CN104103514A - Method for manufacturing vertical groove current regulative diode - Google Patents
Method for manufacturing vertical groove current regulative diode Download PDFInfo
- Publication number
- CN104103514A CN104103514A CN201410327686.5A CN201410327686A CN104103514A CN 104103514 A CN104103514 A CN 104103514A CN 201410327686 A CN201410327686 A CN 201410327686A CN 104103514 A CN104103514 A CN 104103514A
- Authority
- CN
- China
- Prior art keywords
- region
- constant current
- substrate
- manufacturing
- vertical channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title abstract 2
- 238000000034 method Methods 0.000 title abstract 2
- 238000009792 diffusion process Methods 0.000 abstract 4
- 239000002184 metal Substances 0.000 abstract 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明提供一种垂直沟道恒流二极管制造方法,其特征在于采用了N-型硅单晶片作为衬底材料,芯片正面有两个P+扩散区,两个P+扩散区之间夹着一个N+扩散区,P+区和N+区通过氧化层窗口与负电极金属相连接。芯片背面经过减薄处理,背面高浓度的P+注入层与正电极金属连接。
The invention provides a method for manufacturing a vertical channel constant current diode, which is characterized in that an N-type silicon single wafer is used as the substrate material, and there are two P+ diffusion regions on the front of the chip, and an N+ diffusion region is sandwiched between the two P+ diffusion regions. Diffusion region, P+ region and N+ region are connected to the negative electrode metal through the oxide layer window. The back of the chip is thinned, and the high-concentration P+ injection layer on the back is connected to the positive electrode metal.
Description
技术领域 technical field
本发明涉及半导体技术领域,具体的说是涉及一种垂直沟道恒流二极管。 The invention relates to the technical field of semiconductors, in particular to a vertical channel constant current diode.
背景技术 Background technique
恒流二极管是近年来问世的半导体恒流器件,在很宽的电压范围内输出恒定的电流,并具有很高的动态阻抗。由于它的恒流性能好、价格较低、使用简便,因此目前已被广泛用于恒流源、稳压源、放大器以及电子仪器的保护电路中,尤其对于LED(Light Emitting Diode)驱动,采用恒流二极管是目前比较普遍的方式。 The constant current diode is a semiconductor constant current device that has come out in recent years. It outputs a constant current in a wide voltage range and has a high dynamic impedance. Because of its good constant current performance, low price, and easy use, it has been widely used in constant current sources, voltage regulators, amplifiers, and protection circuits for electronic instruments, especially for LED (Light Emitting Diode) drivers. Constant current diodes are currently the more common way.
现阶段垂直沟道恒流二极管采用的是P型衬底片上生长N型外延层作为衬底材料,进行二极管的制备。外延片跟单晶片比较,价格较高。 At present, vertical channel constant current diodes use an N-type epitaxial layer grown on a P-type substrate as the substrate material to prepare the diode. Epitaxial wafers are more expensive than single wafers.
发明内容 Contents of the invention
本发明的目的是提供一种利用硅单晶衬底制备垂直沟道恒流二极管的制造方法。 The object of the present invention is to provide a method for preparing a vertical channel constant current diode using a silicon single crystal substrate.
本发明的技术方案是:采用了低掺杂浓度N型硅单晶片作为衬底材料,通过光刻、扩散等工艺方法,在衬底材料正面形成两个P+扩散区,以及两个P+扩散区之间夹着一个N+扩散区。芯片表面有绝缘氧化层覆盖,通过光刻工艺在P+区和N+区处开有窗口,通过金属化工艺,使得P+区和N+区通过窗口与负电极金属相连接。 The technical scheme of the present invention is: a low-doping concentration N-type silicon single wafer is used as the substrate material, and two P+ diffusion regions and two P+ diffusion regions are formed on the front surface of the substrate material through photolithography, diffusion and other processes. An N+ diffusion region is sandwiched between them. The surface of the chip is covered with an insulating oxide layer, and windows are opened at the P+ region and the N+ region through the photolithography process, and the P+ region and the N+ region are connected to the negative electrode metal through the window through the metallization process.
在完成恒流二极管正面负电极结构制备后,对衬底材料背面通过减薄工艺进行背面减薄处理,降低恒流二极管芯片厚度,并通过高剂量注入工艺对背面注硼,退火后形成高浓度P+注入层,再采用背面金属化工艺,形成恒流二极管的正电极。 After the preparation of the front negative electrode structure of the constant current diode is completed, the back of the substrate material is thinned through a thinning process to reduce the thickness of the constant current diode chip, and the back is injected with boron through a high-dose implantation process to form a high concentration after annealing. P+ injection layer, and then use the back metallization process to form the positive electrode of the constant current diode.
本发明的优点和积极效果是:采用硅单晶片作为衬底材料,比较传统的外延片衬底工艺,可以降低恒流二极管芯片制造成本。另外本发明采用的背面减薄加注入退火的方法,大大降低了整个二极管芯片的厚度,使得恒流二极管的热阻性能得到改善,电流温度系数(α T,单位温度变化引起恒定电流相对变化的百分比)变小。 The advantages and positive effects of the invention are: using silicon single wafer as the substrate material, compared with the traditional epitaxial wafer substrate technology, the manufacturing cost of the constant current diode chip can be reduced. In addition, the method of backside thinning and injection annealing adopted by the present invention greatly reduces the thickness of the whole diode chip, so that the thermal resistance performance of the constant current diode is improved, and the current temperature coefficient (α T, the relative change of the constant current caused by the unit temperature change) percentage) becomes smaller.
附图说明 Description of drawings
图1为P+注入窗口刻开后结构示意图 Figure 1 is a schematic diagram of the structure after the P+ injection window is cut open
图2为P+扩散区形成同时N+注入窗口刻开后结构示意图 Figure 2 is a schematic diagram of the structure after the formation of the P+ diffusion region and the opening of the N+ implantation window
图3为P+区及N+区接触孔刻开后结构示意图 Figure 3 is a schematic diagram of the structure after the contact holes of the P+ region and the N+ region are cut.
图4为正面负电极制备完成后结构示意图 Figure 4 is a schematic diagram of the structure after the preparation of the positive and negative electrodes
图5为背面减薄后结构示意图 Figure 5 is a schematic diagram of the structure after back thinning
图6为垂直沟道二极管芯片结构示意图 Figure 6 is a schematic diagram of the vertical channel diode chip structure
附图标注为:1— N-型硅单晶衬底,2— P+扩散区,3— N+扩散区,4— 绝缘氧化层,5— 负电极金属,6— P+注入层,7— 正电极金属。 The drawings are marked as: 1—N-type silicon single crystal substrate, 2—P+ diffusion region, 3—N+ diffusion region, 4—insulating oxide layer, 5—negative electrode metal, 6—P+ injection layer, 7—positive electrode Metal.
具体实施方式 Detailed ways
下面结合附图,详细描述本发明的技术方案 Below in conjunction with accompanying drawing, describe technical scheme of the present invention in detail
第一步:采用低掺杂浓度的N-硅单晶衬底片1,首先生长氧化层4后,通过光刻工艺刻开P+注入窗口,如图1所示。 Step 1: Use N-silicon single crystal substrate 1 with low doping concentration, first grow oxide layer 4, and open P+ implantation window by photolithography process, as shown in FIG. 1 .
第二步:P+注入后,通过高温扩散氧化工艺,推结形成P+扩散区2同时生成绝缘氧化层4,再次通过光刻工艺在氧化层4上刻开N+注入窗口,如图2所示。 Step 2: After P+ implantation, push junction to form P+ diffusion region 2 through high-temperature diffusion oxidation process, and generate insulating oxide layer 4 at the same time, and then open N+ implantation window on oxide layer 4 through photolithography process, as shown in Figure 2.
第三步:N+注入后,通过高温扩散氧化工艺,推结形成N+区3以及绝缘氧化层4,再次通过光刻工艺,将P+扩散区2以及N+扩散区3上面的氧化层4上刻开电极接触孔,如图3所示。 Step 3: After N+ implantation, push the junction to form the N+ region 3 and the insulating oxide layer 4 through the high temperature diffusion oxidation process, and then pass the photolithography process again to carve the P+ diffusion region 2 and the oxide layer 4 above the N+ diffusion region 3 Electrode contact holes, as shown in Figure 3.
第四步:通过蒸发或者溅射金属方式,形成二极管负电极,该负电极与P+扩散区2以及N+扩散区3短接,如图4所示。 Step 4: Form the negative electrode of the diode by evaporating or sputtering metal, and the negative electrode is short-circuited with the P+ diffusion region 2 and the N+ diffusion region 3, as shown in FIG. 4 .
第五步:将N-硅单晶衬底1背面减薄,减薄后进行背面的高浓度P+注入,如图5所示。 Step 5: Thinning the back of the N-silicon single crystal substrate 1 , and performing high-concentration P+ implantation on the back after the thinning, as shown in FIG. 5 .
第六步:背面P+注入退火后,形成P+注入层6,接下来背面蒸发金属形成正电极7,整个恒流二极管结构示意图如图6所示。 Step 6: After P+ implantation and annealing on the back side, the P+ injection layer 6 is formed, and then the metal is evaporated on the back side to form the positive electrode 7. The schematic diagram of the entire constant current diode structure is shown in FIG. 6 .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410327686.5A CN104103514A (en) | 2014-07-11 | 2014-07-11 | Method for manufacturing vertical groove current regulative diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410327686.5A CN104103514A (en) | 2014-07-11 | 2014-07-11 | Method for manufacturing vertical groove current regulative diode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104103514A true CN104103514A (en) | 2014-10-15 |
Family
ID=51671550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410327686.5A Pending CN104103514A (en) | 2014-07-11 | 2014-07-11 | Method for manufacturing vertical groove current regulative diode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104103514A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104638022A (en) * | 2015-02-15 | 2015-05-20 | 电子科技大学 | SOI (Silicon-On-Insulator) lateral current regulative diode and manufacturing method thereof |
CN105609548A (en) * | 2015-12-25 | 2016-05-25 | 电子科技大学 | Semiconductor device and manufacturing method thereof |
CN105845795A (en) * | 2015-01-13 | 2016-08-10 | 北大方正集团有限公司 | Diode and manufacturing method therefor |
CN111192826A (en) * | 2019-05-31 | 2020-05-22 | 深圳方正微电子有限公司 | Double-barrier trench epitaxial high-voltage PIN chip and its manufacturing method |
CN113764404A (en) * | 2021-09-22 | 2021-12-07 | 成都吉莱芯科技有限公司 | Low-capacitance low-residual-voltage bidirectional ESD (electro-static discharge) protection device and manufacturing method thereof |
-
2014
- 2014-07-11 CN CN201410327686.5A patent/CN104103514A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105845795A (en) * | 2015-01-13 | 2016-08-10 | 北大方正集团有限公司 | Diode and manufacturing method therefor |
CN104638022A (en) * | 2015-02-15 | 2015-05-20 | 电子科技大学 | SOI (Silicon-On-Insulator) lateral current regulative diode and manufacturing method thereof |
CN104638022B (en) * | 2015-02-15 | 2018-04-06 | 电子科技大学 | A kind of SOI transverse directions current regulator diode and its manufacture method |
CN105609548A (en) * | 2015-12-25 | 2016-05-25 | 电子科技大学 | Semiconductor device and manufacturing method thereof |
CN111192826A (en) * | 2019-05-31 | 2020-05-22 | 深圳方正微电子有限公司 | Double-barrier trench epitaxial high-voltage PIN chip and its manufacturing method |
CN111192826B (en) * | 2019-05-31 | 2023-05-26 | 深圳方正微电子有限公司 | Double barrier trench epitaxial high voltage PIN chip and manufacturing method thereof |
CN113764404A (en) * | 2021-09-22 | 2021-12-07 | 成都吉莱芯科技有限公司 | Low-capacitance low-residual-voltage bidirectional ESD (electro-static discharge) protection device and manufacturing method thereof |
CN113764404B (en) * | 2021-09-22 | 2024-06-04 | 江苏吉莱微电子股份有限公司 | Low-capacitance low-residual voltage bidirectional ESD protection device and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100578790C (en) | Bcd semiconductor device and manufacturing method thereof | |
CN107957299B (en) | Silicon carbide linear temperature sensor and temperature measuring method and manufacturing method thereof | |
US8557678B2 (en) | Method for manufacturing semiconductor substrate of large-power device | |
CN104103514A (en) | Method for manufacturing vertical groove current regulative diode | |
JP6525554B2 (en) | CMOS device including substrate structure | |
CN104979283B (en) | Manufacturing method of TI-IGBT | |
CN103022099B (en) | IGBT collector structure and preparation method thereof | |
CN101431073A (en) | Zener integrated circuit structure and manufacturing method thereof | |
CN105609569B (en) | Current regulator diode structure and forming method thereof | |
CN106409890A (en) | Method for forming fin-type bipolar junction transistor | |
CN104124283B (en) | A kind of schottky barrier device of doping and preparation method thereof | |
CN103730465B (en) | A kind of linear constant current device and preparation method thereof | |
CN108258040B (en) | Insulated gate bipolar transistor with wide band gap semiconductor substrate material and method of making the same | |
CN105280493A (en) | Trench IGBT device manufacturing method | |
CN105990254A (en) | Manufacturing method of BiCMOS integrated circuit | |
CN107452621B (en) | Fast recovery diode and method of making the same | |
CN103700590B (en) | Realize the manufacture method of the bipolar IC structure of Schottky diode and bipolar IC structure | |
CN204577402U (en) | A kind of constant current diode with vertical channels | |
CN206225366U (en) | A kind of Novel polycrystalline silicon thin film zener diodes | |
CN104779277B (en) | A kind of IGBT of heterojunction field resistance structure and preparation method thereof | |
CN105551969B (en) | A kind of current regulator diode structure and forming method thereof | |
CN104393032A (en) | Plane gate insulated gate bipolar transistor (IGBT) and manufacturing method thereof | |
US9018049B2 (en) | Method for manufacturing insulated gate bipolar transistor IGBT | |
CN108550529A (en) | A kind of manufacturing method of high pressure VDMOS device | |
CN106206323A (en) | Silicon carbide metal oxide semiconductor field effect transistor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141015 |