[go: up one dir, main page]

CN104181676B - Microminiature lens - Google Patents

Microminiature lens Download PDF

Info

Publication number
CN104181676B
CN104181676B CN201310196725.8A CN201310196725A CN104181676B CN 104181676 B CN104181676 B CN 104181676B CN 201310196725 A CN201310196725 A CN 201310196725A CN 104181676 B CN104181676 B CN 104181676B
Authority
CN
China
Prior art keywords
lens
focal length
microminiature
effective focal
miniature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310196725.8A
Other languages
Chinese (zh)
Other versions
CN104181676A (en
Inventor
陈元琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintai Optical Shenzhen Co Ltd
Asia Optical Co Inc
Original Assignee
Sintai Optical Shenzhen Co Ltd
Asia Optical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintai Optical Shenzhen Co Ltd, Asia Optical Co Inc filed Critical Sintai Optical Shenzhen Co Ltd
Priority to CN201310196725.8A priority Critical patent/CN104181676B/en
Publication of CN104181676A publication Critical patent/CN104181676A/en
Application granted granted Critical
Publication of CN104181676B publication Critical patent/CN104181676B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

本发明涉及一种微小型镜头,沿着光轴从物侧至像侧依序包括第一透镜、第二透镜及第三透镜。第一透镜为凸凹透镜且具有负屈光力,第一透镜的凸面朝向物侧且凹面朝向像侧。第二透镜具有正屈光力。第三透镜为凸凹透镜且具有负屈光力,第三透镜的凸面朝向物侧且凹面朝向像侧。

The invention relates to a miniature lens, which sequentially includes a first lens, a second lens and a third lens along the optical axis from the object side to the image side. The first lens is a convex-concave lens with negative refractive power. The convex surface of the first lens faces the object side and the concave surface faces the image side. The second lens has positive refractive power. The third lens is a convex-concave lens with negative refractive power. The convex surface of the third lens faces the object side and the concave surface faces the image side.

Description

微小型镜头micro lens

技术领域technical field

本发明有关于一种镜头,特别是有关于一种微小型镜头。The present invention relates to a lens, in particular to a miniature lens.

背景技术Background technique

目前已知的三片式架构镜头,其第一片透镜大多采用具有正屈光力的透镜,使得此类镜头的视角受到限制,影响到此类镜头的应用范围。Most of the currently known lenses with a three-piece structure adopt a lens with a positive refractive power as the first lens, which limits the viewing angle of this type of lens and affects the application range of this type of lens.

发明内容Contents of the invention

本发明要解决的技术问题在于,针对现有技术中的三片式架构镜头的上述缺陷,提供一种微小型镜头,具备小型化及较大视角,但是仍具有良好的光学性能,影像分辨率也能满足要求,可降低生产成本。The technical problem to be solved by the present invention is to provide a micro-miniature lens with miniaturization and a large viewing angle, but still has good optical performance and high image resolution, aiming at the above-mentioned defects of the three-piece lens in the prior art. It can also meet the requirements and can reduce the production cost.

本发明为解决其技术问题所采用的方案是,提供一种微小型镜头,沿着光轴从物侧至像侧依序包括第一透镜、第二透镜及第三透镜。第一透镜为凸凹透镜且具有负屈光力,第一透镜的凸面朝向物侧且凹面朝向像侧。第二透镜具有正屈光力。第三透镜为凸凹透镜且具有负屈光力,第三透镜的凸面朝向物侧且凹面朝向像侧。The solution adopted by the present invention to solve the technical problem is to provide a miniature lens, which sequentially includes a first lens, a second lens and a third lens along the optical axis from the object side to the image side. The first lens is a convex-concave lens with negative refractive power. The convex surface of the first lens faces the object side and the concave surface faces the image side. The second lens has positive refractive power. The third lens is a convex-concave lens with negative refractive power. The convex surface of the third lens faces the object side and the concave surface faces the image side.

其中微小型镜头满足以下条件:0.35≤BFL/TTL≤0.38;其中,BFL为微小型镜头的后焦距,TTL为第一透镜的物侧表面至成像面于光轴上的距离。The miniature lens satisfies the following conditions: 0.35≤BFL/TTL≤0.38; wherein, BFL is the back focal length of the miniature lens, and TTL is the distance on the optical axis from the object-side surface of the first lens to the imaging plane.

其中第一透镜满足以下条件:-4.5≤f1/f≤-3.3;其中,f1为第一透镜的有效焦距,f为微小型镜头的有效焦距。The first lens satisfies the following condition: -4.5≤f 1 /f≤-3.3; wherein, f 1 is the effective focal length of the first lens, and f is the effective focal length of the miniature lens.

其中第二透镜满足以下条件:0.5≤f2/f≤0.55;其中,f2为第二透镜的有效焦距,f为微小型镜头的有效焦距。Wherein the second lens satisfies the following condition: 0.5≤f 2 /f≤0.55; wherein, f 2 is the effective focal length of the second lens, and f is the effective focal length of the miniature lens.

其中第三透镜满足以下条件:-0.9≤f3/f≤-0.8;其中,f3为第三透镜的有效焦距,f为微小型镜头的有效焦距。The third lens satisfies the following condition: -0.9≤f 3 /f≤-0.8; wherein, f 3 is the effective focal length of the third lens, and f is the effective focal length of the miniature lens.

其中第一透镜及第三透镜满足以下条件:3.75≤f1/f3≤5.5;其中,f1为第一透镜的有效焦距,f3为第三透镜的有效焦距。Wherein the first lens and the third lens satisfy the following condition: 3.75≤f 1 /f 3 ≤5.5; wherein, f 1 is the effective focal length of the first lens, and f 3 is the effective focal length of the third lens.

其中第一透镜至少一面为非球面表面或两个面皆为非球面表面。Wherein at least one side of the first lens is an aspheric surface or both surfaces are aspheric surfaces.

其中第二透镜至少一面为非球面表面或两个面皆为非球面表面。Wherein at least one side of the second lens is an aspheric surface or both surfaces are aspheric surfaces.

其中第三透镜至少一面为非球面表面或两个面皆为非球面表面。Wherein at least one side of the third lens is an aspheric surface or both surfaces are aspheric surfaces.

其中第一透镜、第二透镜及第三透镜由塑料材质制成。Wherein the first lens, the second lens and the third lens are made of plastic material.

本发明的微小型镜头可更包括光圈,设置于第一透镜与第二透镜之间。The miniature lens of the present invention may further include an aperture disposed between the first lens and the second lens.

实施本发明的微小型镜头,具有以下有益效果:能有效的缩短镜头总长度、提高视角、有效的修正像差、提升镜头分辨率。The miniature lens implemented in the present invention has the following beneficial effects: the total length of the lens can be effectively shortened, the viewing angle can be improved, the aberration can be effectively corrected, and the resolution of the lens can be improved.

附图说明Description of drawings

为使本发明的上述目的、特征、和优点能更明显易懂,下文特举较佳实施例并配合附图做详细说明。In order to make the above objects, features, and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below with accompanying drawings.

图1是依据本发明的微小型镜头的第一实施例的透镜配置与光路示意图。FIG. 1 is a schematic diagram of the lens configuration and optical path of the first embodiment of the micro lens according to the present invention.

图2A是图1的微小型镜头的场曲图。FIG. 2A is a field curvature diagram of the micro lens of FIG. 1 .

图2B是图1的微小型镜头的畸变图。FIG. 2B is a distortion diagram of the micro lens of FIG. 1 .

图2C、2D、2E是图1的微小型镜头的横向光扇图。2C, 2D, and 2E are lateral light fan diagrams of the miniature lens in FIG. 1 .

图2F、2G、2H是图1的微小型镜头的光点图。2F, 2G, and 2H are light spot diagrams of the micro-miniature lens in FIG. 1 .

图3是依据本发明的微小型镜头的第二实施例的透镜配置与光路示意图。FIG. 3 is a schematic diagram of the lens configuration and optical path of the second embodiment of the micro lens according to the present invention.

图4A是图3的微小型镜头的场曲图。FIG. 4A is a field curvature diagram of the micro lens of FIG. 3 .

图4B是图3的微小型镜头的畸变图。FIG. 4B is a distortion diagram of the miniature lens of FIG. 3 .

图4C、4D、4E是图3的微小型镜头的横向光扇图。4C, 4D, and 4E are lateral light fan diagrams of the miniature lens in FIG. 3 .

图4F、4G、4H是图3的微小型镜头的光点图。4F, 4G, and 4H are light spot diagrams of the micro-miniature lens in FIG. 3 .

具体实施方式detailed description

请参阅图1,图1是依据本发明的微小型镜头的第一实施例的透镜配置与光路示意图。微小型镜头1沿着光轴OA1从物侧至像侧依序包括第一透镜L11、光圈ST1、第二透镜L12、第三透镜L13及滤光片OF1。第一透镜L11具有负屈光力由塑料材质制成,其物侧面S11为凸面且像侧面S12为凹面,物侧面S11与像侧面S12皆为非球面表面。第二透镜L12具有正屈光力由塑料材质制成,其物侧面S14为凸面且像侧面S15为凸面,物侧面S14与像侧面S15皆为非球面表面。第三透镜L13具有负屈光力由塑料材质制成,其物侧面S16为凸面且像侧面S17为凹面,物侧面S16与像侧面S17皆为非球面表面。滤光片OF1为平板玻璃,其物侧面S18与像侧面S19皆为平面。Please refer to FIG. 1 . FIG. 1 is a schematic diagram of the lens configuration and optical path of the first embodiment of the micro-lens according to the present invention. The micro lens 1 sequentially includes a first lens L11 , a diaphragm ST1 , a second lens L12 , a third lens L13 and an optical filter OF1 along the optical axis OA1 from the object side to the image side. The first lens L11 has a negative refractive power and is made of plastic material. The object side S11 is convex and the image side S12 is concave. Both the object side S11 and the image side S12 are aspheric surfaces. The second lens L12 has a positive refractive power and is made of plastic material. The object side S14 is convex and the image side S15 is convex. Both the object side S14 and the image side S15 are aspheric surfaces. The third lens L13 has negative refractive power and is made of plastic material. The object side S16 is convex and the image side S17 is concave. Both the object side S16 and the image side S17 are aspheric surfaces. The filter OF1 is flat glass, and its object side S18 and image side S19 are both flat.

另外,为使本发明的微小型镜头能保持良好的光学性能,第一实施例中的微小型镜头1需满足底下五条件:In addition, in order to make the micro-miniature lens of the present invention maintain good optical performance, the micro-miniature lens 1 in the first embodiment needs to meet the following five conditions:

0.35≤BFL1/TTL1≤0.38 (1)0.35≤BFL1/TTL1≤0.38 (1)

-4.5≤f11/f1≤-3.3 (2)-4.5≤f1 1 /f1≤-3.3 (2)

0.5≤f12/f1≤0.55 (3)0.5≤f1 2 /f1≤0.55 (3)

-0.9≤f13/f1≤-0.8 (4)-0.9≤f1 3 /f1≤-0.8 (4)

3.75≤f11/f13≤5.5 (5)3.75≤f1 1 /f1 3 ≤5.5 (5)

其中,BFL1为微小型镜头1的后焦距,TTL1为第一透镜L11的物侧面S11至成像面IMA1于光轴OA1上的距离,f1为微小型镜头1的有效焦距,f11为第一透镜L11的有效焦距,f12为第二透镜L12的有效焦距,f13为第三透镜L13的有效焦距。Wherein, BFL1 is the back focal length of the miniature lens 1, TTL1 is the distance from the object side S11 of the first lens L11 to the imaging plane IMA1 on the optical axis OA1, f1 is the effective focal length of the miniature lens 1 , and f11 is the first lens The effective focal length of L11, f1 and 2 are the effective focal length of the second lens L12, and f1 and 3 are the effective focal length of the third lens L13.

利用上述透镜与光圈ST1的设计,使得微小型镜头1能有效的缩短镜头总长度、提高视角、有效的修正像差、提升镜头分辨率。Utilizing the above-mentioned design of the lens and the aperture ST1, the miniature lens 1 can effectively shorten the total length of the lens, increase the viewing angle, effectively correct aberrations, and improve the resolution of the lens.

表一为图1中微小型镜头1的各透镜的相关参数表,表一数据显示本实施例的微小型镜头1的有效焦距等于1.009mm、光圈值等于2.8、视角等于82.74°、镜头总长度等于2.301mm。Table 1 is a table of relevant parameters of each lens of the miniature lens 1 in Fig. 1, and the data in Table 1 shows that the effective focal length of the miniature lens 1 of the present embodiment is equal to 1.009mm, the aperture value is equal to 2.8, the viewing angle is equal to 82.74°, and the total lens length Equal to 2.301mm.

表一Table I

表一中各个透镜的非球面表面凹陷度z由下列公式所得到:The concavity z of the aspheric surface of each lens in Table 1 is obtained by the following formula:

z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 z=ch 2 /{1+[1-(k+1)c 2 h 2 ] 1/2 }+Ah 4 +Bh 6 +Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16

其中:in:

c:曲率;c: curvature;

h:透镜表面任一点至光轴的垂直距离;h: the vertical distance from any point on the lens surface to the optical axis;

k:圆锥系数;k: conic coefficient;

A~G:非球面系数。A~G: Aspheric coefficient.

表二为表一中各个透镜的非球面表面的相关参数表,其中k为圆锥系数(Conic Constant)、A~G为非球面系数。Table 2 is a table of relevant parameters of the aspheric surface of each lens in Table 1, wherein k is a conic constant (Conic Constant), and A˜G are aspheric coefficients.

表二Table II

第一实施例的微小型镜头1其后焦距BFL1=0.866mm、镜头总长度TTL1=2.301mm、微小型镜头1的有效焦距f1=1.009mm、第一透镜L11的有效焦距f11=-3.442mm、第二透镜L12的有效焦距f12=0.541mm、第三透镜L13的有效焦距f13=-0.907mm,由上述数据可得到BFL1/TTL1=0.3764、f11/f1=-3.4113、f12/f1=0.5362、f13/f1=-0.8989、f11/f13=3.7949,皆能满足上述条件(1)至条件(5)的要求。The miniature lens 1 of the first embodiment has a back focal length BFL1=0.866mm, a total lens length TTL1=2.301mm, an effective focal length f1=1.009mm of the miniature lens 1, and an effective focal length f1 = -3.442mm of the first lens L11 , the effective focal length f1 2 of the second lens L12 = 0.541mm, the effective focal length f1 3 of the third lens L13 = -0.907mm, from the above data, it can be obtained that BFL1/TTL1 = 0.3764, f1 1 /f1 = -3.4113, f1 2 / f1=0.5362, f1 3 /f1=-0.8989, f1 1 /f1 3 =3.7949, all of which can satisfy the requirements of the above conditions (1) to (5).

另外,第一实施例的微小型镜头1的光学性能也可达到要求,这可从图2A至2H看出。图2A所示的,是第一实施例的微小型镜头1的场曲(FieldCurvature)图。图2B所示的,是第一实施例的微小型镜头1的畸变(Distortion)图。图2C、图2D、图2E所示的,是第一实施例的微小型镜头1的横向光扇图(Transverse Ray Fan Plot)。图2F、图2G、图2H所示的,是第一实施例的微小型镜头1的光点图(Spot Diagram)。In addition, the optical performance of the miniature lens 1 of the first embodiment can also meet the requirements, which can be seen from FIGS. 2A to 2H . FIG. 2A shows the Field Curvature diagram of the micro lens 1 of the first embodiment. FIG. 2B shows the distortion diagram of the micro lens 1 of the first embodiment. 2C, 2D, and 2E are the Transverse Ray Fan Plots of the miniature lens 1 of the first embodiment. FIG. 2F, FIG. 2G, and FIG. 2H show the spot diagram (Spot Diagram) of the micro-miniature lens 1 of the first embodiment.

由图2A可看出,第一实施例的微小型镜头1对波长为0.436μm、0.546μm、0.656μm的光线所产生的子午(Tangential)方向与弧矢(Sagittal)方向场曲介于-0.04㎜至0.01㎜之间。由图2B可看出,第一实施例的微小型镜头1对波长为0.436μm、0.546μm、0.656μm的光线所产生的畸变介于-1.3%至0.4%之间。由图2C、图2D、图2E可看出,第一实施例的微小型镜头1对波长为0.436μm、0.546μm、0.656μm的光线,于影像高度分别为0.0000mm、0.5280mm、0.8800mm处所产生的横向像差值介于-12.0μm至10.0μm之间。图2F、图2G、图2H显示第一实施例的微小型镜头1对波长为0.436μm、0.546μm、0.656μm的光线,分别于影像高度为0.000mm、0.528mm、0.880mm处,其所对应的光点的均方根(Root Mean Square)半径分别为3.459um、1.718um、2.198um,其所对应的光点的几何(Geometrical)半径分别为5.451um、3.924um、5.892um。显见第一实施例的微小型镜头1的场曲、畸变、横向像差都能被有效修正,从而得到较佳的光学性能。It can be seen from FIG. 2A that the field curvature in the meridian (Tangential) direction and the sagittal (Sagittal) direction produced by the miniature lens 1 of the first embodiment for light rays with wavelengths of 0.436 μm, 0.546 μm, and 0.656 μm is between -0.04 Between ㎜ and 0.01㎜. It can be seen from FIG. 2B that the distortion produced by the micro-miniature lens 1 of the first embodiment for light rays with wavelengths of 0.436 μm, 0.546 μm, and 0.656 μm is between -1.3% and 0.4%. It can be seen from FIG. 2C, FIG. 2D, and FIG. 2E that the miniature lens 1 of the first embodiment has a pair of light rays with wavelengths of 0.436 μm, 0.546 μm, and 0.656 μm, at image heights of 0.0000 mm, 0.5280 mm, and 0.8800 mm, respectively. The resulting lateral aberration values range from -12.0 μm to 10.0 μm. Fig. 2F, Fig. 2G, and Fig. 2H show that the miniature lens 1 of the first embodiment has a pair of light rays with wavelengths of 0.436 μm, 0.546 μm, and 0.656 μm respectively at image heights of 0.000mm, 0.528mm, and 0.880mm. The root mean square (Root Mean Square) radii of the light spots are 3.459um, 1.718um, and 2.198um, respectively, and the corresponding geometrical radii of the light spots are 5.451um, 3.924um, and 5.892um. It is obvious that field curvature, distortion, and lateral aberration of the miniature lens 1 of the first embodiment can be effectively corrected, thereby obtaining better optical performance.

请参阅图3,图3是依据本发明的微小型镜头的第二实施例的透镜配置与光路示意图。微小型镜头2沿着光轴OA2从物侧至像侧依序包括第一透镜L21、光圈ST2、第二透镜L22、第三透镜L23及滤光片OF2。第一透镜L21具有负屈光力由塑料材质制成,其物侧面S21为凸面且像侧面S22为凹面,物侧面S21与像侧面S22皆为非球面表面。第二透镜L22具有正屈光力由塑料材质制成,其物侧面S24为凸面且像侧面S25为凸面,物侧面S24与像侧面S25皆为非球面表面。第三透镜L23具有负屈光力由塑料材质制成,其物侧面S26为凸面且像侧面S27为凹面,物侧面S26与像侧面S27皆为非球面表面。滤光片OF2为平板玻璃,其物侧面S28与像侧面S29皆为平面。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of a lens configuration and an optical path of a second embodiment of a micro lens according to the present invention. The micro lens 2 sequentially includes a first lens L21 , a diaphragm ST2 , a second lens L22 , a third lens L23 and an optical filter OF2 along the optical axis OA2 from the object side to the image side. The first lens L21 has negative refractive power and is made of plastic material. The object side S21 is convex and the image side S22 is concave. Both the object side S21 and the image side S22 are aspheric surfaces. The second lens L22 has positive refractive power and is made of plastic material. The object side S24 is convex and the image side S25 is convex. Both the object side S24 and the image side S25 are aspheric surfaces. The third lens L23 has negative refractive power and is made of plastic material. The object side S26 is convex and the image side S27 is concave. Both the object side S26 and the image side S27 are aspheric surfaces. The filter OF2 is flat glass, and its object side S28 and image side S29 are both flat.

另外,为使本发明的微小型镜头能保持良好的光学性能,第二实施例中的微小型镜头2需满足底下五条件:In addition, in order to make the micro-miniature lens of the present invention maintain good optical performance, the micro-miniature lens 2 in the second embodiment needs to meet the following five conditions:

0.35≤BFL2/TTL2≤0.38 (6)0.35≤BFL2/TTL2≤0.38 (6)

-4.5≤f21/f2≤-3.3 (7)-4.5≤f2 1 /f2≤-3.3 (7)

0.5≤f22/f2≤0.55 (8)0.5≤f2 2 /f2≤0.55 (8)

-0.9≤f23/f2≤-0.8 (9)-0.9≤f2 3 /f2≤-0.8 (9)

3.75≤f21/f23≤5.5 (10)3.75≤f2 1 /f2 3 ≤5.5 (10)

其中,BFL2为微小型镜头2的后焦距,TTL2为第一透镜L21的物侧面S21至成像面IMA2于光轴OA2上的距离,f2为微小型镜头2的有效焦距,f21为第一透镜L21的有效焦距,f22为第二透镜L22的有效焦距,f23为第三透镜L23的有效焦距。Wherein, BFL2 is the back focal length of the miniature lens 2, TTL2 is the distance from the object side S21 of the first lens L21 to the imaging plane IMA2 on the optical axis OA2, f2 is the effective focal length of the miniature lens 2 , and f21 is the first lens The effective focal length of L21, f2 2 is the effective focal length of the second lens L22, and f2 3 is the effective focal length of the third lens L23.

利用上述透镜与光圈ST2的设计,使得微小型镜头2能有效的缩短镜头总长度、提高视角、有效的修正像差、提升镜头分辨率。Utilizing the above-mentioned design of the lens and the aperture ST2, the miniature lens 2 can effectively shorten the total length of the lens, improve the viewing angle, effectively correct aberrations, and improve the resolution of the lens.

表三为图3中微小型镜头2的各透镜的相关参数表,表三数据显示本实施例的微小型镜头2的有效焦距等于1.007mm、光圈值等于2.8、视角等于82.75°、镜头总长度等于2.303mm。Table 3 is a table of relevant parameters of each lens of the miniature lens 2 in Fig. 3, and the data in Table 3 shows that the effective focal length of the miniature lens 2 of the present embodiment is equal to 1.007mm, the aperture value is equal to 2.8, the viewing angle is equal to 82.75°, and the total length of the lens Equal to 2.303mm.

表三Table three

表三中各个透镜的非球面表面凹陷度z由下列公式所得到:The aspherical surface sag z of each lens in Table 3 is obtained by the following formula:

z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 z=ch 2 /{1+[1-(k+1)c 2 h 2 ] 1 / 2 }+Ah 4 +Bh 6 +Ch 8 +Dh 10 +Eh 12 +Fh 14 +Gh 16

其中:in:

c:曲率;c: curvature;

h:透镜表面任一点至光轴的垂直距离;h: the vertical distance from any point on the lens surface to the optical axis;

k:圆锥系数;k: conic coefficient;

A~G:非球面系数。A~G: Aspheric coefficient.

表四为表三中各个透镜的非球面表面的相关参数表,其中k为圆锥系数(Conic Constant)、A~G为非球面系数。Table 4 is a table of relevant parameters of the aspheric surface of each lens in Table 3, wherein k is a conic constant, and A˜G are aspherical coefficients.

表四Table four

第二实施例的微小型镜头2其后焦距BFL2=0.822mm、镜头总长度TTL2=2.303mm、微小型镜头2的有效焦距f2=1.007mm、第一透镜L21的有效焦距f21=-4.373mm、第二透镜L22的有效焦距f22=0.535mm、第三透镜L23的有效焦距f23=-0.818mm,由上述数据可得到BFL2/TTL2=0.3569、f21/f2=-4.3426、f22/f2=0.5313、f23/f2=-0.8123、f21/f23=5.3460,皆能满足上述条件(6)至条件(10)的要求。The microminiature lens 2 of the second embodiment has its back focal length BFL2=0.822mm, the total lens length TTL2=2.303mm, the effective focal length f2=1.007mm of the microminiature lens 2, and the effective focal length f21 = -4.373mm of the first lens L21 , the effective focal length f2 2 of the second lens L22 = 0.535 mm, the effective focal length f2 3 = -0.818 mm of the third lens L23, from the above data, it can be obtained that BFL2/TTL2 = 0.3569, f2 1 /f2 = -4.3426, f2 2 / f2=0.5313, f2 3 /f2=-0.8123, f2 1 /f2 3 =5.3460, all of which can satisfy the requirements of the above conditions (6) to (10).

另外,第二实施例的微小型镜头2的光学性能也可达到要求,这可从图4A至4H看出。图4A所示的,是第二实施例的微小型镜头2的场曲(FieldCurvature)图。图4B所示的,是第二实施例的微小型镜头2的畸变(Distortion)图。图4C、图4D、图4E所示的,是第二实施例的微小型镜头2的横向光扇图(Transverse Ray Fan Plot)。图4F、图4G、图4H所示的,是第二实施例的微小型镜头2的光点图(Spot Diagram)。In addition, the optical performance of the miniature lens 2 of the second embodiment can also meet the requirements, which can be seen from FIGS. 4A to 4H . FIG. 4A shows the Field Curvature diagram of the micro lens 2 of the second embodiment. FIG. 4B shows the distortion diagram of the micro lens 2 of the second embodiment. 4C, 4D, and 4E are the Transverse Ray Fan Plots of the micro-miniature lens 2 of the second embodiment. FIG. 4F, FIG. 4G, and FIG. 4H show the spot diagram (Spot Diagram) of the micro-miniature lens 2 of the second embodiment.

由图4A可看出,第二实施例的微小型镜头2对波长为0.436μm、0.546μm、0.656μm的光线所产生的子午(Tangential)方向与弧矢(Sagittal)方向场曲介于-0.05㎜至0.02㎜之间。由图4B可看出,第二实施例的微小型镜头2对波长为0.436μm、0.546μm、0.656μm的光线所产生的畸变介于-1.4%至0.4%之间。由图4C、图4D、图4E可看出,第二实施例的微小型镜头2对波长为0.436μm、0.546μm、0.656μm的光线,于影像高度分别为0.0000mm、0.5280mm、0.8800mm处所产生的横向像差值介于-10.0μm至9.0μm之间。图4F、图4G、图4H显示第二实施例的微小型镜头2对波长为0.436μm、0.546μm、0.656μm的光线,分别于影像高度为0.000mm、0.528mm、0.880mm处,其所对应的光点的均方根(Root Mean Square)半径分别为1.441um、2.027um、2.208um,其所对应的光点的几何(Geometrical)半径分别为2.268um、4.914um、6.108um。显见第二实施例的微小型镜头2的场曲、畸变、横向像差都能被有效修正,从而得到较佳的光学性能。It can be seen from FIG. 4A that the field curvature in the meridional (Tangential) direction and the sagittal (Sagittal) direction of the light rays with wavelengths of 0.436 μm, 0.546 μm, and 0.656 μm produced by the micro-miniature lens 2 of the second embodiment is between -0.05 ㎜ to 0.02㎜. It can be seen from FIG. 4B that the distortion produced by the micro-miniature lens 2 of the second embodiment for light rays with wavelengths of 0.436 μm, 0.546 μm, and 0.656 μm is between -1.4% and 0.4%. It can be seen from FIG. 4C, FIG. 4D, and FIG. 4E that the miniature lens 2 of the second embodiment has a pair of light rays with wavelengths of 0.436 μm, 0.546 μm, and 0.656 μm, respectively, at image heights of 0.0000 mm, 0.5280 mm, and 0.8800 mm. The resulting lateral aberration values range from -10.0 μm to 9.0 μm. Fig. 4F, Fig. 4G, and Fig. 4H show that the micro-miniature lens 2 of the second embodiment has a pair of light rays with wavelengths of 0.436 μm, 0.546 μm, and 0.656 μm, respectively, at image heights of 0.000mm, 0.528mm, and 0.880mm. The root mean square (Root Mean Square) radii of the light spots are 1.441um, 2.027um, and 2.208um, respectively, and the corresponding geometrical radii of the light spots are 2.268um, 4.914um, and 6.108um. It is obvious that field curvature, distortion, and lateral aberration of the micro-miniature lens 2 of the second embodiment can be effectively corrected, thereby obtaining better optical performance.

上述实施例中,第一透镜、第二透镜及第三透镜的物侧面与像侧面皆为非球面表面,然而可以了解到,若第一透镜、第二透镜及第三透镜中的部份透镜或全部透镜的物侧面或像侧面改为球面表面,亦应属本发明的范畴。In the above-mentioned embodiment, the object side and the image side of the first lens, the second lens and the third lens are all aspherical surfaces, but it can be understood that if some lenses in the first lens, the second lens and the third lens Or changing the object side or image side of all lenses into a spherical surface should also belong to the scope of the present invention.

上述实施例中,第一透镜、第二透镜及第三透镜皆由塑料材质制成,然而可以了解到,若第一透镜、第二透镜及第三透镜中的部分透镜或全部透镜改为玻璃材质,亦应属本发明的范畴。In the above-mentioned embodiment, the first lens, the second lens and the third lens are all made of plastic material, but it can be understood that if some or all of the first lens, the second lens and the third lens are changed to glass Material should also belong to the category of the present invention.

虽然本发明已以较佳实施例揭露如上,但其并非用以限定本发明,本技术领域的人员,在不脱离本发明的精神和范围内,仍可作些许的更动与润饰,因此本发明的保护范围当视权利要求所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art can still make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of the invention should be defined by the claims.

Claims (10)

1. a microminiature lens, it is characterised in that sequentially include to image side from thing side along optical axis:
First lens, these first lens are convexoconcave lens and have negative refractive power, the convex surface court of these the first lens To this thing side and concave surface towards this image side;
Second lens, these second lens have positive refractive power;And
3rd lens, the 3rd lens are convexoconcave lens and have negative refractive power, the convex surface court of the 3rd lens To this thing side and concave surface towards this image side;
This microminiature lens meets following condition:
0.35≤BFL/TTL≤0.38
Wherein, BFL is the back focal length of this microminiature lens, and TTL is that the thing side of these the first lens is to becoming Image planes distance on this optical axis.
2. microminiature lens as claimed in claim 1, it is characterised in that below these first lens meet Condition:
-4.5≤f1/f≤-3.3
Wherein, f1For the effective focal length of these the first lens, f is the effective focal length of this microminiature lens.
3. microminiature lens as claimed in claim 1, it is characterised in that below these second lens meet Condition:
0.5≤f2/f≤0.55
Wherein, f2For the effective focal length of these the second lens, f is the effective focal length of this microminiature lens.
4. microminiature lens as claimed in claim 1, it is characterised in that below the 3rd lens meet Condition:
-0.9≤f3/f≤-0.8
Wherein, f3For the effective focal length of the 3rd lens, f is the effective focal length of this microminiature lens.
5. microminiature lens as claimed in claim 1, it is characterised in that these first lens and this Three lens meet following condition:
3.75≤f1/f3≤5.5
Wherein, f1For the effective focal length of these the first lens, f3Effective focal length for the 3rd lens.
6. microminiature lens as claimed in claim 1, it is characterised in that this first lens at least one side For non-spherical surface.
7. microminiature lens as claimed in claim 1, it is characterised in that this second lens at least one side For non-spherical surface.
8. microminiature lens as claimed in claim 1, it is characterised in that the 3rd lens at least one side For non-spherical surface.
9. microminiature lens as claimed in claim 1, it is characterised in that these first lens, this second Lens and the 3rd lens are made up of plastic material.
10. microminiature lens as claimed in claim 1, it is characterised in that further include aperture, this aperture It is arranged between these first lens and this second lens.
CN201310196725.8A 2013-05-23 2013-05-23 Microminiature lens Expired - Fee Related CN104181676B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310196725.8A CN104181676B (en) 2013-05-23 2013-05-23 Microminiature lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310196725.8A CN104181676B (en) 2013-05-23 2013-05-23 Microminiature lens

Publications (2)

Publication Number Publication Date
CN104181676A CN104181676A (en) 2014-12-03
CN104181676B true CN104181676B (en) 2016-09-14

Family

ID=51962855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310196725.8A Expired - Fee Related CN104181676B (en) 2013-05-23 2013-05-23 Microminiature lens

Country Status (1)

Country Link
CN (1) CN104181676B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612326B (en) * 2016-10-21 2018-01-21 大立光電股份有限公司 Micro imaging system, imaging apparatus and electronic device
CN110018555B (en) * 2019-04-23 2021-09-10 广东旭业光电科技股份有限公司 Optical imaging system and camera device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207020B2 (en) * 2002-07-30 2009-01-14 コニカミノルタオプト株式会社 Imaging lens
JP5405324B2 (en) * 2010-01-04 2014-02-05 富士フイルム株式会社 Imaging lens and imaging apparatus
CN103064169B (en) * 2011-10-20 2015-04-01 亚洲光学股份有限公司 Capture lens
CN103076671B (en) * 2012-08-27 2016-05-11 玉晶光电(厦门)有限公司 Optical imaging lens and apply the electronic installation of this camera lens
JP2012247807A (en) * 2012-09-18 2012-12-13 Kantatsu Co Ltd Imaging lens for solid-state imaging element

Also Published As

Publication number Publication date
CN104181676A (en) 2014-12-03

Similar Documents

Publication Publication Date Title
CN102841430B (en) Optical image lens assembly
US9939612B2 (en) Wide-angle lens
US9523840B2 (en) Lens assembly
CN106814442B (en) Optical lens
CN108802962A (en) Wide-angle imaging lens group
WO2021007930A1 (en) Micro imaging lens for short-distance imaging
TWI763748B (en) Lens assembly
CN113156615B (en) An eight-element large aperture imaging lens
TWI485426B (en) Micro lens
CN103135210A (en) zoom imaging lens
CN104238078B (en) Wide-angle lens
CN110873946A (en) Optical imaging lens
CN103135208B (en) Zoom lens
TW201939088A (en) Lens assembly
TW201915538A (en) Lens assembly
CN104181676B (en) Microminiature lens
CN103018888A (en) Varifocal imaging lens
CN103018889B (en) Varifocal imaging camera lens
CN111856727A (en) A large-aperture ultra-wide-angle high-definition lens and imaging equipment including the lens
CN104849840B (en) Miniaturized high-pixel shooting optical system and lens applied by same
CN108873248A (en) Wide-angle lens
CN105759399B (en) Imaging lens
TWI764764B (en) Optical imaging lens
CN113406776B (en) Lens and method for manufacturing the same
CN210051954U (en) an optical lens set

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160914