CN104178472A - Cellulose degradation enzyme, construction and application thereof - Google Patents
Cellulose degradation enzyme, construction and application thereof Download PDFInfo
- Publication number
- CN104178472A CN104178472A CN201310204308.3A CN201310204308A CN104178472A CN 104178472 A CN104178472 A CN 104178472A CN 201310204308 A CN201310204308 A CN 201310204308A CN 104178472 A CN104178472 A CN 104178472A
- Authority
- CN
- China
- Prior art keywords
- enzyme
- lichenase
- endocellulase
- sequence table
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2437—Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2448—Licheninase (3.2.1.73)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01004—Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01073—Licheninase (3.2.1.73)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及纤维素酶,具体的说是一种降解纤维素的酶及其构建和应用。The present invention relates to cellulase, specifically an enzyme for degrading cellulose and its construction and application.
背景技术Background technique
纤维素酶在造纸、食品、饲料、纺织和能源等工业领域都有着广泛的应用价值。纤维素酶可以将纤维素降解为寡糖或单糖。纤维素酶可以分为内切纤维素酶、外切纤维素酶、和β-葡萄糖苷酶。内切纤维素酶又称内切-1,4-β-葡聚糖酶(EC3.2.1.4),专一性切断纤维素的葡聚糖链中β-1.4-糖苷连键,产生低聚合度的葡聚糖或纤维寡糖。地衣聚糖酶,又称1,3-1,4-β-葡聚糖酶(EC3.2.1.73),具有严格的底物专一性,它专一性切断1,3-1,4-β-葡聚糖中与3-O-吡喃葡萄糖基团相连接的β-1,4-糖苷键。Cellulase has a wide range of applications in industrial fields such as papermaking, food, feed, textile and energy. Cellulase can degrade cellulose into oligosaccharides or monosaccharides. Cellulase can be classified into endo-cellulase, exo-cellulase, and β-glucosidase. Endo-cellulase, also known as endo-1,4-β-glucanase (EC3.2.1.4), specifically cuts the β-1.4-glycosidic linkage in the glucan chain of cellulose, producing low Polymerized dextran or cellooligosaccharides. Lichenanase, also known as 1,3-1,4-β-glucanase (EC3.2.1.73), has strict substrate specificity, and it specifically cuts off 1,3-1,4 - β-1,4-glycosidic linkages to 3-O-glucopyranose groups in β-glucans.
1,3-1,4-β-葡聚糖是禾本科植物细胞壁的组成成分,尤其在谷类植物(如小麦、大麦、玉米、水稻等)胚乳细胞壁中大量存在。嗜热的地衣聚糖酶,在工业生产中拥有巨大优势,比如在酿造和动物饲料工业中。在啤酒发酵过程中,禾本科植物内源的地衣聚糖酶是热失活的;因此,添加外源地衣聚糖酶可以酶解混合连键的高分子量的β-葡聚糖,从而降低发酵液的黏度,提高过滤速度及提取产率,同时也会避免啤酒成熟过程中产生沉淀。在动物饲料工业,特别是肉鸡以及猪的饲料工业生产中,添加外源地衣聚糖酶可以促进动物消化,降低卫生清洁。1,3-1,4-β-glucan is a component of the cell wall of gramineous plants, especially in the endosperm cell walls of cereal plants (such as wheat, barley, corn, rice, etc.). Thermophilic lichenases have great advantages in industrial processes, such as in the brewing and animal feed industries. During beer fermentation, the endogenous lichenase of gramineous plants is heat-inactivated; therefore, the addition of exogenous lichenase can enzymatically hydrolyze the high molecular weight β-glucan with mixed linkages, thereby reducing the fermentation rate. The viscosity of the liquid can be improved to increase the filtration speed and extraction yield, and at the same time, it can also avoid precipitation during the beer maturation process. In the animal feed industry, especially in the production of broiler chicken and pig feed industry, adding exogenous lichenase can promote animal digestion and reduce sanitation.
木质纤维素主要由纤维素和半纤维素构成,是地球上最丰富的纤维素来源。在木质纤维素的生物转化及加工过程中,往往需要高温条件,耐高温纤维素酶可以直接用于高温条件下的生物质加工与转化。并且,由于这些耐高温的酶具有热稳定性好,半衰期长等优点,因此可以提高酶的使用效率,在生产上降低酶的用量,减少生产成本。所以,耐高温纤维素酶受到越来越广泛的重视。Lignocellulose is mainly composed of cellulose and hemicellulose and is the most abundant source of cellulose on earth. In the biotransformation and processing of lignocellulose, high temperature conditions are often required, and high temperature resistant cellulase can be directly used for biomass processing and conversion under high temperature conditions. Moreover, because these high-temperature-resistant enzymes have the advantages of good thermal stability and long half-life, the use efficiency of enzymes can be improved, the amount of enzymes used in production can be reduced, and production costs can be reduced. Therefore, high temperature resistant cellulase has received more and more attention.
极端嗜热厌氧菌解糖热解纤维素菌属于木质纤维素降解菌,无纤维小体结构,具有游离作用的木质纤维素酶系,可作为耐热纤维素酶的产酶菌株。同时,产生耐高温纤维素酶的微生物在培养过程中具有不易受其他微生物污染、高温条件可以降低发酵液粘度而易于搅拌、底物和产物都有较高的可溶性并能降低冷却费用等优点。The extreme thermophilic anaerobic bacterium Thermocellulolyticus saccharolyticus belongs to lignocellulose degrading bacteria, has no cellulosome structure, and has free-acting lignocellulosic enzymes, which can be used as an enzyme-producing strain of heat-resistant cellulase. At the same time, microorganisms that produce high-temperature-resistant cellulase have the advantages of not being easily contaminated by other microorganisms during the cultivation process, high-temperature conditions can reduce the viscosity of the fermentation broth and are easy to stir, substrates and products have high solubility, and can reduce cooling costs.
发明内容Contents of the invention
本发明目的在于提供一种降解纤维素的酶及其构建和应用。The purpose of the present invention is to provide an enzyme for degrading cellulose and its construction and application.
为实现上述目的,本发明采用的技术方案为:To achieve the above object, the technical solution adopted in the present invention is:
一种降解纤维素的酶,降解纤维素的酶为序列表SEQ ID NO:1或序列表SEQ ID NO:2中氨基酸所示。An enzyme for degrading cellulose, the enzyme for degrading cellulose is shown in the amino acid in sequence table SEQ ID NO: 1 or sequence table SEQ ID NO: 2.
所述降解纤维素的酶为内切纤维素酶和地衣聚糖酶;其中,内切纤维素酶和地衣聚糖酶的氨基酸序列为,序列表SEQ ID NO:1或序列表SEQ IDNO:2中所示。The enzyme that degrades cellulose is endocellulase and lichenase; wherein, the amino acid sequence of endocellulase and lichenase is, sequence listing SEQ ID NO: 1 or sequence listing SEQ ID NO: 2 shown in .
所述内切纤维素酶和地衣聚糖酶为与序列表SEQ ID NO:1或序列表SEQ ID NO:2中所示氨基酸具有80%以上同源性的片段。The endocellulase and lichenase are fragments having more than 80% homology with the amino acids shown in SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing.
降解纤维素的酶的构建方法,将含有内切纤维素酶或地衣多糖酶基因的重组表达载体分别导入宿主细胞,表达得到序列表SEQ ID NO:1或序列表SEQ ID NO:2中所示的内切纤维素酶和地衣聚糖酶的氨基酸序列。A method for constructing an enzyme for degrading cellulose, introducing recombinant expression vectors containing endocellulase or lichenase genes into host cells, respectively, and expressing to obtain sequence table SEQ ID NO: 1 or sequence table SEQ ID NO: 2 shown in Amino acid sequences of endocellulase and lichenase.
所述作为重组表达载体的出发载体为pEASY-E1、pET-22b、pET28、pET32、pQE-30、pGEX-4T-2、pBR322或pUC18。The starting vector as the recombinant expression vector is pEASY-E1, pET-22b, pET28, pET32, pQE-30, pGEX-4T-2, pBR322 or pUC18.
降解纤维素的酶的应用,所述序列表SEQ ID NO:1或序列表SEQ IDNO:2中氨基酸所示酶可作为用于纤维素的生物转化。所述内切纤维素酶可作为外切酶。The application of the enzyme for degrading cellulose, the enzyme shown in the sequence table SEQ ID NO: 1 or the amino acid in the sequence table SEQ ID NO: 2 can be used for the biotransformation of cellulose. The endo-cellulase may act as an exo-enzyme.
本发明所具有的优点:本发明可以快速表达得到来源于热解纤维素菌的纤维素的生物转化的酶,且具有高的热稳定性、高的比酶活以及长的半衰期。The present invention has the advantages that the present invention can quickly express the enzyme for the biotransformation of cellulose derived from pyrolytic cellulolytic bacteria, and has high thermal stability, high specific enzyme activity and long half-life.
附图说明Description of drawings
图1为本发明实施例提供的SDS-PAGE检测纯化蛋白的分子量大小电泳图谱。Fig. 1 is the electrophoretic pattern of the molecular weight size of the purified protein detected by SDS-PAGE provided in the embodiment of the present invention.
具体实施方式Detailed ways
实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。Embodiments are carried out on the premise of the technical solutions of the present invention, and detailed implementation methods and specific operation processes are provided, but the protection scope of the present invention is not limited to the following embodiments.
下述实施例中所用方法如无特别说明均为常规方法。The methods used in the following examples are conventional methods unless otherwise specified.
实施例1、内切纤维素酶和地衣聚糖酶基因的获得及其原核表达载体的构建Example 1, the acquisition of endocellulase and lichenase genes and the construction of their prokaryotic expression vectors
该基因的克隆过程及其原核表达载体的构建过程包括以下步骤:The cloning process of the gene and the construction process of its prokaryotic expression vector comprise the following steps:
一、内切纤维素酶和地衣聚糖酶基因的克隆1. Cloning of endocellulase and lichenase genes
经过全基因组测序,内切纤维素酶设计如下引物:After whole genome sequencing, endocellulase designed the following primers:
C-F:ATGAAGAAAGAATGTCTTAGAGTTTTTGCC-F: ATGAAGAAAGAATGTCTTAGAGTTTTTGC
C-R:TTACATCTTTCCTGTAAGTTCTAAAATTTTGC-R:TTACATCTTTCCTGTAAGTTCTAAAATTTTG
根据地衣聚糖酶的基因,设计如下引物:According to the gene of lichenase, the following primers were designed:
E-F:TCCAGTAACAGAGCCAAAATTCCE-F:TCCAGTAACAGAGCCAAAATTCC
E-R:TGTTGCTACACACCTCCCTTE-R: TGTTGCTACACACCTCCCTT
以提取的解糖热解纤维素菌,如解糖热解纤维素菌DSM8903(德国微生物菌种保藏中心,German Collection of Microorganisms and Cell Cultures,DSMZ),解糖热解纤维素菌CGMCC1.5183(中国普通微生物菌种保藏管理中心,China General Microbiological Culture Collection,CGMCC,地址为北京市朝阳区北辰西路1号院3号),总基因组DNA为模板,分别以C-F与C-R;E-F与E-R为引物对,通过PCR的方式扩增得到目的基因片段。Saccharolytic cellulolytic bacteria extracted, such as saccharolytic cellulolytic bacteria DSM8903 (German Collection of Microorganisms and Cell Cultures, DSMZ), saccharolytic cellulolytic bacteria CGMCC1.5183 ( China General Microbiological Culture Collection Management Center, China General Microbiological Culture Collection, CGMCC, address is No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing), total genomic DNA is used as template, and C-F and C-R; E-F and E-R are used as primers respectively Yes, the target gene fragment is amplified by PCR.
扩增内切纤维素酶的PCR反应体系为50μl,包括:细菌基因组DNA:1μl;10×PCR Buffer:5μl;dNTP Mixture(各2.5mM):4μl;引物C-F(20μM),1μl;引物C-R(20μM),1μl;LA Taq polymerase(5U/μl):0.5μl;加ddH2O至总体系为50μl。PCR扩增条件如下:94°C预变性5min,94°C变性30sec,54°C退火45sec,72°C延伸150sec,循环30次,72°C延伸10min。The PCR reaction system for amplifying endocellulase is 50 μl, including: bacterial genomic DNA: 1 μl; 10×PCR Buffer: 5 μl; dNTP Mixture (2.5 mM each): 4 μl; primer CF (20 μM), 1 μl; primer CR ( 20μM), 1μl; LA Taq polymerase (5U/μl): 0.5μl; add ddH 2 O to make the total system 50μl. PCR amplification conditions were as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30 sec, annealing at 54°C for 45 sec, extension at 72°C for 150 sec, 30 cycles, and extension at 72°C for 10 min.
扩增地衣聚糖酶的PCR反应体系为50μl,包括:细菌基因组DNA:1μl;10×PCR Buffer:5μl;dNTP Mixture(各2.5mM):4μl;引物E-F(20μM),1μl;引物E-R(20μM),1μl;LA Taq polymerase(5U/μl):0.5μl;加ddH2O至总体系为50μl。PCR扩增条件如下:94°C预变性5min,94°C变性30sec,56°C退火45sec,72°C延伸90sec,循环30次,72°C延伸10min。The PCR reaction system for amplifying lichenase is 50 μl, including: bacterial genomic DNA: 1 μl; 10×PCR Buffer: 5 μl; dNTP Mixture (2.5 mM each): 4 μl; primer EF (20 μM), 1 μl; primer ER (20 μM ), 1 μl; LA Taq polymerase (5U/μl): 0.5 μl; add ddH 2 O to make the total system 50 μl. PCR amplification conditions were as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30 sec, annealing at 56°C for 45 sec, extension at 72°C for 90 sec, 30 cycles, and extension at 72°C for 10 min.
解糖热解纤维素菌来源的内切纤维素酶具有多个结构域,其催化结构域属于糖苷水解酶5家族,另外,还具有1个碳水化合物结合结构域和3个S-layer homology结构域。The endocellulase derived from Thermocellulolyticus saccharolyticus has multiple structural domains, and its catalytic domain belongs to the glycoside hydrolase 5 family. In addition, it also has a carbohydrate binding domain and three S-layer homology structures area.
解糖热解纤维素菌来源的地衣聚糖酶,属于糖苷水解酶5家族。A lichenase derived from Pyrocellulolyticus saccharolyticus, belonging to the glycoside hydrolase 5 family.
二、内切纤维素酶和地衣聚糖酶基因表达载体的构建2. Construction of endocellulase and lichenase gene expression vectors
将步骤一经PCR获得的基因片段分别连接到表达载体pEASY-E1中,将含有内切纤维素酶和地衣聚糖酶基因的连接产物分别转化大肠杆菌E.coli BL21(DE3),经PCR和测序鉴定后将含有内切纤维素酶和地衣聚糖酶基因的阳性克隆质粒分别命名为pEASY-E1-JX030399和pEASY-E1-KC958563,可用其进行内切纤维素酶和地衣聚糖酶的表达。The gene fragments obtained by PCR in step 1 were respectively ligated into the expression vector pEASY-E1, and the ligation products containing endocellulase and lichenase genes were respectively transformed into Escherichia coli E.coli BL21 (DE3), and PCR and sequencing After identification, the positive cloned plasmids containing endocellulase and lichenase genes were named pEASY-E1-JX030399 and pEASY-E1-KC958563 respectively, which can be used to express endocellulase and lichenase.
实施例2、内切纤维素酶和地衣聚糖酶的表达、纯化Embodiment 2, expression and purification of endocellulase and lichenase
将实施例1获得的含有内切纤维素酶和地衣聚糖酶基因的原核表达载体pEASY-E1-JX030399和pEASY-E1-KC958563分别转化大肠杆菌E.coliBL21(DE3),挑选阳性单克隆在37°C下摇菌至OD600为0.5后,加入1mMIPTG诱导,10小时后离心收集菌体,含有目的蛋白的菌体按1g菌体加入4ml磷酸盐缓冲液(50mM NaH2PO4,300mM NaCl,pH8.0),同时加入蛋白酶抑制剂,溶菌酶(10mg/ml),细胞充分悬浮后采用超声波法破碎细胞。所得细胞破碎液经4°C、10000×g离心20min,所得上清经0.22μm滤膜过滤后即为粗酶液。The prokaryotic expression vectors pEASY-E1-JX030399 and pEASY-E1-KC958563 obtained in Example 1 that contained endocellulase and lichenase genes were transformed into Escherichia coli E.coliBL21 (DE3) respectively, and positive single clones were selected at 37 Shake the bacteria at °C until the OD 600 is 0.5, add 1mMIPTG to induce, and collect the bacteria by centrifugation after 10 hours. For the bacteria containing the target protein, add 4ml of phosphate buffer (50mM NaH 2 PO 4 , 300mM NaCl, pH8.0), protease inhibitors, lysozyme (10mg/ml) were added at the same time, and the cells were fully suspended and disrupted by ultrasonication. The obtained cell disruption solution was centrifuged at 4°C and 10000×g for 20 minutes, and the obtained supernatant was filtered through a 0.22 μm filter membrane to obtain the crude enzyme solution.
进行蛋白纯化,具体方法为:Ni-NTA-Sefinose柱中的乙醇流出后,加入总体积为10ml的无菌水,每次加入2ml。加入总体积10ml的磷酸盐缓冲液(50mM NaH2PO4,300mM NaCl,pH8.0),每次加入2ml。加入粗酶液,并穿透3次。加入磷酸缓冲液(50mM NaH2PO4,300mM NaCl,pH8.0),直至流出液中无蛋白。然后依次加入咪唑浓度逐渐升高的洗脱缓冲液(50mM NaH2PO4,300mM NaCl,咪唑浓度分别为25mM、50mM、100mM、250mM,pH8.0)各5mL,并收集蛋白组分,每次收集1mL。将经纯化所得的内切纤维素酶和地衣聚糖酶进行SDS-PAGE电泳进行验证,纯化结果如图1所示,所获得的内切纤维素酶JX030399分子量为85kDa,地衣聚糖酶KC958563分子量为43.7kDa。For protein purification, the specific method is: after the ethanol in the Ni-NTA-Sefinose column flows out, add sterile water with a total volume of 10 ml, 2 ml each time. A total volume of 10 ml of phosphate buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, pH 8.0) was added, 2 ml each time. Add crude enzyme solution and penetrate 3 times. Phosphate buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, pH 8.0) was added until there was no protein in the effluent. Then add 5 mL each of elution buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, imidazole concentrations of 25 mM, 50 mM, 100 mM, 250 mM, pH 8.0) with gradually increasing imidazole concentration, and collect protein fractions, each time Collect 1 mL. The purified endocellulase and lichenase were verified by SDS-PAGE electrophoresis. The purification results are shown in Figure 1. The obtained endocellulase JX030399 has a molecular weight of 85kDa, and the lichenase KC958563 has a molecular weight of 85kDa. It is 43.7kDa.
SEQ ID NO:1SEQ ID NO: 1
MKKECLRVFAVFMVFTFLLSLFPFVTFAQNTAYEKDKYPHLIGNSLVKKPSVAGRLQIIKQNGRRILADQNGEPIQLRGMSTHGLQWFPQIINNNAFAALANDWGCNVIRLAMYIGEGGYATNPQVKDKVIEGIKLAIQNDMYVIVDWHVLNPGDPNAEIYKGAKDFFKEIAQKFPNDFHIIYELCNEPNPTDPGVTNDEAGWKKVKAYAEPIIKMLRQMGNENIIIVGSPNWSQRPDFAIKDPIADDKVMYSVHFYTGTHKVDGYVFENMKMAIEAGVPVFVTEWGTSEASGDGGPYLDEADKWLEYLNANNISWVNWSLTNKNETSGAFVPYISGVSQATDLDPGSDQKWDISELSISGEYVRSRIKGIPYQPIERTLKISQDQVACAPIGQPILPSDFEDGTRQGWDWDGPSGVKGALTIEEANGSNALSWEVEYPEKKLQDGWASAPRLILRNINTTRGDCKYLCFDFYLKPKQATKGELAIFLAFAPPSLNYWAQAEDSFNIDLSNLSTLKKTPDDLYSFKISFDLDKIKEGKIIGPDTHLRDIIIVVADVNSDFKGRMYLDNVRFTNMLFEDVTPQTTGYEAISKLYSKKIVNGISTNLFGPEKAVTRAEVAAMAVRLLDLQEESYNGEFTDVSKNSWYANEVSTAYKAGIILGDGKYIKPEKAVTREEMAVFAMRIYRILTDEKAEATEEIAISDKNSISSWARQDVNAAISLGLMDVFTDGSFGPKAKVARAEATQIIYKILELTGKMMKKECLRVFAVFMVFTFLLSLFPFVTFAQNTAYEKDKYPHLIGNSLVKKPSVAGRLQIIKQNGRRILADQNGEPIQLRGMSTHGLQWFPQIINNNAFAALANDWGCNVIRLAMYIGEGGYATNPQVKDKVIEGIKLAIQNDMYVIVDWHVLNPGDPNAEIYKGAKDFFKEIAQKFPNDFHIIYELCNEPNPTDPGVTNDEAGWKKVKAYAEPIIKMLRQMGNENIIIVGSPNWSQRPDFAIKDPIADDKVMYSVHFYTGTHKVDGYVFENMKMAIEAGVPVFVTEWGTSEASGDGGPYLDEADKWLEYLNANNISWVNWSLTNKNETSGAFVPYISGVSQATDLDPGSDQKWDISELSISGEYVRSRIKGIPYQPIERTLKISQDQVACAPIGQPILPSDFEDGTRQGWDWDGPSGVKGALTIEEANGSNALSWEVEYPEKKLQDGWASAPRLILRNINTTRGDCKYLCFDFYLKPKQATKGELAIFLAFAPPSLNYWAQAEDSFNIDLSNLSTLKKTPDDLYSFKISFDLDKIKEGKIIGPDTHLRDIIIVVADVNSDFKGRMYLDNVRFTNMLFEDVTPQTTGYEAISKLYSKKIVNGISTNLFGPEKAVTRAEVAAMAVRLLDLQEESYNGEFTDVSKNSWYANEVSTAYKAGIILGDGKYIKPEKAVTREEMAVFAMRIYRILTDEKAEATEEIAISDKNSISSWARQDVNAAISLGLMDVFTDGSFGPKAKVARAEATQIIYKILELTGKM
(a)序列特征:(a) Sequential features:
●长度:756●Length: 756
●类型:氨基酸序列●Type: amino acid sequence
●链型:单链●Chain type: single chain
●拓扑结构:线性●Topological structure: linear
(b)分子类型:蛋白质(b) Molecule Type: Protein
(c)假设:否(c) Assumption: No
(d)反义:否(d) Antisense: No
(e)最初来源:解糖热解纤维素菌(e) Original source: Thermocellulolyticus saccharolyticus
结构特点:69-325为糖苷水解酶5家族结构域,352-572为碳水化合物结合结构域,576-618、636-677、701-742为3个S-layer homology结构域。Structural features: 69-325 are glycoside hydrolase 5 family domains, 352-572 are carbohydrate binding domains, 576-618, 636-677, 701-742 are three S-layer homology domains.
SEQ ID NO:2SEQ ID NO: 2
SSNRAKIPEIKIASRKIPNNAALKFVKDMKIGWNLGNTFDAAFENPSFDDELLYETAWCGVKTTKQMIDTVKKAGFNTIRIPVSWHNHVTGSNFTISKRWLDRVQQVVDYAMKNKMYVIINIHHDIMPGYYYPNSQHLQTSIKYVKSIWTQVATRFKNYNDHLIFEAVNEPRLTGSRFEWWLDMNNPECRDAVEAINKLNQVFVDTVRSTGGNNVSRYLMVPGYAAAPEYVLIDEFKIPKDSSKYKNRIIISVHAYRPYNFALQAPNESGSVSEWSVNSEESRRDIDYFMDKLYDKFVSKGIPVVIGEFGARDKNGNLQSRVEFAAYYVRAARARGITCCWWDNNAFYGNGENFGLLDRKTLKWVYPEIVSAMMKYARSSNRAKIPEIKIASRKIPNNAALKFVKDMKIGWNLGNTFDAAFENPSFDDELLYETAWCGVKTTKQMIDTVKKAGFNTIRIPVSWHNHVTGSNFTISKRWLDRVQQVVDYAMKNKMYVIINIHHDIMPGYYYPNSQHLQTSIKYVKSIWTQVATRFKNYNDHLIFEAVNEPRLTGSRFEWWLDMNNPECRDAVEAINKLNQVFVDTVRSTGGNNVSRYLMVPGYAAAPEYVLIDEFKIPKDSSKYKNRIIISVHAYRPYNFALQAPNESGSVSEWSVNSEESRRDIDYFMDKLYDKFVSKGIPVVIGEFGARDKNGNLQSRVEFAAYYVRAARARGITCCWWDNNAFYGNGENFGLLDRKTLKWVYPEIVSAMMKYAR
(a)序列特征:(a) Sequential features:
●长度:378●Length: 378
●类型:氨基酸序列●Type: amino acid sequence
●链型:单链●Chain type: single chain
●拓扑结构:线性●Topological structure: linear
(b)分子类型:蛋白质(b) Molecule Type: Protein
(c)假设:否(c) Assumption: No
(d)反义:否(d) Antisense: No
(e)最初来源:解糖热解纤维素菌(e) Original source: Thermocellulolyticus saccharolyticus
结构特点:54-347为糖苷水解酶5家族结构域Structural features: 54-347 is the glycoside hydrolase 5 family domain
实施例3、酶学特性检测Embodiment 3, enzymatic characteristic detection
按实施例2的方法纯化后分别得到内切纤维素酶和地衣聚糖酶,然后分别使用10kDa超滤管置换缓冲液(200mM乙酸-乙酸钠盐缓冲液,pH5.6),以去除酶液中的咪唑,分别获得内切纤维素酶和地衣聚糖酶酶液。Purify according to the method of Example 2 to obtain endocellulase and lichenase respectively, and then use 10kDa ultrafiltration tubes to replace the buffer (200mM acetic acid-acetic acid sodium salt buffer, pH5.6) to remove the enzyme solution The imidazole in the endocellulase and lichenase enzyme solutions were obtained respectively.
利用上面获得内切纤维素酶和地衣聚糖酶,分别进行下述反应进行酶学特性鉴定:Using the endocellulase and lichenase obtained above, carry out the following reactions respectively to identify the enzymatic characteristics:
以滤纸、羧甲基纤维素钠、木聚糖、微晶纤维素、地衣多糖和大麦葡聚糖为底物测定蛋白酶活时使用3.5-二硝基水杨酸(DNS)法测定还原糖的生成量。检测滤纸酶活时,150μl反应体系中加入5mg Whatman NO.1滤纸作为底物,其他底物的总添加量为1%(w/v)。Using filter paper, sodium carboxymethylcellulose, xylan, microcrystalline cellulose, lichenin and barley dextran as substrates to determine protease activity, use 3.5-dinitrosalicylic acid (DNS) method to determine the content of reducing sugar Generation volume. When detecting the enzyme activity of the filter paper, add 5 mg of Whatman NO.1 filter paper as a substrate to the 150 μl reaction system, and the total addition amount of other substrates is 1% (w/v).
浓度为3.2μg/ml的内切纤维素酶溶液和2μg/ml的地衣聚糖酶溶液各取50μl,加入到乙酸-乙酸钠缓冲液(200mM乙酸-乙酸钠盐缓冲液,pH5.6)中,75°C反应30分钟后加入200μlDNS溶液,煮沸5分钟,冷却后加入650μl水并混匀,取200μl加入到酶标板中,测其在540nm的吸收值。以0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1mg/ml的葡萄糖或木糖为标准样品,以DNS法测得的吸光度值与糖浓度绘制标准曲线,根据标准曲线计算所得样品还原糖的量。Take 50 μl each of the endocellulase solution with a concentration of 3.2 μg/ml and the lichenase solution with a concentration of 2 μg/ml, and add it to acetic acid-sodium acetate buffer (200 mM acetic acid-sodium acetate buffer, pH 5.6) After reacting at 75°C for 30 minutes, add 200 μl of DNS solution, boil for 5 minutes, add 650 μl of water after cooling and mix well, take 200 μl and add it to the microtiter plate, and measure its absorption value at 540 nm. With glucose or xylose at 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1mg/ml as standard samples, draw a standard curve with the absorbance value measured by the DNS method and the sugar concentration, according to the standard The curve calculates the amount of reducing sugar in the obtained sample.
葡萄糖标准曲线:y=9.783x+0.0009 R2=0.9978Glucose standard curve: y=9.783x+0.0009 R 2 =0.9978
木糖标准曲线:y=11.406x-0.0049 R2=0.9987Xylose standard curve: y=11.406x-0.0049 R 2 =0.9987
其中,x为葡萄糖或木糖浓度,mg/ml;y为对应糖浓度下的540 nm的吸收值。Among them, x is the concentration of glucose or xylose, mg/ml; y is the absorption value at 540 nm under the corresponding sugar concentration.
一个酶活单位定义为每分钟水解底物产生1μmol还原糖所需的酶量。比酶活力定义为酶活与对应蛋白量的比值。酶活反应体系如表1所示。One unit of enzyme activity is defined as the amount of enzyme required to hydrolyze the substrate to produce 1 μmol of reducing sugar per minute. The specific enzyme activity is defined as the ratio of the enzyme activity to the corresponding protein amount. The enzyme activity reaction system is shown in Table 1.
表1酶活反应体系Table 1 enzyme activity reaction system
再分别以1mM的对硝基苯-β-D-吡喃半乳糖苷(pNPG)、对硝基苯-β-D-纤维二糖苷(pNPC)和对硝基苯-β-D-吡喃木糖苷(pNPX)溶液为底物测定酶活。Then with 1mM p-nitrophenyl-β-D-galactopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC) and p-nitrophenyl-β-D-pyranoside Xyloside (pNPX) solution was used as the substrate to determine the enzyme activity.
取经适当稀释的酶溶液加入乙酸-乙酸钠缓冲液中,75°C反应30分钟后加入450μl饱和硼酸钠溶液并混匀,取200μl加入到酶标板中,测其在405nm的吸收值。以Tris-HCl(50mM,pH9.0)溶液稀释1mg/ml的对硝基苯酚标准样品,使其终浓度为0-20μg/μl,取200μl加入到酶标板中,测其在405nm的吸收值以绘制标准曲线,根据标准曲线计算酶解反应所得对硝基苯酚的量。Take the appropriately diluted enzyme solution and add it to the acetic acid-sodium acetate buffer, react at 75°C for 30 minutes, add 450 μl of saturated sodium borate solution and mix well, take 200 μl and add it to the microplate, and measure its absorbance at 405 nm. Dilute the 1mg/ml p-nitrophenol standard sample with Tris-HCl (50mM, pH9.0) solution to make the final concentration 0-20μg/μl, take 200μl and add it to the microtiter plate, and measure its absorption at 405nm Value to draw a standard curve, according to the standard curve to calculate the amount of p-nitrophenol enzymatic hydrolysis reaction.
对硝基苯酚标准曲线:y=0.086x+0.0803 R2=0.999p-nitrophenol standard curve: y=0.086x+0.0803 R 2 =0.999
其中,x为对硝基苯酚的浓度ug/ml;y为对应对硝基苯酚浓度下的405nm的吸收值。Wherein, x is the concentration ug/ml of p-nitrophenol; y is the absorption value at 405 nm corresponding to the concentration of p-nitrophenol.
一个酶活单位定义为每分钟水解底物产生1μmol对硝基苯酚所需的酶量。比酶活力定义为酶活与对应蛋白量的比值。酶活反应体系如表1所示。One enzyme activity unit is defined as the amount of enzyme needed to hydrolyze the substrate to produce 1 μmol of p-nitrophenol per minute. The specific enzyme activity is defined as the ratio of the enzyme activity to the corresponding protein amount. The enzyme activity reaction system is shown in Table 1.
试验一、内切纤维素酶和地衣聚糖酶的最适反应pH值、最适反应温度及在最适反应条件下半衰期的确定Experiment 1. Determination of the optimum reaction pH value, optimum reaction temperature and half-life of endocellulase and lichenase under optimum reaction conditions
在75°C测定蛋白在不同pH范围(pH4.6、5、5.6为200mM的乙酸-乙酸钠缓冲液;pH6、6.6、7、7.6、8为PC缓冲液(50mM磷酸,12mM柠檬酸))的酶活,确定其最适反应pH值;在其最适反应pH值条件下测其在不同温度范围(55、60、65、70、75、80°C)的酶活,确定其最适反应温度。最适反应条件下半衰期的测定方法为:将酶置于其最适反应条件下,每隔一段时间测定残余酶活,残余酶活为50%时的取样时间即为此条件下的半衰期。Determination of protein at 75°C in different pH ranges (200mM acetic acid-sodium acetate buffer for pH 4.6, 5, 5.6; PC buffer (50mM phosphoric acid, 12mM citric acid) for pH 6, 6.6, 7, 7.6, and 8) to determine its optimum reaction pH value; measure its enzyme activity in different temperature ranges (55, 60, 65, 70, 75, 80°C) under its optimum reaction pH value to determine its optimum temperature reflex. The method for determining the half-life under the optimum reaction conditions is: place the enzyme under its optimum reaction conditions, measure the residual enzyme activity at intervals, and the sampling time when the residual enzyme activity is 50% is the half-life under this condition.
表2JX030399蛋白和KC958563蛋白的酶学性质检测Table 2 Enzymatic property detection of JX030399 protein and KC958563 protein
试验二、内切纤维素酶和地衣聚糖酶的底物特异性测定Experiment 2. Determination of substrate specificity of endocellulase and lichenase
JX030399蛋白在最适条件下(75°C,pH5.6)分别以DNS法和pNP法测定其底物特异性,反应体系如表1。实验结果如表3所示。JX030399蛋白以羧甲基纤维素钠为底物时,测得其酶活为17.11U/mg,其分别以微晶纤维素Avicel PH-101和对硝基苯纤维二糖苷(pNPC)为底物时的酶活为10.11U/mg和10.43U/mg。结果表明JX030399蛋白为具有较高外切纤维素酶活性的持续性内切纤维素酶。The substrate specificity of JX030399 protein was determined by DNS method and pNP method under the optimal conditions (75°C, pH5.6), respectively, and the reaction system is shown in Table 1. The experimental results are shown in Table 3. When the JX030399 protein uses sodium carboxymethyl cellulose as the substrate, its enzyme activity is 17.11U/mg, which use microcrystalline cellulose Avicel PH-101 and p-nitrophenyl cellobioside (pNPC) as substrates respectively When the enzyme activity is 10.11U/mg and 10.43U/mg. The results indicated that JX030399 protein was a processive endo-cellulase with high exo-cellulase activity.
表3JX030399蛋白的底物特异性分析The substrate specificity analysis of table 3JX030399 protein
KC958563蛋白在最适条件下(80°C,pH5.6)分别以DNS法和pNP法测定其底物特异性,反应体系如表1。实验结果如表3所示。KC958563蛋白以大麦葡聚糖和地衣多糖为底物时酶活较高,分别为1284IU/mg和627IU/mg,其它酶活较低。The substrate specificity of KC958563 protein was determined by DNS method and pNP method under the optimal conditions (80°C, pH5.6). The reaction system is shown in Table 1. The experimental results are shown in Table 3. KC958563 protein had higher enzyme activity when barley glucan and lichenin were used as substrates, 1284IU/mg and 627IU/mg respectively, and other enzyme activities were lower.
表4KC958563蛋白的底物特异性分析The substrate specificity analysis of table 4KC958563 protein
实施例4Example 4
利用上述实施例2纯化得到内切纤维素酶,对微晶纤维素或未经预处理的小麦秸秆进行降解处理:Utilize the above-mentioned Example 2 to purify endo-cellulase to degrade microcrystalline cellulose or unpretreated wheat straw:
具体是,以未经预处理的小麦秸秆或微晶纤维素作为底物,用上述实施例2纯化得到内切纤维素酶分别进行酶解处理;Specifically, the unpretreated wheat straw or microcrystalline cellulose was used as a substrate, and the endo-cellulase purified by the above-mentioned Example 2 was subjected to enzymatic hydrolysis treatment respectively;
取10μgJX030399蛋白溶于pH5.6的醋酸盐缓冲液体系中,加入50mg固体底物,总反应体系为1ml,酶解温度为75°C,酶解时间分别为1、3、6、12、24、36小时。测定不同酶解时间时上清中的葡萄糖和纤维二糖含量。Dissolve 10 μg of JX030399 protein in the acetate buffer system of pH 5.6, add 50 mg of solid substrate, the total reaction system is 1 ml, the enzymolysis temperature is 75°C, and the enzymolysis time is 1, 3, 6, 12, 24, 36 hours. The glucose and cellobiose contents in the supernatant were determined at different enzymatic hydrolysis times.
酶解微晶纤维素AvicelPH-101得到葡萄糖的量为3.3μmol/nmol酶,产生纤维二糖的量为9.1μmol/nmol酶。酶解未经预处理小麦秸秆产生葡萄糖的量为3.5μmol/nmol酶,产生纤维二糖的量为0.93μmol/nmol酶。The amount of glucose obtained by enzymatic hydrolysis of AvicelPH-101 was 3.3 μmol/nmol enzyme, and the amount of cellobiose produced was 9.1 μmol/nmol enzyme. The amount of glucose produced by enzymatic hydrolysis of unpretreated wheat straw was 3.5 μmol/nmol enzyme, and the amount of cellobiose produced was 0.93 μmol/nmol enzyme.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310204308.3A CN104178472B (en) | 2013-05-28 | 2013-05-28 | Enzyme for Degrading Cellulose and Its Construction and Application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310204308.3A CN104178472B (en) | 2013-05-28 | 2013-05-28 | Enzyme for Degrading Cellulose and Its Construction and Application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104178472A true CN104178472A (en) | 2014-12-03 |
CN104178472B CN104178472B (en) | 2017-09-19 |
Family
ID=51959820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310204308.3A Expired - Fee Related CN104178472B (en) | 2013-05-28 | 2013-05-28 | Enzyme for Degrading Cellulose and Its Construction and Application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104178472B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110079513A (en) * | 2018-01-25 | 2019-08-02 | 中国科学院青岛生物能源与过程研究所 | A kind of principal product is recombinant fiber element enzyme and its construction method and the application of cellotetrose |
CN110358755A (en) * | 2019-07-26 | 2019-10-22 | 淮阴工学院 | Acid high temperature resistant recombinant fiber element enzyme and its application |
CN110628750A (en) * | 2019-09-25 | 2019-12-31 | 广西大学 | A kind of β-1,3-1,4-glucan glucohydrolase and its application |
CN111100835A (en) * | 2020-01-07 | 2020-05-05 | 中国科学院青岛生物能源与过程研究所 | PET degradation biocatalyst and its application |
CN113430217A (en) * | 2021-08-03 | 2021-09-24 | 大连工业大学 | Continuous endo-cellulase and coding gene and application thereof |
CN114015676A (en) * | 2021-11-26 | 2022-02-08 | 中农华威生物制药(湖北)有限公司 | Construction method of cellulase suitable for traditional Chinese medicine feed additive |
-
2013
- 2013-05-28 CN CN201310204308.3A patent/CN104178472B/en not_active Expired - Fee Related
Non-Patent Citations (3)
Title |
---|
MENG,D.D.: "Genbank Accession Number:KC958563.1", 《GENBANK》 * |
YING,Y.等: "Genbank Accession Number:JX030399.1", 《GENBANK》 * |
YU YING等: "An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis", 《ENZYME AND MICROBIAL TECHNOLOGY》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110079513A (en) * | 2018-01-25 | 2019-08-02 | 中国科学院青岛生物能源与过程研究所 | A kind of principal product is recombinant fiber element enzyme and its construction method and the application of cellotetrose |
CN110079513B (en) * | 2018-01-25 | 2022-10-25 | 中国科学院青岛生物能源与过程研究所 | Recombinant cellulase with main product of cellotetraose and construction method and application thereof |
CN110358755A (en) * | 2019-07-26 | 2019-10-22 | 淮阴工学院 | Acid high temperature resistant recombinant fiber element enzyme and its application |
CN110358755B (en) * | 2019-07-26 | 2022-06-24 | 淮阴工学院 | Acid and high temperature resistant recombinant cellulase and its application |
CN110628750A (en) * | 2019-09-25 | 2019-12-31 | 广西大学 | A kind of β-1,3-1,4-glucan glucohydrolase and its application |
CN110628750B (en) * | 2019-09-25 | 2022-03-11 | 广西大学 | Beta-1, 3-1, 4-glucan glucohydrolase and application thereof |
CN111100835A (en) * | 2020-01-07 | 2020-05-05 | 中国科学院青岛生物能源与过程研究所 | PET degradation biocatalyst and its application |
CN113430217A (en) * | 2021-08-03 | 2021-09-24 | 大连工业大学 | Continuous endo-cellulase and coding gene and application thereof |
CN113430217B (en) * | 2021-08-03 | 2022-05-24 | 大连工业大学 | A kind of persistent endo-cellulase and its encoding gene and application |
CN114015676A (en) * | 2021-11-26 | 2022-02-08 | 中农华威生物制药(湖北)有限公司 | Construction method of cellulase suitable for traditional Chinese medicine feed additive |
CN114015676B (en) * | 2021-11-26 | 2023-09-22 | 中农华威生物制药(湖北)有限公司 | Construction method of cellulase adapting to traditional Chinese medicine feed additive |
Also Published As
Publication number | Publication date |
---|---|
CN104178472B (en) | 2017-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xue et al. | The N-terminal GH10 domain of a multimodular protein from Caldicellulosiruptor bescii is a versatile xylanase/β-glucanase that can degrade crystalline cellulose | |
Boyce et al. | Characterisation of a novel thermostable endoglucanase from Alicyclobacillus vulcanalis of potential application in bioethanol production | |
CN104178472B (en) | Enzyme for Degrading Cellulose and Its Construction and Application | |
Yu et al. | High–level expression and enzymatic properties of a novel thermostable xylanase with high arabinoxylan degradation ability from Chaetomium sp. suitable for beer mashing | |
CA2891417A1 (en) | Recombinant fungal polypeptides | |
Wang et al. | A thermophilic endo-1, 4-β-glucanase from Talaromyces emersonii CBS394. 64 with broad substrate specificity and great application potentials | |
Ueda et al. | Cloning and expression of the cold-adapted endo-1, 4-β-glucanase gene from Eisenia fetida | |
Hua et al. | A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity | |
Rai et al. | Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers | |
Li et al. | Improvement of the catalytic characteristics of a salt-tolerant GH10 xylanase from Streptomyce rochei L10904 | |
Boyce et al. | Expression and characterisation of a thermophilic endo-1, 4-β-glucanase from Sulfolobus shibatae of potential industrial application | |
Jones et al. | Bacillus subtilis SJ01 produces hemicellulose degrading multi-enzyme complexes. | |
WO2017188788A1 (en) | Novel β-1,3-1,6-endoglucanase producing, from β-glucan, oligosaccharides or glucose | |
Singh et al. | Enhanced catalytic efficiency of Bacillus amyloliquefaciens SS35 endoglucanase by ultraviolet directed evolution and mutation analysis | |
Sakka et al. | Characterization of Xyn30A and Axh43A of Bacillus licheniformis SVD1 identified by its genomic analysis | |
Zhao et al. | A novel thermophilic xylanase from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing and other industries | |
CN112553227B (en) | Heat-resistant multifunctional glycoside hydrolase, and encoding gene and application thereof | |
Huang et al. | Characterization of a GH8 β-1, 4-glucanase from Bacillus subtilis B111 and its saccharification potential for agricultural straws | |
CN102827820A (en) | Beta-glucosidase and application thereof | |
CN102559567A (en) | Construction of thermophilic endo-xylanase gene engineering strain and application of endo-xylanase of strain | |
CN105734069A (en) | A high-temperature alpha-L-arabinfuranosidease gene, a high-temperature acetylxylan esterase gene, and protein expression and applications of the genes | |
Haq et al. | Enhanced production of a recombinant multidomain thermostable GH9 processive endo-1, 4-β-glucanase (CenC) from Ruminiclostridium thermocellum in a mesophilic host through various cultivation and induction strategies | |
JP5943326B2 (en) | Glucose production method | |
CN106148369B (en) | High temperature alkaline pectate lyase Pel-863 and its coding gene and application | |
Ichikawa et al. | The expression of alternative sigma-I7 factor induces the transcription of cellulosomal genes in the cellulolytic bacterium Clostridium thermocellum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170919 |
|
CF01 | Termination of patent right due to non-payment of annual fee |