CN104133198A - Ionized-layer interference suppression method used in high frequency ground wave radar - Google Patents
Ionized-layer interference suppression method used in high frequency ground wave radar Download PDFInfo
- Publication number
- CN104133198A CN104133198A CN201410398977.3A CN201410398977A CN104133198A CN 104133198 A CN104133198 A CN 104133198A CN 201410398977 A CN201410398977 A CN 201410398977A CN 104133198 A CN104133198 A CN 104133198A
- Authority
- CN
- China
- Prior art keywords
- time
- frequency
- interference
- ionospheric
- distance element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000001629 suppression Effects 0.000 title abstract description 9
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 238000001228 spectrum Methods 0.000 claims abstract description 22
- 238000004458 analytical method Methods 0.000 claims abstract description 12
- 238000009825 accumulation Methods 0.000 claims abstract description 8
- 230000001427 coherent effect Effects 0.000 claims abstract description 5
- 238000005070 sampling Methods 0.000 claims description 6
- 230000003595 spectral effect Effects 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 5
- 230000005764 inhibitory process Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000002407 reforming Methods 0.000 claims 1
- 239000005433 ionosphere Substances 0.000 abstract description 7
- 230000009466 transformation Effects 0.000 abstract description 6
- 238000012935 Averaging Methods 0.000 description 8
- 238000001914 filtration Methods 0.000 description 7
- 230000003044 adaptive effect Effects 0.000 description 5
- 238000002592 echocardiography Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/35—Details of non-pulse systems
- G01S7/352—Receivers
- G01S7/354—Extracting wanted echo-signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/0218—Very long range radars, e.g. surface wave radar, over-the-horizon or ionospheric propagation systems
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明涉及雷达抗干扰技术领域,尤其涉及一种高频地波雷达中电离层干扰抑制方法。本发明采用时频分析方法,利用电离层干扰在空域、时域和多普勒域的特征,对被电离层干扰的数据段(时间上与距离元上)进行检测并消除。先采用大相干积累时间的FFT变换进行干扰的距离元检测,然后对可能存在干扰的距离元回波上进行短时积累的时频分析,利用恒虚警率(CFAR)检测方法确定受电离层干扰的距离元和时间段,并对回波中受到干扰的海洋回波数据进行置零抑制,重做第2次FFT,即可得到抑制电离层干扰的距离多普勒谱。本发明抑制效果好,算法结构简单,实时性好,虚警率低,是一种可实时应用的稳健算法。
The invention relates to the technical field of radar anti-jamming, in particular to a method for suppressing ionospheric interference in high-frequency ground wave radar. The invention adopts the time-frequency analysis method, utilizes the characteristics of the ionospheric interference in the space domain, time domain and Doppler domain, detects and eliminates the data segment (time and distance element) interfered by the ionosphere. First, the FFT transformation with large coherent accumulation time is used to detect the range element of interference, and then the time-frequency analysis of short-term accumulation is performed on the range element echo that may have interference, and the constant false alarm rate (CFAR) detection method is used to determine the ionospheric The distance element and time period of the interference, and zero-set suppression of the disturbed ocean echo data in the echo, redo the second FFT, and the range Doppler spectrum that suppresses the ionospheric interference can be obtained. The invention has good suppression effect, simple algorithm structure, good real-time performance and low false alarm rate, and is a robust algorithm that can be applied in real time.
Description
技术领域technical field
本发明涉及雷达抗干扰技术领域,尤其涉及一种高频地波雷达中电离层干扰抑制方法。The invention relates to the technical field of radar anti-jamming, in particular to a method for suppressing ionospheric interference in high-frequency ground wave radar.
背景技术Background technique
高频地波雷达(HF Ground Wave Radar)利用垂直极化高频电磁波在导电海洋表面绕射传播衰减小的特点和海洋表面对电波的一阶、二阶散射机制,能超视距探测风场、浪场、流场等海洋动力学参数和舰船、飞机等海上移动目标。发射波主要通过海洋表面进行传播,实际工作中由于硬件与发射阵列场地等原因,部分电磁波还会向上传播,经过电离层的反射后进入接收机。电离层一般指60km以上包含自由电子的大气层,该层内各种带电粒子的浓度随高度而变化,在E层高度上,存在不规则的Es层,一般在90至120km。电离层干扰主要指经Es层电离云块的反射而到达雷达接收端的高频电波,只要电离层Es层存在,无论雷达工作在何种频率,一般都会出现电离层干扰。HF Ground Wave Radar (HF Ground Wave Radar) utilizes the characteristics of small attenuation of vertically polarized high-frequency electromagnetic waves on the conductive ocean surface and the first-order and second-order scattering mechanisms of the ocean surface for radio waves, which can detect wind fields beyond the horizon , wave field, current field and other ocean dynamic parameters and ships, aircraft and other maritime moving targets. The transmitted wave mainly propagates through the surface of the ocean. In actual work, due to reasons such as hardware and the site of the transmitting array, some electromagnetic waves will also propagate upwards and enter the receiver after being reflected by the ionosphere. The ionosphere generally refers to the atmosphere above 60km containing free electrons. The concentration of various charged particles in this layer varies with height. At the height of the E layer, there is an irregular Es layer, generally at 90 to 120km. Ionospheric interference mainly refers to the high-frequency radio waves that are reflected by ionized clouds in the Es layer and reach the radar receiving end. As long as the ionospheric Es layer exists, no matter what frequency the radar works in, ionospheric interference will generally occur.
地波雷达电离层干扰具有以下主要特性:(1)电离层干扰主要由发射电波经过电离层的反射和散射作用产生,能量远强于海杂波和目标回波,在多普勒谱上都具有明显的扩展,并具有明显的距离特征;(2)积累周期内,电离层干扰入射方向稳定不变,空间上可认为是平稳的;(3)一般情况下,电离层干扰平稳时间在300—500ms左右,要短于脉冲重复周期,因此在时间上和空间上是起伏变化的,有一定的随机非平稳特性。Ground-wave radar ionospheric interference has the following main characteristics: (1) Ionospheric interference is mainly generated by the reflection and scattering of transmitted radio waves through the ionosphere, and its energy is much stronger than that of sea clutter and target echoes. (2) During the accumulation period, the incident direction of the ionospheric disturbance is stable, and it can be considered as stable in space; (3) Generally, the ionospheric disturbance stabilizes within 300- About 500ms, which is shorter than the pulse repetition period, so it fluctuates in time and space, and has certain random non-stationary characteristics.
目前现有的高频雷达抗干扰方法中,主要有:空域自适应波束形成、极化滤波法、在时域和频域进行滤波的特征子空间法、自适应滤波对消法、。其中自适应波束形成电离层抑制方法需要在水平面上配置二维阵列(高火涛,秦晨清,杨子杰:基于天线子阵的高频地波雷达抗干扰方法,CN100380135C),而极化滤波方法需要架设占地较大的水平天线(H leong:‘Adaptive nulling of skywaveinterference using horizontal dipole antennas in a coastal surface HF waveradar system',Radar 97,14-16 October 1997,Publication No.49:26-30),这两种方法实现起来都较为复杂,而在时域和频域或其联合域进行滤波的特征子空间法(熊新农,万显荣,柯亨玉,肖怀国,基于时频分析的高频地波雷达电离层杂波抑制,系统工程与电子技术,2008年第8期)则由于其需对信号进行正交分解存在杂波残留和一定的信号损失。对于便携式高频地波雷达的自适应滤波对消的方法(周浩,文必洋,吴世才,石振华,用于便携式高频地波雷达中抑制电离层杂波的方法,CN101581782A)实现电离层干扰抑制,由于其参考通道的信号接收结构存在,增加了系统复杂度。At present, the existing high-frequency radar anti-jamming methods mainly include: airspace adaptive beamforming, polarization filtering method, characteristic subspace method for filtering in time domain and frequency domain, adaptive filtering cancellation method, and so on. Wherein the adaptive beam forming ionosphere suppression method needs to configure two-dimensional arrays on the horizontal plane (Gao Huotao, Qin Chenqing, Yang Zijie: Anti-jamming method for high-frequency ground wave radar based on antenna subarray, CN100380135C), and the polarization filtering method needs to set up an occupied area Larger horizontal antennas (H leong:'Adaptive nulling of skywaveinterference using horizontal dipole antennas in a coastal surface HF waveradar system', Radar 97, 14-16 October 1997, Publication No.49:26-30), the two methods It is relatively complicated to implement, but the characteristic subspace method for filtering in the time domain and frequency domain or their joint domain (Xiong Xinnong, Wan Xianrong, Ke Hengyu, Xiao Huaiguo, Ionospheric clutter suppression for high frequency ground wave radar based on time-frequency analysis, System Engineering and Electronic Technology, No. 8, 2008) due to the need for orthogonal decomposition of the signal, there are clutter residues and certain signal loss. For the method of adaptive filtering cancellation of portable high-frequency ground wave radar (Zhou Hao, Wen Biyang, Wu Shicai, Shi Zhenhua, method for suppressing ionospheric clutter in portable high-frequency ground wave radar, CN101581782A) to realize ionospheric interference Inhibition, due to the existence of the signal receiving structure of its reference channel, increases the complexity of the system.
发明内容Contents of the invention
针对背景技术存在的问题,本发明采用时频分析方法,利用电离层干扰在空域、时域和多普勒域的特征,对被电离层干扰的数据段(时间上与距离元上)进行检测并消除。Aiming at the problems existing in the background technology, the present invention adopts the time-frequency analysis method, and utilizes the characteristics of the ionospheric interference in the space domain, the time domain and the Doppler domain to detect the data segment (on time and on the distance element) interfered by the ionosphere and eliminate.
本发明提供的技术方案为:The technical scheme provided by the invention is:
(1)高频地波雷达的N个接收通道经采样获得原始采样数据,进行第一次FFT处理(FT1变换),实现距离分离,得到各距离元上的采样数据Xi(r,t)t=1…L,r=1…R,L为FT1帧数,R为距离元数;再对各通道的每个距离元数据进行第二次FFT(相干时间采用10~20分钟),获得各通道的距离多普勒谱Si(r,f)i=1…N,r=1…R,N为通道数,R为距离元数,f为多普勒频率,其中,N>4;(1) The N receiving channels of the high-frequency ground wave radar are sampled to obtain the original sampling data, and the first FFT processing (FT1 transformation) is performed to realize distance separation, and the sampling data X i (r, t) on each distance element is obtained t=1...L, r=1...R, L is the number of FT1 frames, R is the distance metadata; then perform a second FFT on each distance metadata of each channel (the coherence time is 10-20 minutes), and obtain The range Doppler spectrum of each channel S i (r, f)i=1...N, r=1...R, N is the number of channels, R is the range element, f is the Doppler frequency, where N>4 ;
(2)对N个通道的距离多普勒谱进行能量平均: 为长时FFT后,多通道能量平均后的距离多普勒谱;(2) Perform energy averaging on the range Doppler spectra of N channels: is the range Doppler spectrum after multi-channel energy averaging after long-time FFT;
(3)利用电离层干扰只出现在一定的离散距离单元上,其能量远强于海杂波与目标回波的特点,在距离多普勒谱上一阶海杂波的周围频带内进行电离层干扰位置检测,确定可能存在电离层干扰的回波距离元;(3) Using the characteristic that ionospheric interference only appears in a certain discrete distance unit, its energy is much stronger than that of sea clutter and target echo. Interference position detection, determine the echo distance element that may have ionospheric interference;
3.1)确定待检测的频率区间Δf,以海流最大多普勒频移为准,取0.3fB,其中fB为当前雷达工作频率对应的布拉格(bragg)散射频率。计算所有距离元在待检测频率区间的功率和:3.1) Determine the frequency interval Δf to be detected, based on the maximum Doppler frequency shift of the ocean current, take 0.3f B , where f B is the Bragg scattering frequency corresponding to the current radar operating frequency. Calculate the power sum of all distance elements in the frequency interval to be detected:
对于负一阶海流区有:
对于正一阶海流区有:
Jnf和Jpf分别表示在负、正一阶bragg频率上的回波功率,考虑到高频地波雷达最大探测距离在200km左右,电离层干扰一般出现在50km以外的局部特征,故只需对50km到200km部分的Jnf和Jpf数据进行检测。J nf and J pf represent the echo power at the negative and positive first-order bragg frequencies, respectively. Considering that the maximum detection range of high-frequency ground wave radar is about 200 km, and the ionospheric interference generally appears in local features beyond 50 km, it is only necessary to Detect the J nf and J pf data from 50km to 200km.
3.2)采用极大值检测方法,检测可能存在干扰的距离元序列Re。若第k个距离元满足:3.2) The maximum value detection method is used to detect the range element sequence R e that may have interference. If the kth distance element satisfies:
则认为该距离元k上的回波存在电离层干扰影响,k'=k-1表示在检测位置邻近雷达的距离元。Then it is considered that the echo on the distance element k is affected by ionospheric interference, and k'=k-1 represents the distance element adjacent to the radar at the detection position.
(4)对可能存在电离层干扰的距离元R’∈Re对应的FT1数据进行时频分析,具体为采用短时相干积累的滑窗FFT处理,获得低频率分辨率,高时间分辨率下的时频图,即时间多普勒谱Si(tj,f'),f'为短时FFT下的谱频率,i=1…N,j=1…L,L为滑窗快拍即时间,Re表示实际存在电离层干扰的距离元位置序列;;FFT点数为32或64,步长小于16。(4) Carry out time-frequency analysis on the FT1 data corresponding to the range element R'∈Re e that may have ionospheric interference, specifically by using short-term coherent accumulation sliding window FFT processing to obtain low frequency resolution and high time resolution The time-frequency diagram of , that is, the time Doppler spectrum S i (t j ,f'), f' is the spectral frequency under short-time FFT, i=1...N, j=1...L, L is the sliding window snapshot That is time, Re represents the range element position sequence that actually has ionospheric interference; ; FFT points are 32 or 64, and the step size is less than 16.
(5)进行N个通道能量平均,去除不同通道上随机出现的噪点影响:(5) Perform energy averaging of N channels to remove the influence of random noise on different channels:
表示单一距离元回波在短时FFT后,多通道能量平均下的时间多普勒谱。 Indicates the time Doppler spectrum under multi-channel energy averaging of a single range element echo after short-time FFT.
(6)利用电离层回波的短时宽频带特征,在一阶海流多普勒频率区间上对Bragg频率下的快拍数据进行干扰时间检测。(6) Using the short-term broadband characteristics of the ionospheric echo, the interference time detection is performed on the snapshot data at the Bragg frequency in the first-order current Doppler frequency range.
对于负一阶海流区有:
对于正一阶海流区有:
为重做二次FFT后,各通道能量平均后的时间多普勒谱,Δf′为待检测频率区间,取0.3fB;对不同频点分别获得干扰影响的快拍位置te,此处检测采用恒虚警率(CFAR)检测方法,为减小虚警概率,阈值采用E[]表示统计均值,σS为的标准差,λ在1到2之间取值。对于海洋回波而言,由于其短时平稳特征明显,其在检测下可完整保留。而对于时间上起伏明显的电离层干扰则能实现有效检测。 In order to redo the time Doppler spectrum after the energy average of each channel after the second FFT, Δf′ is the frequency interval to be detected, which is taken as 0.3f B ; the snapshot position t e of the interference effect is obtained for different frequency points, where The detection adopts the constant false alarm rate (CFAR) detection method. In order to reduce the probability of false alarm, the threshold adopts E[] represents the statistical mean, σ S is The standard deviation of , λ takes a value between 1 and 2. For the ocean echo, due to its obvious short-term stationary characteristics, it can be completely preserved under detection. However, for ionospheric disturbances with obvious fluctuations in time, effective detection can be achieved.
(7)对检测到的受干扰距离元和帧数t上的FT1回波数据进行置零处理,其中帧数的确定由快拍位置te和时频分析参数决定,对每个存在干扰的快拍te′而言,其对应的FT1帧为:(7) Perform zero-setting processing on the detected disturbed distance element and the FT1 echo data on the frame number t, where the determination of the frame number is determined by the snapshot position t e and the time-frequency analysis parameters. For the snapshot t e ′, the corresponding FT1 frame is:
tc=[1+(te′-1)p 2+(te′-1)p…s+(te′-1)p]t c =[1+(t e ′-1)p 2+(t e ′-1)p…s+(t e ′-1)p]
其中,s为短时傅里叶变换的点数,p为滑窗间隔;对于二维数据Xi(r,t)t=1…L如果r∈Re并且t∈tc,那么Xi(r,t)=0。Among them, s is the number of short-time Fourier transform points, and p is the sliding window interval; for two-dimensional data Xi (r,t)t=1...L if r∈R e and t∈t c , then Xi ( r,t)=0.
(8)重做第2次FFT,即重新再对各通道的每个距离元数据进行第二次FFT,获得各通道的距离多普勒谱Si(r,f)i=1…N,r=1…R,N为通道数,r为距离元,f为多普勒频率,此时电离层干扰已被抑制。(8) Redo the second FFT, that is, perform a second FFT on each range metadata of each channel to obtain the range Doppler spectrum S i (r,f)i=1...N of each channel, r=1...R, N is the number of channels, r is the distance element, f is the Doppler frequency, and the ionospheric interference has been suppressed at this time.
与现有技术相比,本发明具有以下优点和效果:Compared with the prior art, the present invention has the following advantages and effects:
1、本发明算法采用不同时间分辨率与频率分辨率的时频分析手段进行不同尺度下的干扰距离元与时间检测。在确定干扰发生的距离元情况时,采用大相干积累时间的FFT变换。而在确定电离层干扰发生的时段时采用短时积累时间和低步长的滑窗FFT时频分析方法,提高了检测的时间分辨率。1. The algorithm of the present invention uses time-frequency analysis means with different time resolutions and frequency resolutions to detect interference distance elements and time at different scales. When determining the distance elements where the interference occurs, the FFT transformation with a large coherent accumulation time is adopted. When determining the period of ionospheric interference, the sliding window FFT time-frequency analysis method with short accumulation time and low step size is used to improve the time resolution of detection.
2、本发明基于电离层干扰的空间和时间特征进行检测处理,首先利用其是在50~200km范围内有限距离元上的强信号特征,在距离元维度采用极大值检测方法确定干扰发生的距离元。然后利用其在时间上的短时大起伏特征和在频域上的宽频带特点,采用低频率分辨率而高时间分辨率的短时时频手段进行干扰发生的时段检测,抑制效果好。2. The present invention detects and processes based on the space and time characteristics of ionospheric interference. First, it uses the strong signal characteristics on the finite distance element within the range of 50-200km, and uses the maximum value detection method to determine the occurrence of interference in the distance element dimension. distance element. Then, using its short-term large fluctuation characteristics in time and wide-band characteristics in frequency domain, the short-time time-frequency method with low frequency resolution and high time resolution is used to detect the period of interference occurrence, and the suppression effect is good.
3、利用海洋回波在短时时频处理下统计特征稳定,可认为是平稳信号的特点,进行CFAR检测时,虚警率低。3. The statistical characteristics of the ocean echo are stable under short-term time-frequency processing, which can be considered as a stable signal. When performing CFAR detection, the false alarm rate is low.
4、本发明不考虑干扰来波方向的影响,仅在信号能量领域对其进行抑制处理。与其他滤波类方法对比,算法结构简单,实时性好。4. The present invention does not consider the influence of the incoming wave direction of the interference, and only suppresses it in the field of signal energy. Compared with other filtering methods, the algorithm has a simple structure and good real-time performance.
附图说明Description of drawings
图1为本发明提出的算法流程图;Fig. 1 is the algorithm flowchart that the present invention proposes;
图2为实际接收中的存在电离层干扰的FT1数据;Fig. 2 is the FT1 data with ionospheric interference in actual reception;
图3为干扰抑制前后的多普勒谱。Figure 3 is the Doppler spectrum before and after interference suppression.
具体实施方式Detailed ways
高频地波雷达采用线性调频中断连续波(FMICW)体制。在该波形体制下,海洋回波进入接收机后,经中频采样、数字下混频和第一次FFT变换(FT1变换)可实现海洋回波数据的距离元分离得到FT1回波数据Xi(r,t)t=1…L,r=1…R,L为FT1变换帧数,R为距离元数。FT1数据为二维矩阵,其各值代表了在距离元r处接收到的时刻t的时域回波。当电离层干扰发生时,实际接收数据中的若干个距离元上将有高强度、宽频域、短时长的干扰存在,图2给出了FT1数据中存在电离层干扰的状况。对应的距离元与时间段的海洋回波由于受到电离层的干扰而无法用于后续的海态参数反演,对其进行检测、确定干扰时段并进行抑制是本发明的主要目的,如图1所示,具体步骤如下:The high-frequency ground wave radar adopts the frequency-modulated interrupted continuous wave (FMICW) system. Under this waveform system, after the ocean echo enters the receiver, the distance element separation of the ocean echo data can be realized through intermediate frequency sampling, digital down-mixing and the first FFT transformation (FT1 transformation) to obtain the FT1 echo data X i ( r, t) t=1...L, r=1...R, L is the number of FT1 transform frames, and R is the distance element. FT1 data is a two-dimensional matrix, each value of which represents the time-domain echo received at time t at distance element r. When ionospheric interference occurs, there will be high-intensity, wide-frequency domain, and short-duration interference in several distance elements in the actual received data. Figure 2 shows the situation of ionospheric interference in FT1 data. The ocean echo corresponding to the distance element and time period cannot be used for subsequent sea state parameter inversion due to the interference of the ionosphere. It is the main purpose of the present invention to detect it, determine the interference period and suppress it, as shown in Figure 1 As shown, the specific steps are as follows:
(1)对雷达系统N个接收通道采样获得的原始回波进行第一次FFT处理(FT1变换)获得各距离元上的FT1回波数据Xi(r,t)t=1…L,r=1…R,L为FT1帧数,R为距离元数,再对各通道的回波进行第二次FFT,获得常规高频率分辨率下的各通道的距离多普勒谱Si(r,f)i=1…N,r=1…R,N为通道数,R为距离元数,f为多普勒频率,其中,N>4;(1) Perform the first FFT processing (FT1 transformation) on the original echoes obtained by sampling the N receiving channels of the radar system to obtain the FT1 echo data X i (r,t)t=1...L,r on each range element =1...R, L is the number of FT1 frames, R is the distance element, and then the second FFT is performed on the echoes of each channel to obtain the range Doppler spectrum S i (r , f) i=1...N, r=1...R, N is the number of channels, R is the distance element, f is the Doppler frequency, where N>4;
(2)对N个通道的距离多普勒谱进行能量平均: 为长时FFT后,多通道能量平均后的距离多普勒谱;(2) Perform energy averaging on the range Doppler spectra of N channels: is the range Doppler spectrum after multi-channel energy averaging after long-term FFT;
(3)利用电离层干扰只出现在一定的离散距离单元上,其能量远强于海杂波与目标回波的特点,在距离多普勒谱上一阶海杂波的周围频带内进行电离层干扰距离元位置检测,确定可能存在电离层干扰的回波距离元;(3) Using the characteristic that ionospheric interference only appears in a certain discrete distance unit, its energy is much stronger than that of sea clutter and target echo. Interference distance element position detection, determine the echo distance element that may have ionospheric interference;
3.1)确定待检测的频率区间Δf,以海流最大多普勒频移为准,取0.3fB,其中fB为当前雷达工作频率对应的布拉格(bragg)散射频率。计算所有距离元在待检测频率区间的功率和:3.1) Determine the frequency interval Δf to be detected, based on the maximum Doppler frequency shift of the ocean current, take 0.3f B , where f B is the Bragg scattering frequency corresponding to the current radar operating frequency. Calculate the power sum of all distance elements in the frequency interval to be detected:
对于负一阶海流区有:
对于正一阶海流区有:
Jnf和Jpf分别表示在负、正一阶bragg频率上的回波功率,考虑到高频地波雷达最大探测距离在200km左右,电离层干扰一般出现在50km以外的局部特征,故只需对50km到200km部分的Jnf和Jpf区间数据进行检测。J nf and J pf represent the echo power at the negative and positive first-order bragg frequencies, respectively. Considering that the maximum detection range of high-frequency ground wave radar is about 200 km, and the ionospheric interference generally appears in local features beyond 50 km, it is only necessary to Detect the J nf and J pf interval data from 50km to 200km.
3.2)由于各距离元回波并不具有统一的增益情况和统计特征,但对于电离层干扰发生的距离元上其回波能量将大于海杂波能量的特殊性,采用极大值检测方法。检测输出为可能存在干扰的距离元序列Re。若第k个距离元满足:3.2) Since the echoes of each range element do not have uniform gain and statistical characteristics, but for the particularity that the echo energy of the range element where ionospheric interference occurs will be greater than the energy of sea clutter, the maximum value detection method is adopted. The detection output is the range element sequence R e that may have interference. If the kth distance element satisfies:
则认为该距离元k上的回波存在电离层干扰影响,k'=k-1表示在检测位置邻近雷达的距离元。Then it is considered that the echo on the distance element k is affected by ionospheric interference, and k'=k-1 represents the distance element adjacent to the radar at the detection position.
(4)对可能存在电离层干扰的距离元R’∈Re对应的FT1数据进行时频分析,具体为采用短时相干积累的滑窗FFT处理,获得低频率分辨率,高时间分辨率下的时频图,即时间多普勒谱Si(tj,f'),f'短时FFT下的谱频率,i=1…N,j=1…L,L为滑窗快拍即时间,Re表示实际存在电离层干扰的距离元位置序列。(4) Carry out time-frequency analysis on the FT1 data corresponding to the range element R'∈Re e that may have ionospheric interference, specifically by using short-term coherent accumulation sliding window FFT processing to obtain low frequency resolution and high time resolution The time-frequency diagram of , that is, the time Doppler spectrum S i (t j , f'), the spectral frequency under the short-time FFT of f', i=1...N, j=1...L, L is the sliding window snapshot, namely Time, Re represents the range element position sequence where ionospheric interference actually exists.
(5)进行N个通道能量平均,去除不同通道上随机出现的噪点影响:(5) Perform energy averaging of N channels to remove the influence of random noise on different channels:
表示单一距离元回波在短时FFT后,多通道能量平均下的时间多普勒谱。 Indicates the time Doppler spectrum under multi-channel energy averaging of a single range element echo after short-time FFT.
(6)利用电离层回波的短时宽频带特征,在一阶海流多普勒频率区间上对相关Bragg频率下的快拍数据进行干扰时间检测。(6) Using the short-term broadband characteristics of the ionospheric echo, the interference time detection is performed on the snapshot data at the relevant Bragg frequency in the first-order current Doppler frequency interval.
对于负一阶海流区有:
对于正一阶海流区有:
为重做二次FFT后,各通道能量平均后的时间多普勒谱,Δf′为待检测频率区间,一般取0.3fB;对不同频点分别获得干扰影响的快拍位置te,此处检测采用CFAR检测方法。为减小虚警概率,阈值采用λ在1到2之间取值,σS为的标准差。对于海洋回波而言由于其短时平稳特征明显,其在检测下可完整保留。而对于时间上起伏明显的电离层干扰则能实现有效检测。 In order to redo the time Doppler spectrum after the energy average of each channel after the second FFT, Δf′ is the frequency interval to be detected, generally 0.3f B ; for different frequency points to obtain the snapshot position t e affected by the interference, here The CFAR detection method was used for detection. In order to reduce the probability of false alarm, the threshold adopts λ takes a value between 1 and 2, and σ S is standard deviation of . For the ocean echo, due to its obvious short-term stationary characteristics, it can be completely preserved under detection. However, for ionospheric disturbances with obvious fluctuations in time, effective detection can be achieved.
(7)对检测到的受干扰距离元和帧数t上的FT1回波数据进行置零处理,其中帧数的确定由快拍位置te和时频分析参数决定,对每个存在干扰的快拍te′而言,其对应的FT1帧为:(7) Perform zero-setting processing on the detected disturbed distance element and the FT1 echo data on the frame number t, where the determination of the frame number is determined by the snapshot position t e and the time-frequency analysis parameters. For the snapshot t e ′, the corresponding FT1 frame is:
tc=[1+(te′-1)p 2+(te′-1)p…s+(te′-1)p]t c =[1+(t e ′-1)p 2+(t e ′-1)p…s+(t e ′-1)p]
其中,s为短时傅里叶变换的点数,p为滑窗间隔。Among them, s is the number of short-time Fourier transform points, and p is the sliding window interval.
(8)重做第二次FFT,即重新再对各通道的每个距离元数据进行第二次FFT,获得各通道的距离多普勒谱Si(r,f)i=1…N,r=1…R,N为通道数,r为距离元,f为多普勒频率,此时电离层干扰已被抑制。(8) Redo the second FFT, that is, perform a second FFT on each range metadata of each channel to obtain the range Doppler spectrum S i (r, f)i=1...N of each channel, r=1...R, N is the number of channels, r is the distance element, f is the Doppler frequency, and the ionospheric interference has been suppressed at this time.
图2是实测的距离多普勒谱图。从图中可见,在100~130km处存在明显的电离层干扰,用本发明算法对该数据进行电离层干扰抑制,在120km处的抑制效果如图3所示。由图3可见,在120km上的多普勒谱经电离层干扰抑制后,其正向一阶Bragg峰明显突出,表明本发明算法能够极大地抑制电离层干扰。Figure 2 is the measured range Doppler spectrum. It can be seen from the figure that there is obvious ionospheric interference at 100-130 km, and the ionospheric interference suppression is performed on the data with the algorithm of the present invention, and the suppression effect at 120 km is shown in Fig. 3 . It can be seen from Fig. 3 that after the Doppler spectrum at 120 km is suppressed by ionospheric interference, its positive first-order Bragg peak is obviously prominent, indicating that the algorithm of the present invention can greatly suppress ionospheric interference.
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, but they will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410398977.3A CN104133198B (en) | 2014-08-13 | 2014-08-13 | Ionospheric interference suppressing method in a kind of high-frequency ground wave radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410398977.3A CN104133198B (en) | 2014-08-13 | 2014-08-13 | Ionospheric interference suppressing method in a kind of high-frequency ground wave radar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104133198A true CN104133198A (en) | 2014-11-05 |
CN104133198B CN104133198B (en) | 2016-09-28 |
Family
ID=51805943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410398977.3A Expired - Fee Related CN104133198B (en) | 2014-08-13 | 2014-08-13 | Ionospheric interference suppressing method in a kind of high-frequency ground wave radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104133198B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104635017A (en) * | 2015-02-11 | 2015-05-20 | 中国科学院空间科学与应用研究中心 | Method for calculating geomagnetically induced current of grid in middle-low latitude region |
CN105891787A (en) * | 2016-04-05 | 2016-08-24 | 哈尔滨工业大学 | First-order sea clutter detection method based on least squares approximation |
CN106291470A (en) * | 2016-07-28 | 2017-01-04 | 中国船舶重工集团公司第七〇九研究所 | A kind of based on the disturbance restraining method of feature during high-frequency ground wave radar ocean current result sky |
CN108872948A (en) * | 2018-08-01 | 2018-11-23 | 哈尔滨工业大学 | A kind of high-frequency ground wave radar ionospheric clutter suppressing method |
CN110398718A (en) * | 2019-06-26 | 2019-11-01 | 武汉大学 | A Radio Frequency Interference Suppression Method Based on FRFT Frequency Estimation Subspace |
CN110501683A (en) * | 2019-08-19 | 2019-11-26 | 杭州电子科技大学 | A classification method of sea and land clutter based on four-dimensional data features |
CN110988884A (en) * | 2019-12-30 | 2020-04-10 | 陇东学院 | Medium latitude ionosphere detection method based on high-frequency ground wave radar |
CN111505643A (en) * | 2020-04-22 | 2020-08-07 | 南京信息工程大学 | Small target detection method on sea surface based on deep learning of time-frequency map |
CN111630410A (en) * | 2018-01-18 | 2020-09-04 | 罗伯特·博世有限公司 | FMCW radar sensor |
CN112180354A (en) * | 2020-09-29 | 2021-01-05 | 武汉大学 | A joint detection method of high-frequency radar target using time-frequency analysis and constant false alarm technology |
CN112986946A (en) * | 2021-04-01 | 2021-06-18 | 武汉大学 | Method for inverting undirected sea wave spectrum by using multi-frequency high-frequency radar sea echo |
CN113064151A (en) * | 2021-03-18 | 2021-07-02 | 江苏蛮酷科技有限公司 | Method and device for processing subdivided Doppler velocity |
CN113552563A (en) * | 2021-07-16 | 2021-10-26 | 哈尔滨工业大学 | Method for analyzing correspondence between vertical measurement information and high-frequency ground wave radar clutter information |
CN117724056A (en) * | 2024-02-18 | 2024-03-19 | 中国科学院地质与地球物理研究所 | Space target interference removal method and system for incoherent scattering radar detection |
CN118625282A (en) * | 2024-08-12 | 2024-09-10 | 中国科学院空天信息创新研究院 | A method for recovering missing data of distributed spaceborne SAR |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030142011A1 (en) * | 2001-11-12 | 2003-07-31 | Telstra Corporation Limited | Surface wave radar |
US6919839B1 (en) * | 2004-11-09 | 2005-07-19 | Harris Corporation | Synthetic aperture radar (SAR) compensating for ionospheric distortion based upon measurement of the group delay, and associated methods |
CN101581782A (en) * | 2009-06-15 | 2009-11-18 | 武汉大学 | Method for inhibiting ionospheric clutter in portable high frequency groundwave radar |
CN103558597A (en) * | 2013-11-15 | 2014-02-05 | 武汉大学 | Method for detecting dim target in sea clutter on basis of spectrum kurtosis |
CN103954944A (en) * | 2014-05-14 | 2014-07-30 | 武汉大学 | Radio-frequency interference suppression method of high-frequency ground wave radar |
-
2014
- 2014-08-13 CN CN201410398977.3A patent/CN104133198B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030142011A1 (en) * | 2001-11-12 | 2003-07-31 | Telstra Corporation Limited | Surface wave radar |
US6919839B1 (en) * | 2004-11-09 | 2005-07-19 | Harris Corporation | Synthetic aperture radar (SAR) compensating for ionospheric distortion based upon measurement of the group delay, and associated methods |
CN101581782A (en) * | 2009-06-15 | 2009-11-18 | 武汉大学 | Method for inhibiting ionospheric clutter in portable high frequency groundwave radar |
CN103558597A (en) * | 2013-11-15 | 2014-02-05 | 武汉大学 | Method for detecting dim target in sea clutter on basis of spectrum kurtosis |
CN103954944A (en) * | 2014-05-14 | 2014-07-30 | 武汉大学 | Radio-frequency interference suppression method of high-frequency ground wave radar |
Non-Patent Citations (3)
Title |
---|
M. WU,ET AL: "IONOSPHERIC CLUTTER SUPPRESSION IN HF SURFACE WAVE RADAR", 《JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS》, vol. 23, no. 10, 3 April 2012 (2012-04-03) * |
孙孟彤: "高频地波雷达电离层杂波干扰特性研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》, 15 March 2014 (2014-03-15) * |
熊新农等: "基于时频分析的高频地波雷达电离层杂波抑制", 《系统工程与电子技术》, vol. 30, no. 8, 31 August 2008 (2008-08-31) * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104635017B (en) * | 2015-02-11 | 2017-09-26 | 中国科学院空间科学与应用研究中心 | A kind of method for calculating the geomagnetic induction current in mid low latitude region power network |
CN104635017A (en) * | 2015-02-11 | 2015-05-20 | 中国科学院空间科学与应用研究中心 | Method for calculating geomagnetically induced current of grid in middle-low latitude region |
CN105891787A (en) * | 2016-04-05 | 2016-08-24 | 哈尔滨工业大学 | First-order sea clutter detection method based on least squares approximation |
CN105891787B (en) * | 2016-04-05 | 2018-04-24 | 哈尔滨工业大学 | First-order sea clutter detection method based on least square approximation |
CN106291470A (en) * | 2016-07-28 | 2017-01-04 | 中国船舶重工集团公司第七〇九研究所 | A kind of based on the disturbance restraining method of feature during high-frequency ground wave radar ocean current result sky |
CN106291470B (en) * | 2016-07-28 | 2018-08-24 | 中国船舶重工集团公司第七一九研究所 | The disturbance restraining method of feature when a kind of ocean current result sky based on high-frequency ground wave radar |
CN111630410A (en) * | 2018-01-18 | 2020-09-04 | 罗伯特·博世有限公司 | FMCW radar sensor |
CN108872948A (en) * | 2018-08-01 | 2018-11-23 | 哈尔滨工业大学 | A kind of high-frequency ground wave radar ionospheric clutter suppressing method |
CN108872948B (en) * | 2018-08-01 | 2022-04-12 | 哈尔滨工业大学 | A method of ionospheric clutter suppression for high frequency ground wave radar |
CN110398718A (en) * | 2019-06-26 | 2019-11-01 | 武汉大学 | A Radio Frequency Interference Suppression Method Based on FRFT Frequency Estimation Subspace |
CN110501683A (en) * | 2019-08-19 | 2019-11-26 | 杭州电子科技大学 | A classification method of sea and land clutter based on four-dimensional data features |
CN110501683B (en) * | 2019-08-19 | 2021-06-04 | 杭州电子科技大学 | Sea-land clutter classification method based on four-dimensional data characteristics |
CN110988884A (en) * | 2019-12-30 | 2020-04-10 | 陇东学院 | Medium latitude ionosphere detection method based on high-frequency ground wave radar |
CN111505643A (en) * | 2020-04-22 | 2020-08-07 | 南京信息工程大学 | Small target detection method on sea surface based on deep learning of time-frequency map |
CN112180354A (en) * | 2020-09-29 | 2021-01-05 | 武汉大学 | A joint detection method of high-frequency radar target using time-frequency analysis and constant false alarm technology |
CN112180354B (en) * | 2020-09-29 | 2022-08-16 | 武汉大学 | High-frequency radar target joint detection method utilizing time-frequency analysis and constant false alarm technology |
CN113064151A (en) * | 2021-03-18 | 2021-07-02 | 江苏蛮酷科技有限公司 | Method and device for processing subdivided Doppler velocity |
CN113064151B (en) * | 2021-03-18 | 2024-01-30 | 江苏蛮酷科技有限公司 | Subdivision Doppler speed processing method and device |
CN112986946A (en) * | 2021-04-01 | 2021-06-18 | 武汉大学 | Method for inverting undirected sea wave spectrum by using multi-frequency high-frequency radar sea echo |
CN112986946B (en) * | 2021-04-01 | 2022-06-14 | 武汉大学 | Method for inverting undirected sea wave spectrum by using multi-frequency high-frequency radar sea echo |
CN113552563A (en) * | 2021-07-16 | 2021-10-26 | 哈尔滨工业大学 | Method for analyzing correspondence between vertical measurement information and high-frequency ground wave radar clutter information |
CN117724056A (en) * | 2024-02-18 | 2024-03-19 | 中国科学院地质与地球物理研究所 | Space target interference removal method and system for incoherent scattering radar detection |
CN117724056B (en) * | 2024-02-18 | 2024-04-09 | 中国科学院地质与地球物理研究所 | Method and system for removing interference from space targets detected by incoherent scattering radar |
CN118625282A (en) * | 2024-08-12 | 2024-09-10 | 中国科学院空天信息创新研究院 | A method for recovering missing data of distributed spaceborne SAR |
CN118625282B (en) * | 2024-08-12 | 2024-10-15 | 中国科学院空天信息创新研究院 | Distributed spaceborne SAR missing data recovery method |
Also Published As
Publication number | Publication date |
---|---|
CN104133198B (en) | 2016-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104133198B (en) | Ionospheric interference suppressing method in a kind of high-frequency ground wave radar | |
Wang | CFAR-based interference mitigation for FMCW automotive radar systems | |
Anderson et al. | A unified approach to detection, classification, and correction of ionospheric distortion in HF sky wave radar systems | |
Hao et al. | Persymmetric adaptive detection and range estimation of a small target | |
Wang et al. | Radio frequency interference cancellation for sea-state remote sensing by high-frequency radar | |
CN108872948B (en) | A method of ionospheric clutter suppression for high frequency ground wave radar | |
CN104155632A (en) | Improved subspace sea clutter suppression method based on local correlation | |
Cai et al. | First demonstration of RFI mitigation in the phase synchronization of LT-1 bistatic SAR | |
CN110045337B (en) | Radio Frequency Interference Suppression Method for High Frequency Ground Wave Radar Based on Tension Quantum Space Projection | |
CN110398718B (en) | Radio frequency interference suppression method based on FRFT frequency estimation subspace | |
CN110632573B (en) | Airborne broadband radar space-time two-dimensional keystone transformation method | |
Tian et al. | Radio frequency interference suppression algorithm in spatial domain for compact high-frequency radar | |
CN103913725A (en) | Aircraft radar ground moving target detection method under intensive forwarding type interference environment | |
CN105403864A (en) | Two-dimension high-frequency ground wave radar sea clutter suppression method | |
Yang et al. | Spatial deception suppression for wideband linear frequency modulation signals based on fractional Fourier transform with robust adaptive beamforming | |
Zhang et al. | Composite indicator for detecting and localizing time-varying RFI in SAR raw data | |
Kelly et al. | RFI suppression and sparse image formation for UWB SAR | |
Li et al. | Joint correction method for ionospheric phase pollution of high‐frequency sky‐surface wave radar based on adaptive optimal path | |
Zhou et al. | Portable high frequency surface wave radar OSMAR-S | |
Wang et al. | ECCM Scheme against SMSP Interference Based on Interference Reconstruction | |
Luo et al. | An effective scheme for radio frequency interference suppression in high-frequency radar | |
Guo et al. | New BSS‐based ABF for heterogeneous ionospheric clutter mitigation in HFSWR | |
CN114814738A (en) | Self-adaptive reference distance unit selection method for high-frequency radar radio frequency interference suppression | |
Wang et al. | Sample Selection Method and Solution to Interference Incidence Angle Variation in Multi-Channel SAR Anti-Jamming Based on ADBF | |
Tang et al. | A new target detection method for noncooperative bistatic radar based on fractional Fourier transform and wavelet transform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160928 Termination date: 20190813 |