value of the second reference voltage V REFL . Therefore, starting from the second time point T2 , the output signal of the output terminal Q of the latch 177 in the control voltage adjustment module 17, that is, the logic potential of the "lockout indication signal V XLOCK " becomes a high voltage, indicating that this At this time, the entire clock data recovery circuit 1 is locked. Therefore, the switch unit 171 in the control voltage adjustment module 17 is turned on, and a power path is formed between the voltage node used to be coupled to the clock delay module 11 in the clock frame selection module 15 and the high voltage terminal V DD , so It can be seen from FIG. 5 that the voltage value of the control voltage V ctrl starts to rise from around the second time point T 2 . At the third time point T3, the voltage value of the control voltage V ctrl is just greater than the voltage value of the first reference voltage V REFH , at this time, the logic potential of the lock indication signal V XLOCK becomes a low voltage, so the switch unit 171 is turned off. , so that the power path from the high voltage terminal V DD to the voltage node where the control voltage V ctrl is located is interrupted, that is, the control voltage adjustment module 17 stops "resetting" the control voltage V ctrl , and the phase detection module 13 and the time The pulse frame selection module 15 re-attempts to adjust the control voltage V ctrl so that the entire clock data recovery circuit 1 is re-locked.
通过本发明所公开的时脉数据恢复电路,利用控制电压调整模块判断用来控制延迟时间或振荡频率的控制电压是否低于预设电压范围的下限。并且当控制电压低于预设电压范围的下限时,将控制电压提高至预设电压范围的上限,并由此试图让回路重新达到锁定。Through the clock data recovery circuit disclosed in the present invention, the control voltage adjustment module is used to judge whether the control voltage used to control the delay time or the oscillation frequency is lower than the lower limit of the preset voltage range. And when the control voltage is lower than the lower limit of the preset voltage range, the control voltage is increased to the upper limit of the preset voltage range, thereby trying to make the loop achieve locking again.
虽然本发明以前述的实施例公开如上,然而其并非用以限定本发明。在不脱离本发明的精神和范围内,所为的改动与润饰,均属本发明的专利保护范围。关于本发明所界定的保护范围请参考所附的权利要求。Although the present invention is disclosed above with the foregoing embodiments, they are not intended to limit the present invention. Without departing from the spirit and scope of the present invention, all changes and modifications made belong to the scope of patent protection of the present invention. For the scope of protection defined by the present invention, please refer to the appended claims.
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103119768 | 2014-06-06 | ||
TW103119768A TWI542157B (en) | 2014-06-06 | 2014-06-06 | Clock and data recovery circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104184441A true CN104184441A (en) | 2014-12-03 |
CN104184441B CN104184441B (en) | 2017-07-18 |
Family
ID=51965237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410423912.XA Active CN104184441B (en) | 2014-06-06 | 2014-08-26 | Clock data recovery circuit |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104184441B (en) |
TW (1) | TWI542157B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106685202A (en) * | 2015-11-09 | 2017-05-17 | 智原科技股份有限公司 | Anti-locking circuit of voltage regulator and related power supply system thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI699989B (en) | 2019-07-22 | 2020-07-21 | 創意電子股份有限公司 | Clock data recovery device and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6928128B1 (en) * | 1999-05-03 | 2005-08-09 | Rambus Inc. | Clock alignment circuit having a self regulating voltage supply |
CN101527567A (en) * | 2008-03-06 | 2009-09-09 | 瑞昱半导体股份有限公司 | Clock and data recovery circuit |
CN101777911A (en) * | 2010-01-08 | 2010-07-14 | 智原科技股份有限公司 | Clock data restorer |
CN102655402A (en) * | 2011-03-01 | 2012-09-05 | 瑞昱半导体股份有限公司 | Transmitter-receiver device, voltage control oscillator and control method thereof |
-
2014
- 2014-06-06 TW TW103119768A patent/TWI542157B/en active
- 2014-08-26 CN CN201410423912.XA patent/CN104184441B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6928128B1 (en) * | 1999-05-03 | 2005-08-09 | Rambus Inc. | Clock alignment circuit having a self regulating voltage supply |
CN101527567A (en) * | 2008-03-06 | 2009-09-09 | 瑞昱半导体股份有限公司 | Clock and data recovery circuit |
CN101777911A (en) * | 2010-01-08 | 2010-07-14 | 智原科技股份有限公司 | Clock data restorer |
CN102655402A (en) * | 2011-03-01 | 2012-09-05 | 瑞昱半导体股份有限公司 | Transmitter-receiver device, voltage control oscillator and control method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106685202A (en) * | 2015-11-09 | 2017-05-17 | 智原科技股份有限公司 | Anti-locking circuit of voltage regulator and related power supply system thereof |
CN106685202B (en) * | 2015-11-09 | 2019-03-12 | 智原科技股份有限公司 | Anti-locking circuit of voltage regulator and related power supply system thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104184441B (en) | 2017-07-18 |
TW201547209A (en) | 2015-12-16 |
TWI542157B (en) | 2016-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10581444B2 (en) | Apparatus and method for automatic bandwidth calibration for phase locked loop | |
US8253462B2 (en) | Duty cycle correction method and its implementing circuit | |
US11387815B2 (en) | Apparatus and method for improving lock time | |
US10659058B1 (en) | Systems and methods involving lock loop circuits, distributed duty cycle correction loop circuitry | |
US9735792B2 (en) | Integrated circuit comprising circuitry to determine settings for an injection-locked oscillator | |
US20080231324A1 (en) | Phase frequency detector and phase-locked loop | |
US9520864B2 (en) | Delay structure for a memory interface | |
US8786329B1 (en) | Method for doubling the frequency of a reference clock | |
US20090285279A1 (en) | Phase frequency detector with pulse width control circuitry | |
US9443572B2 (en) | Programmable power for a memory interface | |
US7990192B2 (en) | Phase locked loop and method for charging phase locked loop | |
US9537490B2 (en) | Duty cycle detection circuit and semiconductor apparatus including the same | |
US7388408B2 (en) | Phase-frequency detector capable of reducing dead zone | |
CN104184441B (en) | Clock data recovery circuit | |
US8373511B2 (en) | Oscillator circuit and method for gain and phase noise control | |
US9083359B2 (en) | Lock detector based on charge pump | |
KR20120012386A (en) | Lock Detection Circuits and Phase-Locked Loops Comprising the Same | |
JP6312197B2 (en) | Clock generation circuit | |
JP2005252447A (en) | Lock detection circuit and method | |
US20180109265A1 (en) | Differential Phase-Frequency Detector | |
CN119586009A (en) | Reducing the duty cycle mismatch of the clock in the clock tracking circuit | |
CN105656477B (en) | It is a kind of to prevent the wrong delay locked loop locked and method | |
JP2016063445A (en) | Pll circuit and semiconductor integrated circuit | |
TWI523433B (en) | Input signal voltage detection module and method, and related data transmission system | |
CN102904567A (en) | Phase-locked loop device and adjusting voltage providing circuit thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |