[go: up one dir, main page]

CN104152572B - Triple real-time fluorescence PCR method and kit for simultaneously detecting three streptococci - Google Patents

Triple real-time fluorescence PCR method and kit for simultaneously detecting three streptococci Download PDF

Info

Publication number
CN104152572B
CN104152572B CN201410425186.5A CN201410425186A CN104152572B CN 104152572 B CN104152572 B CN 104152572B CN 201410425186 A CN201410425186 A CN 201410425186A CN 104152572 B CN104152572 B CN 104152572B
Authority
CN
China
Prior art keywords
streptococcus
sequence table
probe
table seq
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410425186.5A
Other languages
Chinese (zh)
Other versions
CN104152572A (en
Inventor
李丹丹
徐义刚
高慎阳
蔡波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSPECTION AND QUARANTINE TECHNOLOGY CENTER OF HAINAN ENTRY-EXIT INSPECTION AND QUARANTINE BUREAU
Original Assignee
INSPECTION AND QUARANTINE TECHNOLOGY CENTER OF HAINAN ENTRY-EXIT INSPECTION AND QUARANTINE BUREAU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSPECTION AND QUARANTINE TECHNOLOGY CENTER OF HAINAN ENTRY-EXIT INSPECTION AND QUARANTINE BUREAU filed Critical INSPECTION AND QUARANTINE TECHNOLOGY CENTER OF HAINAN ENTRY-EXIT INSPECTION AND QUARANTINE BUREAU
Priority to CN201410425186.5A priority Critical patent/CN104152572B/en
Publication of CN104152572A publication Critical patent/CN104152572A/en
Application granted granted Critical
Publication of CN104152572B publication Critical patent/CN104152572B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention provides a triple real-time fluorescence PCR method and a kit for simultaneously detecting three streptococci, wherein the kit comprises: the detection primer pair of Streptococcus agalactiae is shown in sequence tables Seq ID No.1 and 2 and the probe is shown in sequence table Seq ID No.3, the detection primer pair of Streptococcus dysgalactiae is shown in sequence tables Seq ID No.4 and 5 and the probe Seq ID No.6, the detection primer pair of Streptococcus iniae is shown in sequence tables Seq ID No.7 and 8 and probe Seq ID No.9, three positive control products are shown in sequence tables Seq ID No.16, 17 and 18, and the negative control product (ddH)2O) and PCR buffer solution, dNTP and Taq DNA Polymerase required by fluorescent real-time quantitative PCR amplification. The method is simple and rapid, and has good specificity.

Description

Triple real-time fluorescence PCR method and kit for simultaneously detecting three streptococci
Technical Field
The invention belongs to the technical field of biology, and particularly relates to a triple real-time fluorescence PCR method and a kit for simultaneously detecting three streptococci.
Background
The genus Streptococcus (Streptococcus) is a genus with a large population, which has been found to be at least 60 species and subspecies, the species of pathogenic streptococcal pathogenic bacteria are not many in aquatic animals, and the streptococcus which has been isolated from cultured fishes includes streptococcus iniae (s.iniae), streptococcus difficile (s. diffucilis), streptococcus agalactiae (s. agalactiae), streptococcus miehei (s. mileri), streptococcus paramyxis (s.parauberis), and streptococcus dysgalactiae (s. dysgalaciae), however, the reported pathogenic streptococci are mainly Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus iniae, can cause the attack of various sea and fresh water fishes, which occur in all the main fish culture countries in the world, the harm to the cultured fishes in temperate zone, tropical zone and subtropical zone is serious, and fish streptococcicosis is reported in 23 countries in 6 continents. At present, fish streptococcicosis becomes a disease distributed worldwide, and causes huge economic loss to the world aquaculture industry every year.
At present, the detection of streptococcus agalactiae, streptococcus dysgalactiae and streptococcus iniae is realized by combining the conventional enrichment culture, biochemical identification and an automatic enzyme-linked fluorescence immunoassay method, and has the defects of complicated working procedures, long detection period, low detection sensitivity, low detection efficiency, universal false negative and the like. Therefore, the development of a detection method which is simple, convenient, rapid and accurate to operate, high in sensitivity and easy to popularize has important significance for early diagnosis and early prevention of fish streptococcicosis, improvement of aquatic product quality and guarantee of human health.
The Real-Time quantitative PCR technology (Real-Time quantitative Polymerase Chain Reaction, Real-Time PCR) is distinguished from many detection technologies, not only has the advantages of rapidness, simplicity, sensitivity and the like, but also has stronger specificity and higher automation degree due to double insurance of primers and probes compared with the conventional PCR method, realizes Real-Time online detection, does not need post-treatment on PCR amplification products in the PCR amplification process, effectively solves the problems of false positive and inaccurate quantification caused by PCR product pollution, and becomes an increasingly important detection means in the detection field. However, the fluorescent quantitative PCR technique can only detect one target.
The multiplex fluorescent quantitative PCR technology is a new technology developed on the basis of fluorescent quantitative PCR, and emphasizes that a plurality of targets are amplified simultaneously in the same reaction system. There have been several recent studies that apply multiplex quantitative PCR techniques to the field of bacterial detection. Andrea G, et al established Escherichia coli O157: H7, Salmonella and Listeria monocytogenes multiplex fluorescence PCR detection methods, Moniserrat E, et al established 5 kinds of Vibrio parahaemolyticus, Vibrio cholerae, etc. multiplex PCR detection methods in fish and aquatic products, and the results show that the multiplex PCR system is basically the same as the single amplification result in the aspects of sensitivity and specificity. However, no kit has been reported for simultaneous detection of Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus iniae.
Disclosure of Invention
Based on the defects, the invention aims to provide a multiple quantitative Taqman PCR method capable of simultaneously detecting three main pathogenic streptococcus including streptococcus agalactiae, streptococcus dysgalactiae and streptococcus iniae of aquatic animals, and simultaneously provides a corresponding kit based on the method.
The purpose of the invention is realized by the following technology:
1. a primer pair and a probe for simultaneously detecting three streptococci by a real-time fluorescence PCR method,
streptococcus agalactiae:
the upper primer cpsF-FP is shown in a sequence table Seq ID No.1,
the lower primer cpsF-RP is shown in a sequence table Seq ID No.2,
the PROBE cpsF-PROBE is shown in a sequence table Seq ID No. 3;
streptococcus dysgalactiae:
the upper primer MIG-FP is shown as a sequence ID No.4 in a sequence table,
the lower primer MIG-RP is shown in a sequence table Seq ID No.5,
the PROBE MIG-PROBE is shown in a sequence table Seq ID No. 6;
streptococcus iniae:
the upper primer 16SrRNA-FP is shown in a sequence table Seq ID No.7,
the lower primer 16SrRNA-RP is shown in a sequence table Seq ID No.8,
the PROBE 16SrRNA-PROBE is shown in a sequence table Seq ID No. 9;
the 5' -labeled fluorescein of the cpsF-PROBE PROBE, MIG-PROBE PROBE and 16SrRNA-PROBE PROBE are different and are FAM, HEX and ROX respectively.
2. A kit containing the primer pair and the probe for simultaneously detecting the three streptococci by using the real-time fluorescence PCR method.
3. A PCR amplification primer pair for simultaneously detecting positive reference substances of three streptococci by using a real-time fluorescence PCR method,
streptococcus agalactiae:
the upper primer SA-F is shown in a sequence table Seq ID No.10,
the lower primer SA-R is shown as a sequence table Seq ID No. 11;
streptococcus dysgalactiae:
the upper primer SD-F is shown in a sequence table Seq ID No.12,
the lower primer SD-R is shown in a sequence table Seq ID No. 13;
streptococcus iniae:
the upper primer SI-F is shown in a sequence table Seq ID No.14,
the lower primer SI-R is shown in a sequence table Seq ID No. 15.
4. A positive reference substance for simultaneously detecting three streptococci by using a real-time fluorescence PCR method,
pMD-T-cpsF, as shown in sequence table Seq ID No. 16;
pMD-T-MIG, as shown in sequence table Seq ID No. 17;
pMD-T-16SrRNA is shown in a sequence table Seq ID No. 18.
5. The primer pair and the probe for simultaneously detecting the three streptococci by using the real-time fluorescent PCR method are as follows:
2×Quantitech Multiplex PCR NoRox Master Mix 12. 5μL
5μM cpsF- FP 0.5μL
5μM MIG- RP 0.5μL
5μM cpsF-PROBE 1μL
5μM MIG- FP 0.5μL
5μM MIG- RP 0.5μL
5μM MIG-PROBE 1μL
5μM 16SrRNA- FP 0.5μL
5μM 16SrRNA-RP 0.5μL
5μM 16SrRNA-PROBE 1μL
ddH2O 3.5μL
pMD-T-cpsF 1μL
pMD-T-MIG 1μL
pMD-T-16SrRNA 1μL
the amplification reaction conditions are as follows:
Step 1 95℃ 15min;
Step 2 94℃ 60s
Step 3 60℃ 60s
step 4 reading, Go to Step 2 for 40 cycles.
6. The preparation method of the positive control for simultaneously detecting the three streptococci by using the real-time fluorescent PCR method comprises the following steps:
(1) preparation of PCR template: extracting and purifying the genomic DNA of three streptococcus,
(2) selecting the streptococcus agalactiae cpsF gene as a target gene, wherein in the step (2), PCR reaction systems of the three target genes are as follows:
10×PCR Buffer 2.5μL
dNTP (2.5mM for each) 2.0μL
upstream primer 1.0μL
Downstream primer 1.0μL
TaqDNA Polymerase(5U/μL) 0.5μL
DNA template 0.5μL
ddH2O 17.5μL
The reaction conditions of PCR are as follows: pre-denaturation at 95 ℃ for 5 min; 15s at 94 ℃, 20s at 57.6 ℃ and 30s at 72 ℃ for 35 cycles; final extension at 72 ℃ for 10 min;
designing a PCR amplification primer of a positive control:
the upper primer SA-F is shown in a sequence table Seq ID No.10,
the lower primer SA-R is shown in a sequence table Seq ID No.11, and PCR amplification of a target gene is carried out;
selecting a streptococcus dysgalactiae MIG gene as a target gene, and designing a PCR amplification primer of a positive control: the upper primer SD-F is shown in a sequence table Seq ID No.12,
the lower primer SD-R is shown in a sequence table Seq ID No.13, and PCR amplification of a target gene is carried out;
selecting streptococcus iniae 16SrRNA gene as a target gene, and designing a PCR amplification primer of a positive control:
the upper primer SI-F is shown in a sequence table Seq ID No.14,
the lower primer SI-R is shown as a sequence ID No.15 in a sequence table, and PCR amplification of a target gene is carried out;
(3) preparing positive control substances pMD-T-cpsF, pMD-T-MIG and pMD-T-16 SrRNA;
in the step (3), the preparation process of the positive control comprises the following steps: and (3) connecting the PCR product obtained in the step (2) with a cloning vector pMD-19-T vector, transforming Escherichia coli competence JM109 to obtain a positive cloning strain, and preparing plasmids pMD-T-cpsF, pMD-T-MIG and pMD-T-16SrRNA as positive reference substances.
7. A kit for a triple real-time fluorescent PCR method for simultaneously detecting three streptococci comprises three pairs of primer pairs and three probes:
streptococcus agalactiae
The upper primer cpsF-FP is shown in a sequence table Seq ID No.1,
the lower primer cpsF-RP is shown in a sequence table Seq ID No.2,
the PROBE cpsF-PROBE is shown in a sequence table Seq ID No. 3;
streptococcus dysgalactiae
The upper primer MIG-FP is shown as a sequence ID No.4 in a sequence table,
the lower primer MIG-RP is shown in a sequence table Seq ID No.5,
the PROBE MIG-PROBE is shown in a sequence table Seq ID No. 6;
streptococcus iniae
The upper primer 16SrRNA-FP is shown in a sequence table Seq ID No.7,
the lower primer 16SrRNA-RP is shown in a sequence table Seq ID No.8,
the PROBE 16SrRNA-PROBE is shown in a sequence table Seq ID No. 9;
three positive controls: pMD-T-cpsF, as shown in Seq ID No.16 of the sequence Listing, pMD-T-MIG, as shown in Seq ID No.17 of the sequence Listing, pMD-T-16SrRNA, as shown in Seq ID No.18 of the sequence Listing, and a negative control (ddH)2O) and PCR buffer solution, dNTP and Taq DNA Polymerase required by fluorescent real-time quantitative PCR amplification.
The invention respectively uses campylobacter jejuni (ATCC 33560), Escherichia coli O157: H7 (ATCC 35150), Listeria monocytogenes (ATCC 19111), Salmonella typhi (CMCC 50115), Shigella (ATCC 12022), Staphylococcus aureus (ATCC 29213), Yersinia enterocolitica (ATCC 9610), Vibrio cholerae (ATCC 51394), Vibrio vulnificus (ATCC 27562), Vibrio alginolyticus (ATCC 33787), Vibrio parahaemolyticus (ATCC 27519), Streptococcus agalactiae (ATCC 13813), Streptococcus dysgalactiae (ATCC 35666) and Streptococcus iniae (ATCC 29178) genome DNA to carry out experiments so as to verify the specificity of detection by the method. Experimental results show that the method can specifically detect streptococcus agalactiae, streptococcus dysgalactiae and streptococcus iniae, and primers do not have cross reaction with other bacteria, so that the method has high detection specificity. The kit disclosed by the invention also has the advantages of rapidness, simplicity, accuracy, good repeatability, stability, reliability and practicability.
Drawings
FIG. 1 shows the establishment of triple real-time fluorescence PCR detection method for Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus iniae.
FIG. 2 shows the results of the triple real-time fluorescence PCR assay for Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus iniae for the sensitivity of Streptococcus agalactiae.
FIG. 3 shows the results of the triple real-time fluorescence PCR assay for Streptococcus dysgalactiae, Streptococcus dysgalactiae and Streptococcus iniae.
FIG. 4 shows the results of a triple real-time fluorescence PCR assay for Streptococcus iniae, Streptococcus iniae and Streptococcus iniae for the sensitivity of Streptococcus iniae, Streptococcus iniae and Streptococcus iniae.
FIG. 5 shows the results of a triple real-time fluorescence PCR assay for Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus iniae for detecting the specificity of Streptococcus agalactiae.
FIG. 6 shows the results of a triple real-time fluorescence PCR detection method for Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus iniae for detecting the specificity of Streptococcus dysgalactiae.
FIG. 7 shows the results of a triple real-time fluorescence PCR detection method for Streptococcus iniae, Streptococcus dysgalactiae and Streptococcus iniae.
Detailed Description
The present invention is described in further detail below by way of specific examples.
Example 1
Preparation of three Streptococcus DNA templates
Three streptococci [ Streptococcus agalactiae (ATCC 13813), Streptococcus dysgalactiae (ATCC 35666) and Streptococcus iniae (ATCC 29178) which are derived from American Type Culture Collection (ATCC) ] genomic DNAs were extracted and purified with reference to the TIAnma Bacteria DNA Kit specification, and the corresponding reagents were added in this order:
(1) taking 1.5mL of bacterial liquid, centrifuging for 1min at 10000r/min, removing supernatant, adding 200 mu L of buffer solution GA, and completely suspending thalli;
(2) adding 20 μ L protease K (20mg/mL), adding 220 μ L buffer solution GB, mixing, and performing water bath at 70 deg.C for 10 min;
(3) adding 220 μ L anhydrous ethanol, mixing thoroughly for 15s, centrifuging briefly, transferring the obtained solution (including flocculent precipitate) to adsorption column CB3, centrifuging at 12000r/min for 30s, and discarding the liquid in the collecting tube;
(4) adding 500 μ L buffer GD (containing anhydrous ethanol) into adsorption column CB3, centrifuging at 12000r/min for 30s, and discarding the liquid in the collection tube;
(5) adding 600 μ L of rinsing liquid PW (containing anhydrous ethanol) into adsorption column CB3, centrifuging at 12000r/min for 30s, and discarding the liquid in the collection tube;
(6) repeating the previous operation;
(7) putting the adsorption column CB3 back into the collecting pipe, centrifuging at 12000r/min for 2min, standing at room temperature for 2-5min, and airing the residual rinsing liquid;
(8) transferring the adsorption column CB3 into a new collection tube, adding 100 μ L buffer TE into the center of the adsorption membrane, standing at room temperature for 2-5min, centrifuging at 12000r/min for 2min, and collecting DNA eluate.
Example 2
Preparation of Positive control
1. Design and Synthesis of PCR primers
The streptococcus agalactiae cpsF gene was selected as the target gene, the streptococcus dysgalactiae MIG gene as the target gene and the streptococcus iniae 16SrRNA gene as the target gene, and synthetic primer pairs were designed by BLAST analysis, as shown in table 1:
TABLE 1 PCR primer pairs for three streptococci
Figure DEST_PATH_IMAGE002
2. The primers SA-F/SA-R, SD-F/SD-R and SI-F/SI-R of the target genes of the three streptococci are used for respectively amplifying the cpsF gene, the MIG gene of the streptococcus agalactiae and the 16S rRNA gene of the streptococcus iniae by a PCR method. The reaction systems of three sections of gene PCR are as follows:
10×PCR Buffer 2.5μL
dNTP (2.5mM for each) 2.0μL
upstream primer 1.0μL
Downstream primer 1.0μL
TaqDNA Polymerase(5U/μL) 0.5μL
DNA template 0.5μL
ddH2O 17.5μL
The reaction conditions of PCR were: pre-denaturation at 95 ℃ for 5 min; 15s at 94 ℃, 20s at 57.6 ℃ and 30s at 72 ℃ for 35 cycles; final extension at 72 ℃ for 10 min.
The PCR products were ligated with pMD-19-T vector, respectively, and competent E.coli JM109 was transformed to obtain recombinant bacteria, and recombinant plasmids were prepared according to the instructions of the Small plasmid DNA extraction kit of Shunhuan:
(1) selecting a single colony of the positive clone, inoculating the single colony in 5mL LB culture medium containing 100 mu g/mL Ampr, and culturing overnight at 37 ℃;
(2) taking 1-3mL of overnight culture liquid, centrifuging at 12000r/min for 5min, removing supernatant, adding 250 mu L of buffer P1 (containing RNase), and fully shaking thallus precipitates until the thallus precipitates are completely suspended;
(3) adding 250 μ L of Buffer P2, immediately and gently inverting the centrifuge tube from top to bottom for 6-10 times, mixing, and standing at room temperature for 2-4 min;
(4) adding 350 μ L Buffer P3, gently and repeatedly inverting the centrifuge tube for 6-10 times, mixing, and centrifuging at 12000r/min for 10 min;
(5) transferring the supernatant into an adsorption column, centrifuging at 12000r/min for 30s, discarding the filtrate, and placing the adsorption column into a collection tube;
(6) adding 500 mu L B1 liquid, centrifuging at 12000r/min for 30s, discarding the filtrate, and placing the adsorption column into the collection tube;
(7) adding 500 μ L W1 solution (containing anhydrous ethanol), centrifuging at 12000r/min for 30s, discarding filtrate, and placing adsorption column into collection tube;
(8) adding 500 μ L W1 solution (containing anhydrous ethanol), standing at room temperature for 1min, centrifuging at 12000r/min for 30s, discarding filtrate, placing adsorption column into collection tube, and centrifuging at 12000r/min for 1 min;
(9) transferring the adsorption column into a clean 1.5mL centrifuge tube, adding 150 μ L deionized water into the center of the adsorption membrane, standing at room temperature for 2min, centrifuging at 12000r/min for 1min, eluting, and collecting plasmid DNA.
The correctly identified recombinant plasmids were named pMD-T-cpsF, pMD-T-MIG, pMD-T-16SrRNA, respectively.
And quantifying the extracted plasmid DNA, and storing the quantified plasmid DNA at-20 ℃ for later use as a positive quality control standard substance of the kit. The quantitative calculation formula is: positive plasmid copy number copies/. mu.L = (OD)260×50×10-9X dilution multiple x 6.02 x 1023) (660X number of bases), wherein: 50 represents the measurement in OD using a cuvette with a diameter of 1cm260The corresponding double-stranded DNA concentration at 1 is 50. mu.g/mL; 660 represents the double-stranded DNA base pair average molecular weight.
Example 3
Design synthesis of triple real-time fluorescent PCR (polymerase chain reaction) primers and probes for three streptococcus
According to the genomic DNA sequences of streptococcus agalactiae, streptococcus dysgalactiae and streptococcus iniae published in Genbank, by combining bioinformatics means, sequences of conserved regions of cpsF gene of streptococcus agalactiae, MIG gene of streptococcus dysgalactiae and 16S rRNA gene of streptococcus iniae are determined as detection target sequences, and 3 pairs of primers and 3 probes are designed and synthesized so as to carry out qualitative detection on streptococcus agalactiae, streptococcus dysgalactiae and streptococcus iniae. As shown in table 2.
TABLE 2 triple real-time fluorescent PCR primers and probes for three streptococci
Figure DEST_PATH_IMAGE004
Example 4
Optimization of triple fluorescent PCR conditions
The invention adopts a single-factor concentration gradient experiment method to change the concentration of each component in the real-time fluorescent PCR reaction system one by one so as to optimize the real-time fluorescent PCR reaction system and establish triple real-time fluorescent PCR. The optimization results are shown in fig. 1. The optimized PCR reaction system is as follows:
2×Quantitech Multiplex PCR NoRox Master Mix 12. 5μL
5μM cpsF- FP 0.5μL
5μM MIG- RP 0.5μL
5μM cpsF-PROBE 1μL
5μM MIG- FP 0.5μL
5μM MIG- RP 0.5μL
5μM MIG-PROBE 1μL
5μM 16SrRNA- FP 0.5μL
5μM 16SrRNA-RP 0.5μL
5μM 16SrRNA-PROBE 1μL
ddH2O 3.5μL
pMD-T-cpsF 1μL
pMD-T-MIG 1μL
pMD-T-16SrRNA 1μL
the amplification reaction conditions are as follows:
Step 1 95℃ 15min;
Step 2 94℃ 60s
Step 3 60℃ 60s
step 4 reading, Go to Step 2 for 40 cycles.
Example 5
Sensitivity test for detecting three kinds of streptococcus by triple fluorescence PCR
Respectively to a concentration of about 1.52X 108Streptococcus agalactiae, at a concentration of about 1.33X 108Streptococcus dysgalactiae, at a concentration of about 1.76X 107CFU/mL Streptococcus iniae were diluted in 10-fold gradients, 3 per concentration gradient in parallel. And extracting the genome DNA of each dilution of streptococcus agalactiae, streptococcus dysgalactiae and streptococcus iniae by using the kit, and performing real-time fluorescence PCR detection on the streptococcus agalactiae, streptococcus dysgalactiae and streptococcus iniae by using the extracted genome DNA as a template to determine the sensitivity of the detection method. The results are shown in FIGS. 2-4. As can be seen, the original bacterial liquid of Streptococcus agalactiae was diluted to 10-7Can still be detected, and shows that the detection sensitivity of the detection method to the streptococcus agalactiae is about 1.52 multiplied by 102CFU/mL (see FIG. 2); diluting original bacteria liquid of streptococcus dysgalactiae to 10-6Can still be detected, which shows that the detection sensitivity of the detection method to the streptococcus dysgalactiae is about 1.33 multiplied by 102CFU/mL (see FIG. 3); diluting original bacterial liquid of streptococcus iniae to 10-6Can still be detected, which shows that the detection sensitivity of the detection method to the streptococcus iniae is about 1.76 multiplied by 102CFU/mL (see FIG. 4).
Example 6
Triple fluorescence PCR detection test for specificity of three streptococci
The bacteria in table 3 were detected by the established triple real-time fluorescent PCR detection method to explore the specificity of detection of the method, and the results are shown in table 1. The results show that the method of the invention is capable of specifically detecting Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus iniae without cross-reacting with other strains, indicating that the method of the invention has high specificity, as shown in FIGS. 5-7.
TABLE 3 specific results of real-time fluorescent PCR method
Bacterial strains Origin of origin Fluorescent PCR results
Campylobacter jejuniCampylobacter jejuni ATCC 33560
Enterohemorrhagic Escherichia coliEnterohemorrhagic E.coli O157: H ATCC 35150
Listeria monocytogenesListeria monocytogenes ATCC 19111
Salmonella typhosaSalmonella typhimurium CMCC50115
ShigellaShigella ATCC 12022
Staphylococcus aureusStaphylococcus aureus ATCC 29213
Yersinia enterocoliticaYersinia enteroxolitica ATCC 9610
Vibrio choleraeVibrio cholerae ATCC 51394
Vibrio vulnificusVibrio vulnificus ATCC 27562
Vibrio alginolyticusVibrio alginolyticus ATCC 33787
Vibrio parahaemolyticusVibrio parahaemolyticus ATCC 27519
Streptococcus agalactiaeStreptococcus agalactiae ATCC 35666 +
Streptococcus dysgalactiaeStreptococcus dysgalactiae ATCC 13813 +
Streptococcus iniaeStreptococcus iniae ATCC29178 +
Example 7
Triple fluorescence PCR (polymerase chain reaction) repeatability test for detecting three streptococci
1. The method is utilized to repeatedly detect the same positive standard substance for 20 times, and the repeatability and the stability of the detection of the method are inspected. The results show that the detection results are the same every time.
2. The method provided by the invention is used for detecting the positive standard substance of the same batch at intervals of 30 days, and the repeatability and stability of the detection of the method are inspected. The results show that the results of the two tests are the same.
Example 8
Triple fluorescence PCR detection three streptococcus practice verification test
The established triple real-time fluorescence PCR detection method is applied to detect the collected actual samples, 181 parts of tilapia sample are detected together, 2 parts of streptococcus iniae positive samples are detected as a result, the single real-time fluorescence PCR detection method is used for verification, the coincidence rate is 100%, and the method has good reliability and practicability.
<110> inspection and quarantine technology center of Hainan entry-exit inspection and quarantine bureau of people's republic of China
<120> triple real-time fluorescence PCR method and kit for simultaneously detecting three streptococci
<160>18
<210>1
<211>22
<212>DNA
<213> Artificial sequence
<400>1
TGAAAATTTG TCTGGTTGGT TC
<210>2
<211>22
<212>DNA
<213> Artificial sequence
<400>2
CGGCACCAGA TGATATGATA AC
<210>3
<211>27
<212>DNA
<213> Artificial sequence
<400>3
TGGTGGTCAT CTAGCACACT TGAACCT
<210>4
<211>22
<212>DNA
<213> Artificial sequence
<400>4
AAATGATTTA GTTGCGACTG AC
<210>5
<211>24
<212>DNA
<213> Artificial sequence
<400>5
TTCAACAATC CTATCTTGAG AATC
<210>6
<211>26
<212>DNA
<213> Artificial sequence
<400>6
TGCTACTCCG GGAGGCGTAT TTACAG
<210>7
<211>22
<212>DNA
<213> Artificial sequence
<400>7
GCGTTGTATT AGCTAGTTGG TG
<210>8
<211>19
<212>DNA
<213> Artificial sequence
<400>8
AAACCTTCTT CACTCACGC
<210>9
<211>26
<212>DNA
<213> Artificial sequence
<400>9
ACGGCTCACC AAGGCGACGA TACATA
<210>10
<211>21
<212>DNA
<213> Artificial sequence
<400>10
ATGAAAATTT GTCTGGTTGG T
<210>11
<211>23
<212>DNA
<213> Artificial sequence
<400>11
ATTCCTCCTA AATTAATTGC CTT
<210>12
<211>21
<212>DNA
<213> Artificial sequence
<400>12
CTTTTGGATT AGCGTCTGTA T
<210>13
<211>21
<212>DNA
<213> Artificial sequence
<400>13
TCTTTACGTT TTGAAGCGAC T
<210>14
<211>21
<212>DNA
<213> Artificial sequence
<400>14
GTAGAACGCT GAGGATTGGT G
<210>15
<211>21
<212>DNA
<213> Artificial sequence
<400>15
ATCTAATCCT GTTTGCTCCC C
<210>16
<211>3135
<212>DNA
<213> Artificial sequence
<400>16
TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA 60
CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG 120
TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC 180
ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGGCGCC 240
ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT 300
TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT AAGTTGGGTA ACGCCAGGGT 360
TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGAATT CGAGCTCGGT ACCCGGGGAT 420
CCTCTAGAGA TATGAAAATT TGTCTGGTTG GTTCAAGTGG TGGTCATCTA GCACACTTGA 480
ACCTTTTGAA ACCCATTTGG GAAAAAGAAG ATAGGTTTTG GGTAACCTTT GATAAAGAAG 540
ATGCTAGGAG TATTCTAAGA GAAGAGATTG TATATCATTG CTTCTTTCCA ACAAACCGTA 600
ATGTCAAAAA CTTGGTAAAA AATACTATTC TAGCTTTTAA GGTCCTTAGA AAAGAAAGAC 660
CAGATGTTAT CATATCATCT GGTGCCGCTG TAGCAGTACC ATTCTTTTAT ATTGGTAAGT 720
TATTTGGTTG TAAGACCGTT TATATAGAGG TTTTCGACAG GATAGATAAA CCAACTTTGA 780
CAGGAAAATT AGTGTATCCT GTAACAGATA AATTTATTGT TCAGTGGGAA GAAATGAAAA 840
AAGTTTATCC TAAGGCAATT AATTTAGGAG GAATATCGTC GACCTGCAGG CATGCAAGCT 900
TGGCGTAATC ATGGTCATAG CTGTTTCCTG TGTGAAATTG TTATCCGCTC ACAATTCCAC 960
ACAACATACG AGCCGGAAGC ATAAAGTGTA AAGCCTGGGG TGCCTAATGA GTGAGCTAAC 1020
TCACATTAAT TGCGTTGCGC TCACTGCCCG CTTTCCAGTC GGGAAACCTG TCGTGCCAGC 1080
TGCATTAATG AATCGGCCAA CGCGCGGGGA GAGGCGGTTT GCGTATTGGG CGCTCTTCCG 1140
CTTCCTCGCT CACTGACTCG CTGCGCTCGG TCGTTCGGCT GCGGCGAGCG GTATCAGCTC 1200
ACTCAAAGGC GGTAATACGG TTATCCACAG AATCAGGGGA TAACGCAGGA AAGAACATGT 1260
GAGCAAAAGG CCAGCAAAAG GCCAGGAACC GTAAAAAGGC CGCGTTGCTG GCGTTTTTCC 1320
ATAGGCTCCG CCCCCCTGAC GAGCATCACA AAAATCGACG CTCAAGTCAG AGGTGGCGAA 1380
ACCCGACAGG ACTATAAAGA TACCAGGCGT TTCCCCCTGG AAGCTCCCTC GTGCGCTCTC 1440
CTGTTCCGAC CCTGCCGCTT ACCGGATACC TGTCCGCCTT TCTCCCTTCG GGAAGCGTGG 1500
CGCTTTCTCA TAGCTCACGC TGTAGGTATC TCAGTTCGGT GTAGGTCGTT CGCTCCAAGC 1560
TGGGCTGTGT GCACGAACCC CCCGTTCAGC CCGACCGCTG CGCCTTATCC GGTAACTATC 1620
GTCTTGAGTC CAACCCGGTA AGACACGACT TATCGCCACT GGCAGCAGCC ACTGGTAACA 1680
GGATTAGCAG AGCGAGGTAT GTAGGCGGTG CTACAGAGTT CTTGAAGTGG TGGCCTAACT 1740
ACGGCTACAC TAGAAGAACA GTATTTGGTA TCTGCGCTCT GCTGAAGCCA GTTACCTTCG 1800
GAAAAAGAGT TGGTAGCTCT TGATCCGGCA AACAAACCAC CGCTGGTAGC GGTGGTTTTT 1860
TTGTTTGCAA GCAGCAGATT ACGCGCAGAA AAAAAGGATC TCAAGAAGAT CCTTTGATCT 1920
TTTCTACGGG GTCTGACGCT CAGTGGAACG AAAACTCACG TTAAGGGATT TTGGTCATGA 1980
GATTATCAAA AAGGATCTTC ACCTAGATCC TTTTAAATTA AAAATGAAGT TTTAAATCAA 2040
TCTAAAGTAT ATATGAGTAA ACTTGGTCTG ACAGTTACCA ATGCTTAATC AGTGAGGCAC 2100
CTATCTCAGC GATCTGTCTA TTTCGTTCAT CCATAGTTGC CTGACTCCCC GTCGTGTAGA 2160
TAACTACGAT ACGGGAGGGC TTACCATCTG GCCCCAGTGC TGCAATGATA CCGCGAGACC 2220
CACGCTCACC GGCTCCAGAT TTATCAGCAA TAAACCAGCC AGCCGGAAGG GCCGAGCGCA 2280
GAAGTGGTCC TGCAACTTTA TCCGCCTCCA TCCAGTCTAT TAATTGTTGC CGGGAAGCTA 2340
GAGTAAGTAG TTCGCCAGTT AATAGTTTGC GCAACGTTGT TGCCATTGCT ACAGGCATCG 2400
TGGTGTCACG CTCGTCGTTT GGTATGGCTT CATTCAGCTC CGGTTCCCAA CGATCAAGGC 2460
GAGTTACATG ATCCCCCATG TTGTGCAAAA AAGCGGTTAG CTCCTTCGGT CCTCCGATCG 2520
TTGTCAGAAG TAAGTTGGCC GCAGTGTTAT CACTCATGGT TATGGCAGCA CTGCATAATT 2580
CTCTTACTGT CATGCCATCC GTAAGATGCT TTTCTGTGAC TGGTGAGTAC TCAACCAAGT 2640
CATTCTGAGA ATAGTGTATG CGGCGACCGA GTTGCTCTTG CCCGGCGTCA ATACGGGATA 2700
ATACCGCGCC ACATAGCAGA ACTTTAAAAG TGCTCATCAT TGGAAAACGT TCTTCGGGGC 2760
GAAAACTCTC AAGGATCTTA CCGCTGTTGA GATCCAGTTC GATGTAACCC ACTCGTGCAC 2820
CCAACTGATC TTCAGCATCT TTTACTTTCA CCAGCGTTTC TGGGTGAGCA AAAACAGGAA 2880
GGCAAAATGC CGCAAAAAAG GGAATAAGGG CGACACGGAA ATGTTGAATA CTCATACTCT 2940
TCCTTTTTCA ATATTATTGA AGCATTTATC AGGGTTATTG TCTCATGAGC GGATACATAT 3000
TTGAATGTAT TTAGAAAAAT AAACAAATAG GGGTTCCGCG CACATTTCCC CGAAAAGTGC 3060
CACCTGACGT CTAAGAAACC ATTATTATCA TGACATTAAC CTATAAAAAT AGGCGTATCA 3120
CGAGGCCCTT TCGTC 3135
<210>17
<211>4654
<212>DNA
<213> Artificial sequence
<400>17
TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA 60
CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG 120
TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC 180
ACCATATGCGGTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGGCGCC 240
ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT 300
TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT AAGTTGGGTA ACGCCAGGGT 360
TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGAATT CGAGCTCGGT ACCCGGGGAT 420
CCTCTAGAGA TCTTTTTACG TAAATCAGCT TTTGGATTAG CGTCTGTATC AGCTGCGTTT 480
TTAGTTTCGG GAGCACTAGA AAATACTATA ACTGTTTCTG CAGAAACTAT ACCTGCAGCG 540
GTCATTGTAC CTGTTGGCCT AGATACTACA GAATTACAAA AATGGTATGA CATTGCAAAT 600
GATTTAGTTG CGACTGACAA TGCTACTCCG GGAGGCGTAT TTACAGCAGA CTCAATGAAG 660
GCATTATATC GTTTACTAAA TGATGCATAC GATGTGTTGG AATCAAAAGA CTATAGAAAA 720
TATGATTCTC AAGATAGGAT TGTTGAATTG GTAAACAATT TAAAGAATAC TACGCAGTCT 780
CTTTTACCAA TTGGAGTAGA ACCAGTAGTA TTTGATACTA CTCGCTTGAA TACCTGGTAT 840
GATGCTGCTA ATGAAATTGT TAATAATTCA GATGCTTATA CAGCAGAATC AATTCAGCCG 900
TTGTATAAGT TAATTAATGA TGCATACGAT GTGTTAGAAT CAAAAGATTA CAGTAAGTAT 960
GATTCTCAAG ATAAAGTCAA CAATCTTGCA GATCAGTTGA GAGATGCAGT TCAGGCAGTT 1020
CAACTAGAAG CACCTACAGT GATTGACGCA CCTGAACTAA CTCCAGCTTT GACTACTTAC 1080
AAACTTGTTG TTAAAGGTAA CACTTTCTCA GGAGAAACAA CTACTAAAGC CATCGATACT 1140
GCAACTGCGG AAAAAGAATT CAAACAATAC GCAACAGCTA ACAATGTTGA CGGTGAGTGG 1200
TCTTATGACG ATGCAACTAA AACCTTTACA GTTACTGAAA AACCAGCAGT GATTGACGCA 1260
CCTGAACTAA CTCCAGCCTT GACTACTTAC AAACTTATTG TTAAAGGTAA CACTTTCTCA 1320
GGCGAAACAA CTACTAAAGC AGTAGACGCA GAAACTGCAG AAAAAGCCTT CAAACAATAC 1380
GCAACAGCTA ACAATGTTGA CGGTGAGTGG TCTTATGACG ATGCAACTAA AACCTTTACA 1440
GTTACTGAAA AACCAGCAGT GATTGACGCA CCTGAACTAA CTCCAGCCTT GACTACTTAC 1500
AAACTTATTG TTAAAGGTAA CACTTTCTCA GGCGAAACAA CTACTAAAGC TATCGATGCT 1560
GCAACTGCAG AAAAAGAATT CAAACAATAC GCAACAGCTA ACGGTGTTGA CGGTGAATGG 1620
TCTTATGACG ATGCAACTAA AACCTTTACA GTTACTGAAA AACCAGCAGT GATTGACGCA 1680
CCTGAACTAA CTCCAGCCTT GACTACTTAC AAACTTATTG TTAAAGGTAA CACTTTCTCA 1740
GGCGAAACAA CTACTAAAGC AGTAGACGCA GAAACTGCAG AAAAAGCCTT CAAACAATAC 1800
GCTAACGAAA ACGGTGTTTA CGGTGAATGG TCTTATGACG ATGCAACTAA AACCTTTACA 1860
GTTACTGAAA AACCAGCAGT GATTGACGCA CCTGAATTAA CACCAGCATT GACAACCTAC 1920
AAACTTGTTA TCAATGGTAA AACATTGAAA GGCGAAACAA CTACTAAAGC AGTAGACGCA 1980
GAAACTGCAG AAAAAGCCTT CAAACAATAC GCTAACGAAA ACGGTGTTGA TGGTGTTTGG 2040
ACTTACGATG ATGCGACTAA GACCTTTACG GTAACTGAAA TGGTTACTGA AGTTCCTGGT 2100
GATGCACCAA CTGAACCAGA AAAGCCAGAA GCAAGTATCC CTCTTGTTCC GTTAACTCCT 2160
GCAACTCCAA TTGCTAAAGA TGACGCTAAG AAAGACGATA CTAAGAAAGT CGATACTAAG 2220
AAAGAAGACG CTAAAAAACC AGAAGCTAAG AAAGAAGAAG CTAAGAAAGA AGAAGCTAAG 2280
AAAGCTGCAACTCTTCCTAC AACTGGTGAA GGAAGCAACC CATTTTTCAC AGCTGCTGCG 2340
CTTGCAGTAA TGGCTGGTGC GGGTGCTTTG GCAGTCGCTT CAAAACGTAA AGAATCGTCG 2400
ACCTGCAGGC ATGCAAGCTT GGCGTAATCA TGGTCATAGC TGTTTCCTGT GTGAAATTGT 2460
TATCCGCTCA CAATTCCACA CAACATACGA GCCGGAAGCA TAAAGTGTAA AGCCTGGGGT 2520
GCCTAATGAG TGAGCTAACT CACATTAATT GCGTTGCGCT CACTGCCCGC TTTCCAGTCG 2580
GGAAACCTGT CGTGCCAGCT GCATTAATGA ATCGGCCAAC GCGCGGGGAG AGGCGGTTTG 2640
CGTATTGGGC GCTCTTCCGC TTCCTCGCTC ACTGACTCGC TGCGCTCGGT CGTTCGGCTG 2700
CGGCGAGCGG TATCAGCTCA CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT 2760
AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG CCAGGAACCG TAAAAAGGCC 2820
GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC CCCCCTGACG AGCATCACAA AAATCGACGC 2880
TCAAGTCAGA GGTGGCGAAA CCCGACAGGA CTATAAAGAT ACCAGGCGTT TCCCCCTGGA 2940
AGCTCCCTCG TGCGCTCTCC TGTTCCGACC CTGCCGCTTA CCGGATACCT GTCCGCCTTT 3000
CTCCCTTCGG GAAGCGTGGC GCTTTCTCAT AGCTCACGCT GTAGGTATCT CAGTTCGGTG 3060
TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG CACGAACCCC CCGTTCAGCC CGACCGCTGC 3120
GCCTTATCCG GTAACTATCG TCTTGAGTCC AACCCGGTAA GACACGACTT ATCGCCACTG 3180
GCAGCAGCCA CTGGTAACAG GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC 3240
TTGAAGTGGT GGCCTAACTA CGGCTACACT AGAAGAACAG TATTTGGTAT CTGCGCTCTG 3300
CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAACCACC 3360
GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG CAGCAGATTA CGCGCAGAAA AAAAGGATCT 3420
CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT 3480
TAAGGGATTT TGGTCATGAG ATTATCAAAA AGGATCTTCA CCTAGATCCT TTTAAATTAA 3540
AAATGAAGTT TTAAATCAAT CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA 3600
TGCTTAATCA GTGAGGCACC TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGTTGCC 3660
TGACTCCCCG TCGTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG CCCCAGTGCT 3720
GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT TATCAGCAAT AAACCAGCCA 3780
GCCGGAAGGG CCGAGCGCAG AAGTGGTCCT GCAACTTTAT CCGCCTCCAT CCAGTCTATT 3840
AATTGTTGCC GGGAAGCTAG AGTAAGTAGT TCGCCAGTTA ATAGTTTGCG CAACGTTGTT 3900
GCCATTGCTA CAGGCATCGT GGTGTCACGC TCGTCGTTTG GTATGGCTTC ATTCAGCTCC 3960
GGTTCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT TGTGCAAAAA AGCGGTTAGC 4020
TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG CAGTGTTATC ACTCATGGTT 4080
ATGGCAGCAC TGCATAATTC TCTTACTGTC ATGCCATCCG TAAGATGCTT TTCTGTGACT 4140
GGTGAGTACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC GGCGACCGAG TTGCTCTTGC 4200
CCGGCGTCAA TACGGGATAA TACCGCGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT 4260
GGAAAACGTT CTTCGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG ATCCAGTTCG 4320
ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT TTACTTTCAC CAGCGTTTCT 4380
GGGTGAGCAA AAACAGGAAG GCAAAATGCC GCAAAAAAGG GAATAAGGGC GACACGGAAA 4440
TGTTGAATAC TCATACTCTT CCTTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT 4500
CTCATGAGCG GATACATATT TGAATGTATT TAGAAAAATA AACAAATAGG GGTTCCGCGC 4560
ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAACCA TTATTATCAT GACATTAACC 4620
TATAAAAATA GGCGTATCAC GAGGCCCTTT CGTC 4654
<210>18
<211>3431
<212>DNA
<213> Artificial sequence
<400>18
TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA 60
CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG 120
TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC 180
ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGGCGCC 240
ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC GGTGCGGGCC TCTTCGCTAT 300
TACGCCAGCT GGCGAAAGGG GGATGTGCTG CAAGGCGATT AAGTTGGGTA ACGCCAGGGT 360
TTTCCCAGTC ACGACGTTGT AAAACGACGG CCAGTGAATT CGAGCTCGGT ACCCGGGGAT 420
CCTCTAGAGA TGTAGAACGC TGAGGATTGG TGCTTGCACT AATCCAAAGA GTTGCGAACG 480
GGTGAGTAAC GCGTAGGTAA CCTACCTCAT AGCGGGGGAT AACTATTGGA AACGATAGCT 540
AATACCGCAT GANACTAGAG TACACATGTA CTTAATTTAA AAGGAGCAAT TGCTTCACTA 600
TGAGATGGAC CTGCGTTGTA TTAGCTAGTT GGTGAGGTAA CGGCTCACCA AGGCGACGAT 660
ACATAGCCGA CCTGAGAGGG TGATCGGCCA CACTGGGACT GAGACACGGC CCANACTCCT 720
ACGGGAGGCA GCAGTAGGGA ATCTTCGGCA ATGGACGGAA GTCTGACCGA GCAACGCCGC 780
GTGAGTGAAG AAGGTTTTCN GATCGTAAAG CTCTGTTGTT AGAGAAGAAC GGTAATGGGA 840
GTGGAAAATC CATTACGTGA CGGTAACTAA CCAGAAAGGG ACGGCTAACT ACGTGCCAGC 900
AGCCGCGGTA ATACGTANGT CTCGAGCGTT GTCCGGATTT ATTGGGCGTA AAGCGAGCGC 960
AGGCGGTTCT ATAAGTCTGA AGTAAAAGGC AGTGGCTCAA CCATTGTATG CTTTGGAAAC 1020
TGTAGAACTT GAGTGCAGAA GGGGAGAGTG GAATTCCATG TGTAGCGGTG AAATGCGTAN 1080
ATATATGGAG GAACACCGGT GGCGAANGCG GCTCTCTGGT CTGTAACTGA CGCTGAGGCT 1140
CGAAAGCGTG GGGAGCAAAC AGGATTAGAT ATCGTCGACC TGCAGGCATG CAAGCTTGGC 1200
GTAATCATGG TCATAGCTGT TTCCTGTGTG AAATTGTTAT CCGCTCACAA TTCCACACAA 1260
CATACGAGCC GGAAGCATAA AGTGTAAAGC CTGGGGTGCC TAATGAGTGA GCTAACTCAC 1320
ATTAATTGCG TTGCGCTCAC TGCCCGCTTT CCAGTCGGGA AACCTGTCGT GCCAGCTGCA 1380
TTAATGAATC GGCCAACGCG CGGGGAGAGG CGGTTTGCGT ATTGGGCGCT CTTCCGCTTC 1440
CTCGCTCACT GACTCGCTGC GCTCGGTCGT TCGGCTGCGG CGAGCGGTAT CAGCTCACTC 1500
AAAGGCGGTA ATACGGTTAT CCACAGAATC AGGGGATAAC GCAGGAAAGA ACATGTGAGC 1560
AAAAGGCCAG CAAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT TTTTCCATAG 1620
GCTCCGCCCC CCTGACGAGC ATCACAAAAA TCGACGCTCA AGTCAGAGGT GGCGAAACCC 1680
GACAGGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC TCCCTCGTGC GCTCTCCTGT 1740
TCCGACCCTG CCGCTTACCG GATACCTGTC CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT 1800
TTCTCATAGC TCACGCTGTA GGTATCTCAG TTCGGTGTAG GTCGTTCGCT CCAAGCTGGG 1860
CTGTGTGCAC GAACCCCCCG TTCAGCCCGA CCGCTGCGCC TTATCCGGTA ACTATCGTCT 1920
TGAGTCCAAC CCGGTAAGAC ACGACTTATC GCCACTGGCA GCAGCCACTG GTAACAGGAT 1980
TAGCAGAGCG AGGTATGTAG GCGGTGCTAC AGAGTTCTTG AAGTGGTGGC CTAACTACGG 2040
CTACACTAGA AGAACAGTAT TTGGTATCTG CGCTCTGCTG AAGCCAGTTA CCTTCGGAAA 2100
AAGAGTTGGT AGCTCTTGAT CCGGCAAACA AACCACCGCT GGTAGCGGTG GTTTTTTTGT 2160
TTGCAAGCAG CAGATTACGC GCAGAAAAAA AGGATCTCAA GAAGATCCTT TGATCTTTTC 2220
TACGGGGTCT GACGCTCAGT GGAACGAAAA CTCACGTTAA GGGATTTTGG TCATGAGATT 2280
ATCAAAAAGG ATCTTCACCT AGATCCTTTT AAATTAAAAA TGAAGTTTTA AATCAATCTA 2340
AAGTATATAT GAGTAAACTT GGTCTGACAG TTACCAATGC TTAATCAGTG AGGCACCTAT 2400
CTCAGCGATC TGTCTATTTC GTTCATCCAT AGTTGCCTGA CTCCCCGTCG TGTAGATAAC 2460
TACGATACGG GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATACCGC GAGACCCACG 2520
CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG AGCGCAGAAG 2580
TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT TGTTGCCGGG AAGCTAGAGT 2640
AAGTAGTTCG CCAGTTAATA GTTTGCGCAA CGTTGTTGCC ATTGCTACAG GCATCGTGGT 2700
GTCACGCTCG TCGTTTGGTA TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAAGGCGAGT 2760
TACATGATCC CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC CGATCGTTGT 2820
CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCACTGC ATAATTCTCT 2880
TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT GAGTACTCAA CCAAGTCATT 2940
CTGAGAATAG TGTATGCGGC GACCGAGTTG CTCTTGCCCG GCGTCAATAC GGGATAATAC 3000
CGCGCCACAT AGCAGAACTT TAAAAGTGCT CATCATTGGA AAACGTTCTT CGGGGCGAAA 3060
ACTCTCAAGG ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC GTGCACCCAA 3120
CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA CAGGAAGGCA 3180
AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT TGAATACTCA TACTCTTCCT 3240
TTTTCAATAT TATTGAAGCA TTTATCAGGG TTATTGTCTC ATGAGCGGAT ACATATTTGA 3300
ATGTATTTAG AAAAATAAAC AAATAGGGGT TCCGCGCACA TTTCCCCGAA AAGTGCCACC 3360
TGACGTCTAA GAAACCATTA TTATCATGAC ATTAACCTAT AAAAATAGGC GTATCACGAG 3420
GCCCTTTCGT C 3431

Claims (1)

1. A triple real-time fluorescence PCR detection kit for simultaneously detecting three streptococci, wherein the three streptococci are streptococcus agalactiae, streptococcus dysgalactiae and streptococcus iniae, and the kit is characterized by comprising: primers and probes for amplifying three streptococci, three positive control substances and negative control substance ddH2O, PCR buffer solution, dNTP and Taq DNA polymerase;
the three positive control substances are respectively:
pMD-T-cpsF, as shown in sequence table Seq ID No.16,
pMD-T-MIG is shown in a sequence table Seq ID No.17,
pMD-T-16SrRNA is shown in a sequence table Seq ID No.18,
the streptococcus agalactiae amplification primers and the probes are respectively as follows:
the upper primer cpsF-FP is shown in a sequence table Seq ID No.1,
the lower primer cpsF-RP is shown in a sequence table Seq ID No.2,
the PROBE cpsF-PROBE is shown in a sequence table Seq ID No. 3;
the streptococcus dysgalactiae amplification primers and the probes are respectively as follows:
the upper primer MIG-FP is shown as a sequence ID No.4 in a sequence table,
the lower primer MIG-RP is shown in a sequence table Seq ID No.5,
the PROBE MIG-PROBE is shown in a sequence table Seq ID No. 6;
the streptococcus iniae amplification primer and the probe are respectively as follows:
the upper primer 16SrRNA-FP is shown in a sequence table Seq ID No.7,
the lower primer 16SrRNA-RP is shown in a sequence table Seq ID No.8,
the PROBE 16SrRNA-PROBE is shown in a sequence table Seq ID No. 9.
CN201410425186.5A 2014-08-27 2014-08-27 Triple real-time fluorescence PCR method and kit for simultaneously detecting three streptococci Expired - Fee Related CN104152572B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410425186.5A CN104152572B (en) 2014-08-27 2014-08-27 Triple real-time fluorescence PCR method and kit for simultaneously detecting three streptococci

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410425186.5A CN104152572B (en) 2014-08-27 2014-08-27 Triple real-time fluorescence PCR method and kit for simultaneously detecting three streptococci

Publications (2)

Publication Number Publication Date
CN104152572A CN104152572A (en) 2014-11-19
CN104152572B true CN104152572B (en) 2020-05-29

Family

ID=51878196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410425186.5A Expired - Fee Related CN104152572B (en) 2014-08-27 2014-08-27 Triple real-time fluorescence PCR method and kit for simultaneously detecting three streptococci

Country Status (1)

Country Link
CN (1) CN104152572B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435000A (en) * 2016-12-06 2017-02-22 广东海大畜牧兽医研究院有限公司 Constant-temperature heat insulation type PCR (polymerase chain reaction) detection method for streptococcus agalactiae
CN106884048A (en) * 2017-03-06 2017-06-23 海南出入境检验检疫局检验检疫技术中心 One kind detection fish Streptococcus iniae fluorescent PCR kit and its application
CN108342499B (en) * 2018-04-26 2019-04-05 暨南大学 A pair of while quickly detection Streptococcusagalactiae and Streptococcus iniae primer and its application
CN110804678B (en) * 2019-12-09 2020-08-25 江西省水产科学研究所 qPCR kit and method for Vibrio, white spot virus and streptococcus
CN111394483B (en) * 2020-03-27 2023-05-09 浙江省淡水水产研究所 A kit and detection method for simultaneous detection of three fish-derived streptococci
CN114686612B (en) * 2022-04-26 2024-05-07 广东海大畜牧兽医研究院有限公司 Primer probe group for dual fluorescence PCR detection of streptococcicosis of tilapia and freeze-drying type kit
CN116640867B (en) * 2023-06-27 2024-10-22 四川农业大学 A primer pair and probe combination for detecting Streptococcus dysgalactiae by RAA-LFD and its application

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
停乳链球菌内蒙分离株抗原基因MIG的克隆;刘金晔;《中国动物保健》;20110515(第5期);18-21 *
卵形鲳鲹感染无乳链球菌与海豚链球菌的研究;黄婷;《大连海洋大学学报》;20140430;第29卷(第2期);161-166 *
双重 PCR 快速鉴别无乳链球菌和海豚链球菌;黎炯;《湖南农业大学学报》;20100831;第36卷(第4期);449-452 *
无乳链球菌(Streptococcus agalactiae)三重 PCR快速检测方法的建立与应用;黄锦炉;《海洋与湖沼》;20120331;第43卷(第2期);254-261 *
罗非鱼源无乳链球菌双重 PCR 快速检测方法的建立;王钧;《中国兽医科学》;20111231;第41卷(第5期);496-502 *

Also Published As

Publication number Publication date
CN104152572A (en) 2014-11-19

Similar Documents

Publication Publication Date Title
CN104152572B (en) Triple real-time fluorescence PCR method and kit for simultaneously detecting three streptococci
CN101768616B (en) Dry composition of reaction compounds with stabilized polymerase
CN113227368B (en) Engineered enzymes
KR20130132405A (en) Strains of agrobacterium modified to increase plant transformation frequency
CN109563505A (en) Package system for eukaryocyte
CN110072546B (en) New swine flu vaccine
CN107868780B (en) Method for realizing site-directed mutation on circular DNA molecule larger than 10kb
CN109715204B (en) A new EHV insertion site ORF70
CN109517846A (en) Method based on CRISPR/Cas9 system high flux construction cotton mutant library
CN109790550B (en) novel promoter
CN107384958B (en) RSV antigenome plasmid constructed based on reverse genetics and application thereof
KR101578445B1 (en) Recombinant foot-and-mouth disease virus expressing P1-protective antigen of middle-east-derived Asia type and the manufacturing method
CN111378684B (en) Application of a heat-induced gene editing system CRISPR-Cas12b in upland cotton
CN114085858A (en) L-serine producing strain and construction method thereof
KR102160215B1 (en) Yarrowia liplytica strain having improved xylose utilizing ability and the method for preparing the same
CN107151676B (en) Preparation and application of fish with fluorescence protein transfer gene for high-sensitivity monitoring of POPs (persistent organic pollutants)
CN114959919A (en) Method for constructing saccharomyces cerevisiae artificial small promoter library and application
KR102752143B1 (en) Recombinant foot-and-mouth disease virus type A and foot-and-mouth disease vaccine composition comprising the same
CN108486110A (en) A kind of promoter and recombinant expression carrier and application thereof
KR20100102075A (en) A replication factor of lactic acid bacteria and vector comprising the same
CN106399373B (en) A kind of Cas9 expression vector
KR102335524B1 (en) Oncolytic recombinant newcastle disease virus contain PTEN gene constructed by based on the Newcastle disease virus for glioblastoma treatment and its composition
US20030185851A1 (en) Tet transactivator system
KR100986292B1 (en) Kimchi Lactobacillus Replication Factor and Vector Containing It
CN114134185B (en) Method for producing L-serine by fermentation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200529

Termination date: 20210827

CF01 Termination of patent right due to non-payment of annual fee