CN104128184B - A kind of float type CoFe2O4/TiO2/ float bead composite photochemical catalyst and preparation method thereof - Google Patents
A kind of float type CoFe2O4/TiO2/ float bead composite photochemical catalyst and preparation method thereof Download PDFInfo
- Publication number
- CN104128184B CN104128184B CN201410286125.5A CN201410286125A CN104128184B CN 104128184 B CN104128184 B CN 104128184B CN 201410286125 A CN201410286125 A CN 201410286125A CN 104128184 B CN104128184 B CN 104128184B
- Authority
- CN
- China
- Prior art keywords
- tio
- float
- floating
- cofe
- pearl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011324 bead Substances 0.000 title claims abstract description 85
- 239000003054 catalyst Substances 0.000 title claims abstract description 45
- 239000002131 composite material Substances 0.000 title claims abstract description 35
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 229910002518 CoFe2O4 Inorganic materials 0.000 title claims 3
- 238000007667 floating Methods 0.000 claims abstract description 107
- 239000011941 photocatalyst Substances 0.000 claims abstract description 67
- 239000010881 fly ash Substances 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 238000003756 stirring Methods 0.000 claims description 21
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 12
- 230000001699 photocatalysis Effects 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 10
- 239000012153 distilled water Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 7
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 4
- 238000007146 photocatalysis Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 2
- 230000004913 activation Effects 0.000 claims 1
- 230000032683 aging Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000008236 heating water Substances 0.000 claims 1
- 230000009182 swimming Effects 0.000 claims 1
- 229910010413 TiO 2 Inorganic materials 0.000 abstract description 71
- 229910003321 CoFe Inorganic materials 0.000 abstract description 49
- 238000001179 sorption measurement Methods 0.000 abstract description 11
- 239000002351 wastewater Substances 0.000 abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- 230000015556 catabolic process Effects 0.000 description 19
- 238000006731 degradation reaction Methods 0.000 description 19
- 239000010936 titanium Substances 0.000 description 13
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 12
- 229960000907 methylthioninium chloride Drugs 0.000 description 12
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 10
- 230000003197 catalytic effect Effects 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 239000010941 cobalt Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000002957 persistent organic pollutant Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- 229910002656 O–Si–O Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000005447 environmental material Substances 0.000 description 1
- 238000003933 environmental pollution control Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂及其制备方法,用于处理有机废水的CoFe2O4/TiO2/漂珠复合光催化剂及其制备方法,包括催化剂活性成分和催化剂载体,所述催化剂活性成分及重量百分含量分别为:Co为0.5-1wt%;Fe为1-2wt%;Ti为12-18wt%;余分为粉煤灰漂珠催化剂载体。所得CoFe2O4/TiO2/漂珠复合光催化剂,漂珠表面TiO2膜上负载有CoFe2O4,增大了比表面积,提高了吸附性能。
The invention discloses a floating CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst and a preparation method thereof, a CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst for treating organic wastewater and a preparation method thereof. Including catalyst active components and catalyst carrier, the catalyst active components and weight percentages are respectively: Co is 0.5-1wt%; Fe is 1-2wt%; Ti is 12-18wt%; the rest is fly ash floating bead catalyst carrier. The obtained CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst is loaded with CoFe 2 O 4 on the TiO2 film on the surface of the floating bead, which increases the specific surface area and improves the adsorption performance.
Description
技术领域technical field
本发明涉及环境材料制备技术领域,特别涉及一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂及其制备方法。The invention relates to the technical field of environmental material preparation, in particular to a floating CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst and a preparation method thereof.
背景技术Background technique
利用半导体及复合半导体光催化降解有机污染物,近年来在环境污染治理中取得较好的研究效果。TiO2作为光催化剂,具有良好的化学稳定性、成本低、无毒、原料容易获得,而且能直接利用太阳光中的可见光作为激发光源来进行催化氧化,无二次污染,更加绿色环保。因此,光催化在能源和环境治理方面具有广泛的应用前景。但TiO2光催化氧化技术在实际应用过程中也存在一些不足之处。例如:TiO2光催化剂量子效率低,选择吸附性差,固化条件苛刻,易凝聚、易失活等。且光谱响应范围在紫外光区,太阳光谱中可见光部分不能有效利用,限制了其工业应用。针对TiO2光催化氧化技术存在的不足,目前国内外相关文献主要对TiO2光催化剂进行两个方面的改性研究:一是通过掺杂改性;二是开发研究负载型光催化剂,使其在实际应用中得到更好地利用。The use of semiconductors and compound semiconductors to photocatalyze the degradation of organic pollutants has achieved good research results in environmental pollution control in recent years. As a photocatalyst, TiO 2 has good chemical stability, low cost, non-toxicity, easy access to raw materials, and can directly use visible light in sunlight as an excitation light source for catalytic oxidation, without secondary pollution, and is more environmentally friendly. Therefore, photocatalysis has broad application prospects in energy and environmental governance. However, TiO 2 photocatalytic oxidation technology also has some shortcomings in the actual application process. For example: TiO 2 photocatalyst has low quantum efficiency, poor selective adsorption, harsh curing conditions, easy aggregation and deactivation, etc. Moreover, the spectral response range is in the ultraviolet region, and the visible part of the solar spectrum cannot be effectively utilized, which limits its industrial application. In view of the shortcomings of TiO 2 photocatalytic oxidation technology, the relevant literature at home and abroad mainly conducts research on the modification of TiO 2 photocatalysts in two aspects: one is modification by doping; the other is the development and research of supported photocatalysts to make them be better utilized in practical applications.
粉煤灰漂珠来源于火电厂产生的粉煤灰,价格便宜,来源广泛,是一种具有更大比表面积的多孔介质材料,可以提高对有机污染物的吸附效果。近年来这种改性粉煤灰光催化剂在废水处理方面得到了广泛的应用。以漂珠为载体的光催化剂可以漂浮与水面,有利于回收和重复使用,不仅解决传统光催化剂易凝聚、易失活等缺点。利用磁性材料对TiO2进行掺杂形成的复合催化剂,有利于催化剂的回收和再利用,拓展了复合催化剂的光响应范围,而且可以提高改性粉煤灰漂珠光催化剂在紫外光区的催化活性,可以使其光响应波长从紫外光区移至可见光区,提高太阳光的利用率。低成本、高效、易回收的光催化剂的研制将具有重要意义。Fly ash floating beads are derived from fly ash produced by thermal power plants. They are cheap and have a wide range of sources. They are porous media materials with a larger specific surface area, which can improve the adsorption effect on organic pollutants. In recent years, this modified fly ash photocatalyst has been widely used in wastewater treatment. The photocatalyst with floating beads as the carrier can float on the water surface, which is conducive to recycling and reuse, and not only solves the shortcomings of traditional photocatalysts such as easy condensation and deactivation. The composite catalyst formed by doping TiO2 with magnetic materials is beneficial to the recovery and reuse of the catalyst, expands the photoresponse range of the composite catalyst, and can improve the catalytic activity of the modified fly ash bleached pearlescent catalyst in the ultraviolet region , can make its photoresponse wavelength shift from the ultraviolet region to the visible region, and improve the utilization rate of sunlight. The development of low-cost, high-efficiency, and easy-to-recycle photocatalysts will be of great significance.
发明内容Contents of the invention
为解决上述现有技术存在的问题,本发明的一个目的在于提供一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂,与目前的光催化剂相比,CoFe2O4/TiO2/漂珠复合光催化剂可以漂浮于水面,充分吸收太阳光,提高光催化降解效果。经掺杂的TiO2/漂珠复合光催化剂使其光响应波长从紫外光区移至可见光区,提高太阳光的利用率。催化剂载体采用空心漂珠,廉价易得,成本低,有效提高了光催化剂使用寿命。采用CoFe2O4作为催化剂活性成分,具有磁性,易于回收和重复利用。本发明的另一目的是提供一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂制备方法,以粉煤灰空心漂珠作为载体,将TiO2负载在粉煤灰漂珠上,然后在TiO2表面负载CoFe2O4颗粒,使得这种改性粉煤灰漂珠光催化剂能够重复回收利用。CoFe2O4/TiO2拓展了复合催化剂的光响应范围,因而复合催化剂具有较高太阳光催化活性。In order to solve the above-mentioned problems in the prior art, an object of the present invention is to provide a floating type CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst, compared with the current photocatalyst, CoFe 2 O 4 /TiO 2 /Floating bead composite photocatalyst can float on the water surface, fully absorb sunlight, and improve the photocatalytic degradation effect. The doped TiO 2 /floating bead composite photocatalyst shifts the photoresponse wavelength from the ultraviolet region to the visible region, improving the utilization rate of sunlight. The catalyst carrier adopts hollow floating beads, which are cheap and easy to obtain, and the cost is low, which effectively improves the service life of the photocatalyst. CoFe 2 O 4 is used as the active component of the catalyst, which is magnetic and easy to recycle and reuse. Another object of the present invention is to provide a method for preparing a floating type CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst, using fly ash hollow floating beads as a carrier, and TiO2 is loaded on the fly ash floating beads, Then, CoFe 2 O 4 particles were supported on the surface of TiO 2 , so that this modified fly ash bleached pearlescent catalyst could be recycled repeatedly. CoFe 2 O 4 /TiO 2 expands the photoresponse range of the composite catalyst, so the composite catalyst has higher solar photocatalytic activity.
为达到上述目的,本发明的技术方案为:To achieve the above object, the technical solution of the present invention is:
一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂,包括催化剂活性成分和催化剂载体,各组分按重量百分含量分别为:Co为0.5-1wt%;Fe为1-2wt%;Ti为12-18wt%;其余为粉煤灰漂珠催化剂载体。A floating-type CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst, including catalyst active components and catalyst supports, and the contents of each component by weight percentage are: Co is 0.5-1wt%; Fe is 1-2wt% ; Ti is 12-18wt%; the rest is fly ash floating bead catalyst carrier.
进一步的,所述光催化剂中,各组分按重量百分含量分别为:Co为0.7wt%;Fe为1.5wt%;Ti为15wt%,其余为粉煤灰漂珠催化剂载体。Further, in the photocatalyst, the components by weight percentage are: Co is 0.7wt%, Fe is 1.5wt%, Ti is 15wt%, and the rest is fly ash floating bead catalyst carrier.
一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂的制备方法,所述方法包括如下步骤:A kind of preparation method of floating type CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst, described method comprises the following steps:
步骤一、漂珠的预处理Step 1. Pretreatment of floating beads
配制10%的稀硝酸,将粉煤灰漂珠浸泡其中15-24h、过滤、用去离子水漂洗至中性后烘干,然后放于马弗炉中,在400-500℃下煅烧2-4h将其中未去除的有机物碳化,因为漂珠中含有未燃尽的有机碳,会影响漂珠的表面积和吸附能力,煅烧使之变成CO2,能增大漂珠比表面积,增大孔隙率,提高吸附性能,减轻漂珠质量,使之更好地漂浮起来,有利于TiO2的负载,提高光催化性能,用蒸馏水漂洗分选出完全漂浮在水面上的漂珠,经过过滤干燥过筛后,选取粒径为100-125um的漂珠作为催化剂的载体;Prepare 10% dilute nitric acid, soak fly ash beads in it for 15-24 hours, filter, rinse with deionized water until neutral, then dry, then put in muffle furnace, calcined at 400-500°C for 2- 4h to carbonize the unremoved organic matter, because the floating beads contain unburned organic carbon, which will affect the surface area and adsorption capacity of the floating beads, and calcine them into CO 2 , which can increase the specific surface area of the floating beads and increase the pores efficiency, improve the adsorption performance, reduce the quality of the floating beads, and make them float better, which is beneficial to the loading of TiO 2 and improve the photocatalytic performance. Rinse with distilled water to sort out the floating beads that are completely floating on the water surface, and filter and dry them. After sieving, select floating beads with a particle size of 100-125um as the carrier of the catalyst;
步骤二、TiO2溶胶的制备Step 2, TiO sol preparation
室温下在每80-100mL无水乙醇中加入30-40mL钛酸丁酯并不断搅拌,充分溶解后加入10-12mL乙酰丙酮,得到A溶液,因为钛酸四丁酯与蒸馏水发生水解反应生成TiO2溶胶,钛酸丁酯的水解十分剧烈,所以加入乙酰丙酮作为它的抑制剂,乙酰丙酮与钛酸丁酯形成配位体,使大量的水不能去除,这些配位体阻止了水解反应进行,和TiO2进一步的聚合,形成稳定的胶体溶液;1.5-2.0mL蒸馏水和50mL无水乙醇充分混合后得到B溶液;无水乙醇作为钛酸丁酯的溶剂,可以使形成的溶胶黏度变小,凝胶变薄且均匀,另外,混合溶剂可以减缓水解反应速率,使之形成的TiO2膜分散均匀,单一的水作为溶剂会使形成的TiO2聚合而不均匀。在不断搅拌的条件下将B溶液逐滴加入A溶液中,并用浓硝酸调节其pH为4-5,搅拌l-2h使其充分反应,然后加入2-3g聚乙二醇,温度上升到50℃并继续搅拌l-1.5h,即得到黄色透明的TiO2溶胶,置于室温下陈化12-15h;At room temperature, add 30-40mL butyl titanate to 80-100mL absolute ethanol and keep stirring. After fully dissolving, add 10-12mL acetylacetone to obtain A solution, because tetrabutyl titanate reacts with distilled water to form TiO 2 Sol, the hydrolysis of butyl titanate is very violent, so acetylacetone is added as its inhibitor, acetylacetone and butyl titanate form ligands, so that a large amount of water cannot be removed, and these ligands prevent the hydrolysis reaction from proceeding , and further polymerization with TiO 2 to form a stable colloidal solution; 1.5-2.0mL distilled water and 50mL absolute ethanol are fully mixed to obtain B solution; absolute ethanol is used as a solvent for butyl titanate, which can reduce the viscosity of the formed sol , the gel becomes thinner and uniform. In addition, the mixed solvent can slow down the hydrolysis reaction rate and make the TiO2 film formed uniformly dispersed. A single water as a solvent will make the formed TiO2 polymerized unevenly. Add solution B dropwise to solution A under constant stirring, and adjust its pH to 4-5 with concentrated nitric acid, stir for 1-2 hours to make it fully react, then add 2-3g polyethylene glycol, and the temperature rises to 50 ℃ and continue to stir for 1-1.5h to obtain a yellow and transparent TiO 2 sol, which is aged at room temperature for 12-15h;
步骤三、TiO2/漂珠负载型光催化剂的制备Step 3. Preparation of TiO 2 /floating bead-supported photocatalyst
将30-40g活化过的漂珠放于入制备好的TiO2溶胶中,室温下持续搅拌1-1.5h使漂珠载体与溶胶完全混合,然后水浴加热至80℃使溶液蒸至近干,放入恒温干燥箱80℃烘干,然后在马弗炉中匀速加热至500℃煅烧2h,冷却至室温后取出备用,将漂珠重复与溶胶混合、烘干、煅烧、冷却,重复此过程3次,目的是使漂珠上均匀形成三层TiO2膜,提高吸附性和光催化活性;Put 30-40g of activated floating beads into the prepared TiO 2 sol, and keep stirring at room temperature for 1-1.5h to completely mix the floating beads carrier with the sol, then heat in a water bath to 80°C to evaporate the solution to nearly dryness, and put Dry it in a constant temperature drying oven at 80°C, then heat it in a muffle furnace at a constant speed to 500°C for 2 hours, take it out after cooling to room temperature, and repeat the process of mixing the beads with the sol, drying, calcining, and cooling for 3 times , the purpose is to uniformly form a three-layer TiO2 film on the floating beads to improve adsorption and photocatalytic activity;
步骤四、CoFe2O4-TiO2/漂珠负载型光催化剂的制备Step 4. Preparation of CoFe 2 O 4 -TiO 2 /floating bead-supported photocatalyst
分别取20mL0.02mol/LCo(NO3)2溶液和80mL0.01mol/LFe(NO3)3溶液(n(Co(NO3)2):n(Fe(NO3)3)=1:2)充分混合后加入60ml0.02mol/L柠檬酸(金属总物质的量与柠檬酸的物质的量之比为1:1),不断搅拌,用浓氨水调整pH至5~6,在80℃水浴锅中匀速搅拌1-2h后,加入20-30gTiO2漂珠,Co(NO3)2溶液体积:TiO2漂珠为1:1-1.5ml/g,继续加热蒸至近干,在120℃烘箱中烘干后移入马弗炉中在500℃下焙烧2h冷却至室温备用。将得到的催化剂样品经蒸馏水漂洗,漂浮部分收集起来在105℃烘箱烘2-4h,冷却,即制得所需CoFe2O4/TiO2/漂珠复合光催化剂。Take 20mL0.02mol/LCo(NO 3 ) 2 solution and 80mL0.01mol/LFe(NO 3 ) 3 solution respectively (n(Co(NO 3 ) 2 ):n(Fe(NO 3 ) 3 )=1:2) After fully mixing, add 60ml of 0.02mol/L citric acid (the ratio of the amount of total metal substances to the amount of citric acid is 1:1), stir continuously, adjust the pH to 5-6 with concentrated ammonia water, and place in a water bath at 80°C After stirring at a medium speed for 1-2 hours, add 20-30g of TiO 2 floating beads, the volume of Co(NO 3 ) 2 solution: TiO 2 floating beads is 1:1-1.5ml/g, continue heating and steaming until nearly dry, and place in an oven at 120°C After drying, move it into a muffle furnace and bake at 500°C for 2h and cool to room temperature for later use. The obtained catalyst sample was rinsed with distilled water, and the floating part was collected and baked in an oven at 105°C for 2-4 hours, and then cooled to obtain the desired CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst.
进一步的,所述钴盐用量以催化剂中钴的重量计为光催化剂CoFe2O4/TiO2/漂珠复合光催化剂的0.5-1wt%;Fe为1-2wt%;Ti为12-18wt%;余分为粉煤灰漂珠催化剂载体。所述铁盐用量以催化剂中铁的重量计为光催化剂CoFe2O4/TiO2/漂珠复合光催化剂的1-2wt%,所述钛用量以催化剂中钛的重量计为光催化剂CoFe2O4/TiO2/漂珠复合光催化剂的12-18wt%。Further, the amount of the cobalt salt is 0.5-1wt% of the photocatalyst CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst based on the weight of cobalt in the catalyst; Fe is 1-2wt%; Ti is 12-18wt% ; The rest is divided into fly ash floating bead catalyst carrier. The amount of the iron salt is 1-2wt% of the photocatalyst CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst by the weight of iron in the catalyst, and the amount of titanium is the photocatalyst CoFe 2 O by the weight of titanium in the catalyst. 12-18wt% of 4 /TiO 2 /floating bead composite photocatalyst.
进一步的,所述的钴、铁可溶性盐分别选自如下化合物:硝酸钴、钼酸铁、硝酸铜、硝酸镍、硝酸锌、硝酸铋中的任一种,所述钛来自钛酸丁酯。Further, the cobalt and iron soluble salts are respectively selected from the following compounds: any one of cobalt nitrate, iron molybdate, copper nitrate, nickel nitrate, zinc nitrate, bismuth nitrate, and the titanium comes from butyl titanate.
相对于现有技术,本发明的有益效果为:本发明提供一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂,与目前的光催化剂相比,CoFe2O4/TiO2/漂珠复合光催化剂可以漂浮于水面,充分吸收太阳光,提高光催化降解效果。经掺杂的TiO2/漂珠复合光催化剂使其光响应波长从紫外光区移至可见光区,提高太阳光的利用率。催化剂载体采用空心漂珠,廉价易得,成本低,有效提高了光催化剂使用寿命。采用CoFe2O4作为催化剂活性成分,具有磁性,易于回收和重复利用。本发明的优点在于采用比表面积较大,具有较强的吸附、光催化功能、廉价易得的粉煤灰空心漂珠作为催化剂载体,漂浮于水中,催化活性组分具有磁性的为钴、铁、钛复合组分,钴、铁、钛复合组分以颗粒形式分布在漂珠表面,增大了表面积和吸附性能,使有机废水更好的光催化性能,提高有机物降解率。可以使其光响应波长从紫外光区移至可见光区,提高太阳光的利用率。该催化剂制备简单、催化活性强、具有磁性、可回收重复利用,具有潜在、较好的处理漂浮有机污染物的优点。Compared with the prior art, the beneficial effects of the present invention are: the present invention provides a floating type CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst, compared with the current photocatalyst, CoFe 2 O 4 /TiO 2 / The floating bead composite photocatalyst can float on the water surface, fully absorb sunlight, and improve the photocatalytic degradation effect. The doped TiO 2 /floating bead composite photocatalyst shifts the photoresponse wavelength from the ultraviolet region to the visible region, improving the utilization rate of sunlight. The catalyst carrier adopts hollow floating beads, which are cheap and easy to obtain, and the cost is low, which effectively improves the service life of the photocatalyst. CoFe 2 O 4 is used as the active component of the catalyst, which is magnetic and easy to recycle and reuse. The advantage of the present invention is that the fly ash hollow floating beads with large specific surface area, strong adsorption and photocatalysis functions, cheap and easy to obtain are used as the catalyst carrier and floated in water. The catalytically active components with magnetic properties are cobalt and iron. , Titanium composite components, cobalt, iron, titanium composite components are distributed on the surface of floating beads in the form of particles, which increases the surface area and adsorption performance, makes organic wastewater better photocatalytic performance, and improves the degradation rate of organic matter. The photoresponse wavelength can be shifted from the ultraviolet region to the visible region, and the utilization rate of sunlight can be improved. The catalyst is simple to prepare, has strong catalytic activity, is magnetic, can be recycled and reused, and has the advantages of potential and better treatment of floating organic pollutants.
附图说明Description of drawings
图1是CoFe2O4-TiO2/漂珠负载型光催化剂的扫描电镜图。Fig. 1 is a scanning electron micrograph of CoFe 2 O 4 -TiO 2 /floating bead supported photocatalyst.
图2是TiO2/漂珠负载型光催化剂和CoFe2O4-TiO2/漂珠负载型光催化剂的固体紫外-可见光谱图。Fig. 2 is a solid ultraviolet-visible spectrum diagram of TiO 2 /floating bead-supported photocatalyst and CoFe 2 O 4 -TiO 2 /floating bead-supported photocatalyst.
图3为CoFe2O4/TiO2/漂珠的FT-IR谱图。Figure 3 is the FT-IR spectrum of CoFe 2 O 4 /TiO 2 /floating beads.
图4为CoFe2O4-TiO2/漂珠负载型光催化剂光催化降解亚甲蓝溶液的时间降解率图。Fig. 4 is a diagram of the time degradation rate of the photocatalytic degradation of methylene blue solution by the CoFe 2 O 4 -TiO 2 /floating bead supported photocatalyst.
图5为CoFe2O4-TiO2/漂珠负载型光催化剂光催化降解苯酚溶液的时间降解率图。Fig. 5 is a graph of time degradation rate of photocatalytic degradation of phenol solution by CoFe 2 O 4 -TiO 2 /floating bead supported photocatalyst.
图6为未煅烧的漂珠作为载体负载的CoFe2O4-TiO2光催化剂和已煅烧的漂珠作为载体进行负载的CoFe2O4-TiO2光催化剂,进行亚甲蓝溶液光催化降解实验的时间降解率图。Figure 6 shows the CoFe 2 O 4 -TiO 2 photocatalyst loaded with uncalcined floating beads as a carrier and the CoFe 2 O 4 -TiO 2 photocatalyst loaded with calcined floating beads as a carrier for photocatalytic degradation of methylene blue solution The time degradation rate graph of the experiment.
具体实施方式detailed description
下面结合附图及具体实施方式对本发明方案做进一步详细描述,The scheme of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments,
实施例1Example 1
一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂,各组分按重量百分含量分别为:Co为0.7wt%;Fe为1.5wt%;Ti为15wt%,其余为粉煤灰漂珠催化剂载体。A floating type CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst, the components by weight percentage are: Co is 0.7wt%; Fe is 1.5wt%; Ti is 15wt%, and the rest is pulverized coal Gray floating bead catalyst carrier.
上述漂浮型CoFe2O4/TiO2/漂珠复合光催化剂的制备方法,包括如下步骤:The preparation method of the floating type CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst comprises the following steps:
1)漂珠的预处理1) Pretreatment of floating beads
配制10%的稀硝酸,将粉煤灰漂珠浸泡其中15h、过滤、用去离子水漂洗至中性后烘干,然后放于马弗炉中,在400℃下煅烧2h将其中未去除的有机物碳化。用蒸馏水漂洗分选出完全漂浮在水面上的漂珠,经过过滤干燥过筛后,选取粒径为100-125um的漂珠作为催化剂的载体;Prepare 10% dilute nitric acid, soak the fly ash floating beads in it for 15 hours, filter, rinse with deionized water until neutral, then dry it, then put it in a muffle furnace, and calcinate it at 400°C for 2 hours to remove the unremoved Carbonization of organic matter. Rinse with distilled water to sort out the floating beads that are completely floating on the water surface. After filtering, drying and sieving, select the floating beads with a particle size of 100-125um as the carrier of the catalyst;
2)TiO2溶胶的制备2) Preparation of TiO 2 sol
室温下在100mL无水乙醇中加入40mL钛酸丁酯并不断搅拌,充分溶解后加入10mL乙酰丙酮,得到A溶液;2.0mL蒸馏水和50mL无水乙醇充分混合后得到B溶液。在不断搅拌的条件下将B溶液逐滴加入A溶液中,并用浓硝酸调节其pH为4-5,搅拌l-2h使其充分反应,然后加入3g聚乙二醇,温度上升到50℃并继续搅拌lh,即得到黄色透明的TiO2溶胶,置于室温下陈化12h。Add 40mL of butyl titanate to 100mL of absolute ethanol at room temperature and keep stirring. After fully dissolving, add 10mL of acetylacetone to obtain A solution; 2.0mL of distilled water and 50mL of absolute ethanol are fully mixed to obtain B solution. Add solution B dropwise to solution A under constant stirring, adjust its pH to 4-5 with concentrated nitric acid, stir for 1-2 hours to fully react, then add 3g of polyethylene glycol, the temperature rises to 50°C and Stirring was continued for 1h, and a yellow transparent TiO 2 sol was obtained, which was aged at room temperature for 12h.
3)TiO2/漂珠负载型光催化剂的制备3) Preparation of TiO 2 /floating bead-supported photocatalyst
将30g活化过的漂珠放于入制备好的TiO2溶胶中,室温下持续搅拌1.5h使漂珠载体与溶胶完全混合,然后水浴加热至80℃使溶液蒸至近干,放入恒温干燥箱(80℃)烘干,然后在马弗炉中匀速加热至500℃煅烧2h,冷却至室温后取出备用,将漂珠重复与溶胶混合、烘干、煅烧、冷却,重复此过程3次。Put 30g of activated floating beads into the prepared TiO 2 sol, and keep stirring at room temperature for 1.5h to completely mix the floating beads carrier with the sol, then heat in a water bath to 80°C to evaporate the solution to nearly dry, and put it in a constant temperature drying oven (80°C) drying, then heating to 500°C at a constant speed in a muffle furnace for calcination for 2 hours, cooling to room temperature, taking out for later use, repeated mixing of floating beads with sol, drying, calcination, and cooling, repeating this process 3 times.
4)CoFe2O4-TiO2/漂珠负载型光催化剂的制备4) Preparation of CoFe 2 O 4 -TiO 2 /floating bead-supported photocatalyst
分别取20mL0.02mol/LCo(NO3)2溶液和80mL0.01mol/LFe(NO3)3溶液(n(Co(NO3)2):n(Fe(NO3)3)=1:2)充分混合后加入60ml0.02mol/L柠檬酸(金属总物质的量与柠檬酸的物质的量之比为1:1),不断搅拌,用浓氨水调整pH至5~6,在80℃水浴锅中匀速搅拌2h后,加入30gTiO2/漂珠,继续加热蒸至近干,在120℃烘箱中烘干后移入马弗炉中在500℃下焙烧2h冷却至室温备用。将得到的催化剂样品经蒸馏水漂洗,漂浮部分收集起来在105℃烘箱烘4h,冷却,即制得所需CoFe2O4/TiO2/漂珠复合光催化剂。其形貌图如图1所示。Take 20mL0.02mol/LCo(NO 3 ) 2 solution and 80mL0.01mol/LFe(NO 3 ) 3 solution respectively (n(Co(NO 3 ) 2 ):n(Fe(NO 3 ) 3 )=1:2) After fully mixing, add 60ml of 0.02mol/L citric acid (the ratio of the amount of total metal substances to the amount of citric acid is 1:1), stir continuously, adjust the pH to 5-6 with concentrated ammonia water, and place in a water bath at 80°C After stirring at a medium and constant speed for 2 hours, add 30g TiO 2 /floating beads, continue heating and steaming until nearly dry, dry in an oven at 120°C, and then transfer to a muffle furnace for roasting at 500°C for 2 hours and cool to room temperature for later use. The obtained catalyst sample was rinsed with distilled water, and the floating part was collected and baked in an oven at 105° C. for 4 hours, and then cooled to obtain the desired CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst. Its topography is shown in Figure 1.
从图中可看出:漂珠成球状,CoFe2O4-TiO2在漂珠表面形成了膜,膜表面粗糙,有利于增大比表面积,增加吸附性能和光催化活性。It can be seen from the figure that the floating beads are spherical, and CoFe 2 O 4 -TiO 2 forms a film on the surface of the floating beads. The surface of the film is rough, which is conducive to increasing the specific surface area, increasing the adsorption performance and photocatalytic activity.
如图2是TiO2/漂珠负载型光催化剂和CoFe2O4-TiO2/漂珠负载型光催化剂的固体紫外-可见光谱图。TiO2具有较宽的禁带宽度(3.2eV),从图2可看出,TiO2/漂珠负载型光催化剂禁带宽度降低为2.85eV,CoFe2O4-TiO2/漂珠负载型光催化剂禁带宽度进一步降低为2.5eV,表明对可见光具有更好的催化活性,从而提高对可见光的利用效率。从图2中可看出CoFe2O4-TiO2/漂珠光催化剂光响应范围已扩展至可见光区域。Figure 2 is the solid ultraviolet-visible spectrogram of TiO 2 /floating bead-supported photocatalyst and CoFe 2 O 4 -TiO 2 /floating bead-supported photocatalyst. TiO 2 has a wide band gap (3.2eV). As can be seen from Figure 2, the band gap of the TiO 2 /floating bead-supported photocatalyst is reduced to 2.85eV, and the CoFe 2 O 4 -TiO 2 /floating bead-loaded The bandgap of the photocatalyst is further reduced to 2.5eV, which shows that it has better catalytic activity for visible light, thereby improving the utilization efficiency of visible light. It can be seen from Figure 2 that the photoresponse range of CoFe 2 O 4 -TiO 2 /pearl photocatalyst has been extended to the visible light region.
如图3所示为CoFe2O4/TiO2/漂珠的FT-IR谱图,其中450-700处为CoFe2O4和TiO2的特征峰,1081处为O-Si-O伸缩振动峰,3411处为表面吸附水分子的O-H伸缩振动峰。As shown in Figure 3, the FT-IR spectrum of CoFe 2 O 4 /TiO 2 /floating beads, in which 450-700 is the characteristic peak of CoFe 2 O 4 and TiO 2 , and 1081 is the O-Si-O stretching vibration The peak at 3411 is the OH stretching vibration peak of surface adsorbed water molecules.
实施例2、Embodiment 2,
一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂,各组分按重量百分含量分别为:Co为0.5wt%;Fe为2wt%;Ti为18wt%,其余为粉煤灰漂珠催化剂载体。A floating type CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst, the components by weight percentage are: Co is 0.5wt%; Fe is 2wt%; Ti is 18wt%, and the rest is fly ash Floating bead catalyst carrier.
其制备方法同实施例1。Its preparation method is with embodiment 1.
实施例3Example 3
一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂,各组分按重量百分含量分别为:Co为1wt%;Fe为1wt%;Ti为12wt%,其余为粉煤灰漂珠催化剂载体。A floating-type CoFe 2 O 4 /TiO 2 /floating bead composite photocatalyst, the components by weight percentage are: Co is 1wt%, Fe is 1wt%, Ti is 12wt%, and the rest is fly ash float Bead Catalyst Support.
其制备方法同实施例1。Its preparation method is with embodiment 1.
试验例1Test example 1
以实施例1所得CoFe2O4-TiO2/漂珠负载型光催化剂光催化降解亚甲蓝溶液,反应起始条件:亚甲基蓝起始浓度100mg/L,催化剂用量0.4g,pH=5,将其在可见光催化反应器下进行降解实验,降解时间为120min,每隔20min取样进行可见光分光光度计测定其吸光度,测量亚甲蓝降解效率。如图4所示,在80min时降解效率达到85%。试验例2With the obtained CoFe 2 O 4 -TiO 2 / floating bead loaded photocatalyst photocatalytic degradation methylene blue solution, reaction initial conditions: methylene blue initial concentration 100mg/L, catalyst consumption 0.4g, pH=5, will The degradation experiment was carried out in a visible light catalytic reactor, and the degradation time was 120 minutes. Samples were taken every 20 minutes to measure the absorbance with a visible light spectrophotometer, and the degradation efficiency of methylene blue was measured. As shown in Figure 4, the degradation efficiency reached 85% at 80 min. Test example 2
以实施例1TiO2/漂珠和CoFe2O4-TiO2/漂珠负载型光催化剂进行光催化降解亚甲蓝溶液比较,实验条件:催化剂用量0.4g,亚甲基蓝起始浓度50mg/L,pH=5。将其在可见光催化反应器下进行降解实验,降解时间为60min,每隔10min取样进行测定其吸光度,计算亚甲蓝降解效率,如表1所示。Carry out photocatalytic degradation methylene blue solution comparison with Example 1 TiO 2 /floating beads and CoFe 2 O 4 -TiO 2 /floating bead supported photocatalysts, experimental conditions: catalyst dosage 0.4g, methylene blue initial concentration 50mg/L, pH =5. The degradation experiment was carried out in a visible light catalytic reactor. The degradation time was 60 minutes. Samples were taken every 10 minutes to measure the absorbance, and the degradation efficiency of methylene blue was calculated, as shown in Table 1.
试验例3Test example 3
以实施例1所得CoFe2O4-TiO2/漂珠负载型光催化剂光催化降解苯酚溶液,实验条件:催化剂用量1.0g,苯酚溶液起始浓度25、50、75、100mg/L,pH=5。将其在可见光催化反应器下进行降解实验,降解时间为7h,每隔1h取样进行测定其吸光度,计算亚甲蓝降解效率,如图5所示。With the obtained CoFe 2 O 4 -TiO 2 / floating bead loaded photocatalyst photocatalytic degradation phenol solution, experimental conditions: catalyst consumption 1.0g, phenol solution initial concentration 25, 50, 75, 100mg/L, pH = 5. The degradation experiment was carried out in a visible light catalytic reactor. The degradation time was 7 hours. Samples were taken every 1 hour to measure the absorbance, and the degradation efficiency of methylene blue was calculated, as shown in Figure 5.
试验例4Test example 4
以未煅烧的漂珠作为载体负载的CoFe2O4-TiO2光催化剂和以煅烧的漂珠作为载体进行负载的CoFe2O4-TiO2光催化剂,进行亚甲蓝溶液光催化降解实验,反应起始条件:亚甲基蓝起始浓度75mg/L,催化剂用量0.3g,pH=5,将其在可见光催化反应器下进行降解实验,降解时间为120min,每隔20min取样进行可见光分光光度计测定其吸光度,测量亚甲蓝降解效率。如图6所示,在120min内,煅烧的漂珠负载的CoFe2O4-TiO2光催化剂降解效率明显优于煅烧的漂珠负载的CoFe2O4-TiO2光催化剂。The CoFe 2 O 4 -TiO 2 photocatalyst loaded with uncalcined floating beads as a carrier and the CoFe 2 O 4 -TiO 2 photocatalyst loaded with calcined floating beads as a carrier were used for the photocatalytic degradation experiment of methylene blue solution. Reaction initial conditions: the initial concentration of methylene blue is 75mg/L, the amount of catalyst is 0.3g, and pH=5. It is subjected to a degradation experiment in a visible light catalytic reactor. Absorbance, a measure of methylene blue degradation efficiency. As shown in Figure 6, within 120 min, the degradation efficiency of the calcined floating bead-supported CoFe 2 O 4 -TiO 2 photocatalyst was significantly better than that of the calcined floating bead-supported CoFe 2 O 4 -TiO 2 photocatalyst.
综上,本发明一种漂浮型CoFe2O4/TiO2/漂珠复合光催化剂,与目前的光催化剂相比,CoFe2O4/TiO2/漂珠复合光催化剂可以漂浮于水面,充分吸收太阳光,提高光催化降解效果。经掺杂的TiO2/漂珠复合光催化剂使其光响应波长从紫外光区移至可见光区,提高太阳光的利用率。催化剂载体采用空心漂珠,廉价易得,成本低,有效提高了光催化剂使用寿命。采用CoFe2O4作为催化剂活性成分,具有磁性,易于回收和重复利用。本发明的优点在于采用比表面积较大,具有较强的吸附、光催化功能、廉价易得的粉煤灰空心漂珠作为催化剂载体,漂浮于水中,催化活性组分具有磁性的为钴、铁、钛复合组分,钴、铁、钛复合组分以颗粒形式分布在漂珠表面,增大了表面积和吸附性能,使有机废水更好的光催化性能,提高有机物降解率。可以使其光响应波长从紫外光区移至可见光区,提高太阳光的利用率。该催化剂制备简单、催化活性强、具有磁性、可回收重复利用,具有潜在、较好的处理漂浮有机污染物的优点。In summary, the present invention is a floating - type CoFe 2 O 4 / TiO 2 /floating bead composite photocatalyst . Absorb sunlight and improve photocatalytic degradation effect. The doped TiO 2 /floating bead composite photocatalyst shifts the photoresponse wavelength from the ultraviolet region to the visible region, improving the utilization rate of sunlight. The catalyst carrier adopts hollow floating beads, which are cheap and easy to obtain, and the cost is low, which effectively improves the service life of the photocatalyst. CoFe 2 O 4 is used as the active component of the catalyst, which is magnetic and easy to recycle and reuse. The advantage of the present invention is that the fly ash hollow floating beads with large specific surface area, strong adsorption and photocatalysis functions, cheap and easy to obtain are used as the catalyst carrier and floated in water. The catalytically active components with magnetic properties are cobalt and iron. , Titanium composite components, cobalt, iron, titanium composite components are distributed on the surface of floating beads in the form of particles, which increases the surface area and adsorption performance, makes organic wastewater better photocatalytic performance, and improves the degradation rate of organic matter. The photoresponse wavelength can be shifted from the ultraviolet region to the visible region, and the utilization rate of sunlight can be improved. The catalyst is simple to prepare, has strong catalytic activity, is magnetic, can be recycled and reused, and has the advantages of potential and better treatment of floating organic pollutants.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。The above is only a specific implementation of the present invention, but the scope of protection of the present invention is not limited thereto, and any changes or replacements that do not come to mind through creative work shall be covered within the scope of protection of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope defined in the claims.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410286125.5A CN104128184B (en) | 2014-06-24 | 2014-06-24 | A kind of float type CoFe2O4/TiO2/ float bead composite photochemical catalyst and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410286125.5A CN104128184B (en) | 2014-06-24 | 2014-06-24 | A kind of float type CoFe2O4/TiO2/ float bead composite photochemical catalyst and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104128184A CN104128184A (en) | 2014-11-05 |
CN104128184B true CN104128184B (en) | 2016-05-11 |
Family
ID=51801185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410286125.5A Active CN104128184B (en) | 2014-06-24 | 2014-06-24 | A kind of float type CoFe2O4/TiO2/ float bead composite photochemical catalyst and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104128184B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170282159A1 (en) * | 2016-03-30 | 2017-10-05 | Yancheng Institute Of Technology | Method for Preparing Molybdenum Doped Titanium Dioxide Thin Film by Sol-Gel |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104801308B (en) * | 2015-05-08 | 2017-03-15 | 安徽理工大学 | A kind of NiFe2O4/TiO2/sepiolite composite photocatalyst and its preparation method |
CN105699646B (en) * | 2016-02-25 | 2017-05-31 | 济南大学 | A kind of preparation method and application of the electrogenerated chemiluminescence nonyl phenol sensor based on titanium dioxide nanoplate composite |
CN105717179B (en) * | 2016-02-25 | 2018-03-23 | 济南大学 | A kind of preparation method and application of optical electro-chemistry organo-chlorine pesticide biology sensor |
CN105738447B (en) * | 2016-02-25 | 2018-03-27 | 济南大学 | A kind of preparation method and application of electrochemistry chloramphenicol biology sensor |
CN105717180B (en) * | 2016-02-25 | 2018-03-27 | 济南大学 | A kind of preparation method and application of the optical electro-chemistry aflatoxin biology sensor based on two-dimensional nano composite |
CN105618103B (en) * | 2016-02-25 | 2018-05-11 | 济南大学 | A kind of preparation method of two-dimensional magnetic photochemical catalyst |
CN105717181B (en) * | 2016-02-25 | 2018-02-27 | 济南大学 | A kind of preparation method and application of the electrochemistry malathion biology sensor based on bimetallic In-situ reaction two-dimension nano materials |
CN105855539B (en) * | 2016-04-13 | 2020-09-01 | 安徽大学 | CoFe for photocatalysis field2Core CoFe2O4Construction method of shell layer nano structure |
CN106215853B (en) * | 2016-09-06 | 2019-09-17 | 山东大学 | A kind of preparation method of flyash/cobalt ferrite magnetic composite adsorbing material |
CN106629860B (en) * | 2016-12-06 | 2018-04-10 | 浙江大学 | A kind of preparation method of the 2D type Multiferroic composite materials of cobalt ferrite/lead titanates 0 |
CN107051466B (en) * | 2016-12-30 | 2019-06-18 | 浙江大学 | Marine diesel engine SCR denitration catalyst for efficiently removing soot and preparation method thereof |
CN106861667B (en) * | 2017-03-28 | 2019-10-25 | 沈阳理工大学 | A kind of preparation method of TiO2 microsphere that can be suspended in water |
CN107149936B (en) * | 2017-04-10 | 2019-12-31 | 江苏大学 | A kind of CoFe2O4-AgI composite photocatalyst and preparation method thereof |
CN110479294A (en) * | 2017-07-06 | 2019-11-22 | 于清花 | A kind of photochemical catalyst preparation method and its processing method handling phenolic waste water |
CN108745308A (en) * | 2018-05-07 | 2018-11-06 | 江苏大学 | A kind of conductive traces Ag@PANI/CoFe2O4The preparation method and applications of/C |
CN109529864B (en) * | 2018-11-14 | 2021-06-18 | 浙江海洋大学 | A kind of α-Fe2O3/Bi2WO6/shell composite photocatalyst and preparation method thereof |
CN109876767B (en) * | 2019-04-19 | 2021-09-28 | 闽江学院 | Preparation and application of diatomite/lanthanum cerate composite material |
CN114797887A (en) * | 2021-01-21 | 2022-07-29 | 广东卓信环境科技股份有限公司 | Ozone catalyst and preparation method and application thereof |
CN113797953B (en) * | 2021-09-29 | 2023-07-04 | 广州珠矶科技有限公司 | Preparation and application methods of nano catalyst for repairing organic pollution of underground water |
CN113976103B (en) * | 2021-12-27 | 2022-03-01 | 天津市职业大学 | A kind of highly active visible light catalyst for wastewater treatment and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000348923A (en) * | 1999-06-07 | 2000-12-15 | Katsuhiko Wakabayashi | Ultrafine grain-shaped magnetic material having inclusion type structure |
CN101733087A (en) * | 2009-12-18 | 2010-06-16 | 南京大学 | Floating type TiO2/floating bead composite photochemical catalyst and preparation method and application thereof |
CN101850251A (en) * | 2010-06-10 | 2010-10-06 | 大连大学 | Preparation method of magnetically separable titanium dioxide visible light catalyst |
CN101862657A (en) * | 2010-06-23 | 2010-10-20 | 南京大学 | A kind of floating type Fe-TiO2/floating pearlescent catalyst, its preparation method and application |
-
2014
- 2014-06-24 CN CN201410286125.5A patent/CN104128184B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000348923A (en) * | 1999-06-07 | 2000-12-15 | Katsuhiko Wakabayashi | Ultrafine grain-shaped magnetic material having inclusion type structure |
CN101733087A (en) * | 2009-12-18 | 2010-06-16 | 南京大学 | Floating type TiO2/floating bead composite photochemical catalyst and preparation method and application thereof |
CN101850251A (en) * | 2010-06-10 | 2010-10-06 | 大连大学 | Preparation method of magnetically separable titanium dioxide visible light catalyst |
CN101862657A (en) * | 2010-06-23 | 2010-10-20 | 南京大学 | A kind of floating type Fe-TiO2/floating pearlescent catalyst, its preparation method and application |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170282159A1 (en) * | 2016-03-30 | 2017-10-05 | Yancheng Institute Of Technology | Method for Preparing Molybdenum Doped Titanium Dioxide Thin Film by Sol-Gel |
Also Published As
Publication number | Publication date |
---|---|
CN104128184A (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104128184B (en) | A kind of float type CoFe2O4/TiO2/ float bead composite photochemical catalyst and preparation method thereof | |
CN104399516B (en) | The preparation method of photocatalyst of a kind for the treatment of of Nitrobenzene phenol waste water, the processing method of a kind of nitrophenol wastewater | |
CN108940338A (en) | Potassium element adulterates nitride porous carbon photochemical catalyst and its preparation method and application | |
CN105056981B (en) | Preparation and application of composite photocatalyst g-C3N4-BiFeO3 for efficiently removing persistent organic pollutants | |
CN109201121B (en) | Bimetal load type magnetic visible light composite catalytic material and preparation method and application thereof | |
CN103736513A (en) | Preparation method of a TiO2(B)@g-C3N4 composite nanosheet photocatalyst | |
CN105664995B (en) | A kind of multielement codoped nanaotitania catalysis material | |
CN106064101A (en) | A kind of iron-based MOFs catalysis material and preparation and application thereof | |
CN106902890B (en) | Cu-BTC/bismuth vanadate/SWCNTs ternary heterostructure photocatalyst and preparation method and application thereof | |
CN108620113B (en) | Preparation method of nitrogen-doped carbon-cerium composite nanosheet | |
CN102698784A (en) | Visible light response catalyst and preparation method thereof | |
CN106902803B (en) | Compound photocatalytic system CQDS-KNbO3 and preparation method and application thereof | |
CN102500405B (en) | Cerium, nitrogen and fluoride co-doped titanium dioxide photocatalyst and application thereof in degrading organic pollutants in visible light | |
CN106492885A (en) | A kind of preparation method of GNs/CoPcS/TiO2 photocatalyst | |
CN104707628A (en) | A kind of Bi2S3/Bi2MoO6 composite visible light catalyst and its preparation method and application | |
CN113019418A (en) | High-activity g-C3N4Photocatalytic material and preparation method and application thereof | |
CN110479343A (en) | A kind of Fe2O3/g-C3N4The one-step synthesis preparation method of composite photocatalyst material | |
CN106582722A (en) | Composite photocatalysis system, and preparation method and application thereof | |
CN104759288B (en) | A kind of heterogeneous Cu Mn Ce type Fenton catalysts and its production and use | |
CN102500406B (en) | Iron Nitrogen Fluoride Co-doped TiO2 Photocatalyst and Its Application in Visible Light Degradation of Organic Pollutants | |
CN116459860A (en) | Preparation method and application of a cyano-functionalized porous carbon nitride photocatalyst | |
CN101219374A (en) | Regeneration method of dead catalyst | |
CN104607174B (en) | Calcium-doped beta-Bi 2O 3 photocatalyst and preparation method and application thereof | |
CN104399505B (en) | Fluorine, nitrogen co-doped bismuth phosphate-cuprous oxide catalysis material and preparation method thereof | |
CN109012576A (en) | A kind of preparation method and application loading cuprous oxide particle active carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190401 Address after: 232001 Chaoyang Street Traffic Bureau, Tianjiaan District, Huainan City, Anhui Province Patentee after: Huainan Deli Environmental Protection Technology Co., Ltd. Address before: No. 168 Shun Geng Middle Road, Huainan, Anhui Province Patentee before: Anhui University Of Science And Technology |