CN1041015C - Composite reinforcing tape of high tensile strength and methods of making and using same - Google Patents
Composite reinforcing tape of high tensile strength and methods of making and using same Download PDFInfo
- Publication number
- CN1041015C CN1041015C CN94102474A CN94102474A CN1041015C CN 1041015 C CN1041015 C CN 1041015C CN 94102474 A CN94102474 A CN 94102474A CN 94102474 A CN94102474 A CN 94102474A CN 1041015 C CN1041015 C CN 1041015C
- Authority
- CN
- China
- Prior art keywords
- resin
- composite material
- fiber
- bandlet
- band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000003014 reinforcing effect Effects 0.000 title abstract description 6
- 239000000835 fiber Substances 0.000 claims abstract description 137
- 229920005989 resin Polymers 0.000 claims abstract description 98
- 239000011347 resin Substances 0.000 claims abstract description 98
- 239000000853 adhesive Substances 0.000 claims description 54
- 230000001070 adhesive effect Effects 0.000 claims description 54
- 239000012530 fluid Substances 0.000 claims description 10
- 239000003365 glass fiber Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000004645 polyester resin Substances 0.000 claims description 10
- 229920001225 polyester resin Polymers 0.000 claims description 10
- 230000002787 reinforcement Effects 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 8
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000003822 epoxy resin Substances 0.000 claims description 5
- 229920000647 polyepoxide Polymers 0.000 claims description 5
- 229920005749 polyurethane resin Polymers 0.000 claims description 5
- 229920001567 vinyl ester resin Polymers 0.000 claims description 5
- 238000009960 carding Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 229920000914 Metallic fiber Polymers 0.000 claims 1
- 238000004026 adhesive bonding Methods 0.000 claims 1
- 238000004804 winding Methods 0.000 abstract description 17
- 239000002390 adhesive tape Substances 0.000 abstract description 6
- 239000012790 adhesive layer Substances 0.000 abstract description 4
- 230000004888 barrier function Effects 0.000 description 24
- 239000010410 layer Substances 0.000 description 22
- 230000008569 process Effects 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 238000003475 lamination Methods 0.000 description 10
- 230000007480 spreading Effects 0.000 description 6
- 238000003892 spreading Methods 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 210000003298 dental enamel Anatomy 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 239000004831 Hot glue Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011280 coal tar Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 239000004821 Contact adhesive Substances 0.000 description 1
- 241000257303 Hymenoptera Species 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本发明涉及复合材料领域。更具体地,本发明涉及用复合材料制成的螺旋形式的加强带及其制造方法。The invention relates to the field of composite materials. More specifically, the present invention relates to a reinforcement strip in the form of a helix made of composite material and a method for its manufacture.
大量管道系统用来在压力下长距离地输送气体或液体。这些管道会被腐蚀,而且在某些情况下,由于高速度和受力太大而沿管道轴向产生的裂纹会使管道失效。多年来,已有许多方法来修补管道受腐蚀的部分以及用来限制塑性破坏和脆性破坏在这种管道内的蔓延。其中一个方法包括采用由高拉伸强度复合材料制成的盘绕带来包绕管道。公开的加拿大专利申请No.2,028,254描述了采用这些复合带来修补和加强管道的方法,而美国专利No.4,700,752中描述了采用这些复合带来阻止裂纹以限制塑性破坏在管道内的蔓延的方法。这些两个文件中所揭示的内容在这里引为参考。Extensive piping systems are used to transport gases or liquids under pressure over long distances. These pipes can corrode and, in some cases, cracks that develop along the pipe axis due to high speeds and forces can cause the pipes to fail. Over the years, a number of methods have been used to repair corroded sections of pipelines and to limit the propagation of plastic and brittle failures in such pipelines. One method involves wrapping the pipe with a coiled tape made of a high tensile strength composite material. Published Canadian Patent Application No. 2,028,254 describes the use of these composite tapes to repair and strengthen pipes, while US Patent No. 4,700,752 describes the use of these composite tapes to arrest cracks to limit the propagation of plastic failure in pipes. The disclosures in these two documents are hereby incorporated by reference.
上述方法中采用的复合带由密封在一树脂基体内的高拉伸强度材料的连续纤维构成。迄今采用的用来制造这些复合带的方法有各种缺点。在一个这类方法中,高拉伸强度的纤维是作成一条带的形式,它有许多横向的细丝将各条纤维保持在一起,横向细丝由多条热融胶保持在位。与采用这种条带相关的一个困难是不能用一层树脂覆层来均匀地包绕并封住纤维。采用这些条带的方法的另一个问题是与树脂的胶化和固化相关的热量会使热融胶条融化,留下横贯复合带的许多空隙。这些空隙起着槽道的作用,使水能够渗进并浸蚀纤维,从而使复合带时间一长就减弱。The composite tapes employed in the above methods consist of continuous fibers of high tensile strength material encapsulated within a resin matrix. The methods hitherto employed for the manufacture of these composite tapes suffer from various disadvantages. In one such method, high tensile strength fibers are formed in a ribbon having a plurality of transverse filaments holding the fibers together, the transverse filaments being held in place by strips of hot melt adhesive. One difficulty associated with the use of such tapes is the inability to uniformly wrap and encapsulate the fibers with a resin coating. Another problem with methods using these strips is that the heat associated with the gelling and curing of the resin can melt the hot melt adhesive strips, leaving many voids across the composite tape. These voids act as channels that allow water to penetrate and attack the fibers, weakening the composite tape over time.
为了克服某些这类困难,本案发明人已就采用不用横向细丝连接的单独纤维的方法作了实验。然而迄今已尝试过的采用单独纤维的实验方法产生的复合带的内外表面都起伏不平。亦即,在制造过程中,连续纤维内的张力已使这些复合带在每一表面上有沿复合带长度方向延伸的随机的一系列峰部和谷部。在复合带的相邻盘绕圈上的蜂和谷当想要在安装过程中使这些圈径向对齐时会相互干扰,从而使安装过程更困难了。In order to overcome some of these difficulties, the inventors of the present invention have experimented with the use of individual fibers not connected by transverse filaments. However, experimental methods using individual fibers that have been attempted to date have produced composite tapes with undulating inner and outer surfaces. That is, during the manufacturing process, tension within the continuous fibers has caused these composite tapes to have on each surface a random series of peaks and valleys extending along the length of the composite tape. The bees and valleys on adjacent coiled turns of the composite tape can interfere with each other when trying to align the turns radially during installation, thereby making the installation process more difficult.
与这些实验制造的复合带相关的另一个问题涉及复合带作为一种结构加强件的预定功用。典型地,在将复合带包绕比如管道的安装中,随着将复合带往管道上缠绕,在复合带的相邻两圈之间涂粘结剂。粘结剂用来防止缠绕的复合带在这些管道正常工作时的非常高的流体压力下散开。然而,对于已绕装在用于试验目的的模拟管道上的这些复合带,已经遇到了与采用这些粘结剂相关的一些问题。这些问题包括很难在复合带的相邻两圈之间始终一致地形成足够的粘结强度以及很难达到足够迅速而一致的粘结剂固化速度。另一个问题是不能获得非常薄而均匀的粘结剂层以尽量减小由复合带相邻两圈之间的粘结剂层所造成的“软垫”作用。Another issue associated with these experimentally produced composite tapes relates to the intended function of the composite tape as a structural reinforcement. Typically, in installations where the composite tape is wrapped around, for example, a pipe, adhesive is applied between adjacent turns of the composite tape as it is wound onto the pipe. The adhesive is used to prevent the twisted composite tape from unraveling under the very high fluid pressures that these pipes normally operate under. However, some problems associated with the use of these adhesives have been encountered with these composite tapes which have been wound onto simulated pipes for testing purposes. These problems include the difficulty of consistently developing sufficient bond strength between adjacent turns of the composite tape and the difficulty of achieving a sufficiently rapid and consistent adhesive cure rate. Another problem is the inability to obtain a very thin and uniform layer of adhesive to minimize the "cushion" effect caused by the adhesive layer between adjacent turns of the composite tape.
因此,有必要改进把连续的高拉伸强度纤维包容在一种树脂基体内来制造高拉伸强度复合带的工艺方法。而且也需要在将复合带绕装加强一结构时可有规律地在这些复合带的相邻两圈之间形成牢固的粘结的方法。Therefore, there is a need for improved processes for manufacturing high tensile strength composite tapes by encapsulating continuous high tensile strength fibers within a resin matrix. There is also a need for a method of regularly forming strong bonds between adjacent turns of composite tapes as they are wound to reinforce a structure.
本发明正是致力于满足这些需要。It is these needs that the present invention addresses.
已经发现,采用独立纤维的实验复合带的各圈之间的不均匀粘结强度并非是由在将这些复合带绕装一结构过程中涂施的粘结剂造成的,而是由这些复合带制作时形成的起伏不平的表面所造成的。在绕装复合带时,相邻两层上的峰和谷可能以不同方式对准。一种情况是,相邻两层的相对表面处于“同相”,即一层上的峰啮合入相邻层上的谷中,因而这两层相对的表面之间形成连续的接触。另一种情况是,两表面处于“异相”,即一层上的峰与相邻层上的峰对准,因而这两层的相对表面只在峰处相互接触,而在谷处周围这两表面之间有很大距离。由于峰和谷在每一层上是随机分布的,几乎不可能一个表面上的所有蜂和谷与相对表面上的所有峰和谷都同相或异相。最有可能的状态是,相对两表面上的一些峰和谷是同相的,而另一些峰的谷是异相的,还有一些是介于完全同相或完会异相之间的。It has been found that the uneven bond strength between the turns of the experimental composite tapes using individual fibers is not caused by the adhesive applied during the winding of these composite tapes into a structure, but by the It is caused by the uneven surface formed during fabrication. When the composite tape is wound, the peaks and valleys on two adjacent layers may align differently. In one case, the opposing surfaces of two adjacent layers are "in phase", ie the peaks on one layer mesh into the valleys on the adjacent layer so that continuous contact is formed between the opposing surfaces of the two layers. In another case, the two surfaces are "out of phase", that is, the peaks on one layer are aligned with the peaks on the adjacent layer, so that the opposing surfaces of the two layers only touch each other at the peaks, but not around the valleys. There is a large distance between the two surfaces. Since the peaks and valleys are randomly distributed on each layer, it is nearly impossible for all peaks and valleys on one surface to be in or out of phase with all peaks and valleys on the opposite surface. The most likely state is that some peaks and valleys on opposing surfaces are in phase, others are out of phase, and some are in between completely in phase or completely out of phase.
由于粘结强度与粘结剂层的厚度成反比,复合带的相邻两圈之间的粘结强度在很大程度上取决于相邻两圈的相对两表面之间的距离。相对两表面相互靠得越近,粘结强度越大;相对两表面相距越远,粘结强度越小。通过实践本发明方法,采用独立纤维的复合带现在能够制造具有平的表面,这样,复合带的相邻两圈可在整个表面上基本上相互连续接触。因此,这些复合带现在能够始终一致地以其相邻两圈之间有厚度均匀的粘结剂薄层来绕装,因而可获得高的粘结强度。粘结剂的这些薄层也使得能达到始终一致迅速的粘结剂固化速度以及大大地降低因在复合带的相邻两圈之间涂施沾结剂而产生的软垫作用。而且,从这些复合带上消除了峰和谷,使得在绕装过程中将复合带的好多圈都径向对齐就更容易了。Since the bonding strength is inversely proportional to the thickness of the adhesive layer, the bonding strength between two adjacent turns of the composite tape depends largely on the distance between the opposite surfaces of the two adjacent turns. The closer the two opposite surfaces are to each other, the greater the bond strength; the farther the two opposite surfaces are apart, the smaller the bond strength. By practicing the method of the present invention, composite tapes employing individual fibers can now be produced with flat surfaces such that two adjacent turns of the composite tape are in substantially continuous contact with each other over the entire surface. As a result, these composite tapes can now be consistently wound with a thin layer of adhesive of uniform thickness between adjacent turns, thereby achieving high bond strengths. These thin layers of adhesive also allow for a consistently rapid adhesive cure rate and greatly reduce the cushioning effect that would result from applying adhesive between adjacent turns of the composite tape. Also, the elimination of peaks and valleys from these composite tapes makes it easier to radially align multiple turns of the composite tape during the winding process.
本发明之工艺方法的另一个好处是,现在可以均匀地将高拉伸强度纤维完全包覆和密封在树脂体内而不会在复合带内形成任何空隙或槽道。树脂因此而起保护埋在其中的纤维的作用,防止其暴露于环境时可能受到的机械和化学损伤。而且,用于本发明的工艺方法可以制造出纤维包封量更大的高质量复合带,这样就可制成超强的复合物。Another benefit of the process of the present invention is that the high tensile strength fibers can now be uniformly and fully coated and sealed within the resin body without forming any voids or channels within the composite tape. The resin thus acts to protect the fibers embedded in it from possible mechanical and chemical damage when exposed to the environment. Furthermore, the process used in the present invention produces high quality composite tapes with greater fiber encapsulation, which results in super strong composites.
本发明的一个方面提供了一种制造一种有多圈高拉伸强度组合材料的螺旋带的制造方法。按照本发明的这个方面的一个方法包括将多根连续的高拉伸强度纤维送过一处于未固化流体状态的树脂浴槽的步骤,以使各根纤维完全涂覆上树脂而粘连起来形成一复合材料扁带。让复合扁带贴在具有至少一个平表面的半刚性隔粘带上,使扁带的至少一个表面与隔粘带紧密接触以形成叠层带。将叠层带缠绕在一心轴上,使复合材料成为多个叠压的圈,带内的树脂至少部分地固化到固态以将各圈定形成一螺旋构造。当将隔粘带从复合扁带上剥下时,就看到一个具有至少一个基本平表面的复合带。One aspect of the present invention provides a method of making a helical ribbon of multi-turn high tensile strength composite material. A method according to this aspect of the invention includes the step of passing a plurality of continuous high tensile strength fibers through a bath of resin in an uncured fluid state so that the individual fibers are completely coated with resin and bond together to form a composite Material webbing. The composite webbing is applied to the semi-rigid barrier tape having at least one flat surface such that at least one surface of the webbing is in intimate contact with the barrier tape to form a laminated tape. The laminated tape is wound on a mandrel so that the composite material is formed into a plurality of superimposed coils, the resin within the tape at least partially cured to a solid state to define the coils into a helical configuration. When the adhesive barrier tape is peeled from the composite webbing, a composite webbing having at least one substantially flat surface is seen.
最好是,隔粘带有足够的刚性,以使隔粘带的至少一个平表面在缠绕和固化步骤中不会因受到复合带内的纤维的作用而变形,但隔粘带又应是足够柔软的,以便在缠绕步骤中能均匀地绕在心轴上。隔粘带可以具有至少两个基本平的表面,这样,处于多个叠压的各圈内的复合带的第一和第二面就都与隔粘带的一个平表面相接触。尽管隔粘带的刚性将在很大程度上取决于构成隔粘带的特定材料,较佳的隔粘带的厚度可至少为约0.005英寸。虽然隔粘带可用具有适当刚性的任何薄膜材料制成,但聚丙烯、尼龙和聚酯薄膜的隔粘带特别好。Preferably, the tape is rigid enough so that at least one planar surface of the tape will not be deformed by the fibers in the composite tape during the winding and curing steps, but the tape should be sufficiently rigid. Soft so that it wraps evenly around the mandrel during the winding step. The barrier tape may have at least two substantially planar surfaces such that the first and second sides of the composite tape in each of the plurality of laminated turns are in contact with one planar surface of the barrier tape. While the rigidity of the tape will depend largely on the particular material from which the tape is constructed, it is preferred that the tape be at least about 0.005 inches thick. While the tape can be made of any film material of suitable rigidity, polypropylene, nylon, and mylar tapes are particularly preferred.
用来制造复合材料的高拉伸强度纤维最好用非金属的不导电材料构成。比如,纤维可以是玻璃纤维,最好是E型玻璃纤维。最希望的是,纤维是直径不超过约0.001英寸的单根纤维。这里所用的“单根”一词是指各纤维相互之间是独立的,没有任何可能将几根纤维保持在一起的横向细丝或其它连接件。纤维可以为纤维束的形式,每一纤维束包括多根单根纤维。这种情况中,希望各纤维束绕过一组展开杆以使各纤维束内的各单根纤维在进入树脂浴槽内之前散开。The high tensile strength fibers used to make composites are preferably constructed of non-metallic, non-conductive materials. For example, the fibers may be glass fibers, preferably E-glass fibers. Most desirably, the fibers are individual fibers having a diameter of no more than about 0.001 inch. The term "individual" as used herein means that the individual fibers are independent of each other without any transverse filaments or other connecting elements which might hold the fibers together. The fibers may be in the form of fiber bundles, each fiber bundle comprising a plurality of individual fibers. In this case, it is desirable for each fiber tow to pass around a set of spreading rods to spread out the individual fibers within each fiber tow before entering the resin bath.
构成复合材料的树脂最好在固化的固体状态下有弹性,它可从包括聚酯树脂、乙烯酯树脂、聚氨酯树脂、环氧树酯、沥青瓷漆、煤焦油瓷漆以及类似材料的物组中选择。在这些树脂中,聚酯树脂、乙烯酯树脂、聚氨酯树脂和环氧树脂较佳,而间苯二聚酯树脂特别好。较佳的复合材料包括约50%至90%重量百分比之间的纤维和约10%至50%重量百分比之间的树脂;更佳的为约65%至约75%重量百分比之间的纤维和约25%至约35%重量百分比之间的树脂;最可取的为约70%重量百分比的纤维和约30%重量百分比的树脂。The resins of which the composite material is composed are preferably elastic in the cured solid state and may be selected from the group consisting of polyester resins, vinyl ester resins, polyurethane resins, epoxy resins, asphalt enamel, coal tar enamel, and similar materials . Among these resins, polyester resins, vinyl ester resins, polyurethane resins and epoxy resins are preferable, and isophthalic polyester resins are particularly preferable. A preferred composite material comprises between about 50% and 90% by weight fibers and between about 10% and 50% by weight resin; more preferably between about 65% and about 75% by weight fibers and about 25% by weight % to about 35% by weight resin; most preferably about 70% by weight fiber and about 30% by weight resin.
在将纤维进给树脂浴槽的步骤中可以包括一个使纤维从一位于树脂中的杆下经过,以使其急剧改变行进的方向的步骤,从而使纤维束中的纤维进一步散开和相互间进一步分开,这样,它们就能完全涂上树脂。纤维可在进给过树脂浴槽之前张紧。可让纤维绕过一组分离杆以对进入树脂浴槽的纤维的向前运动施加一拉力,从而实现张紧。上述工艺方法提供了一种用于制造在螺旋方向上有高拉伸强度的螺旋形式的复合带的简单而有效的方法。The step of feeding the fibers into the resin bath may include a step of passing the fibers under a rod in the resin so that they abruptly change direction of travel so that the fibers in the tow are further dispersed and further separated from each other. Separate so that they are completely coated with resin. Fibers can be tensioned before being fed through the resin bath. Tensioning can be achieved by passing the fiber around a set of breakaway rods to apply a pulling force to the forward movement of the fiber entering the resin bath. The process described above provides a simple and efficient method for producing composite tapes in helical form with high tensile strength in the helical direction.
本发明的另一个方面提供了一种加强轴向延伸结构使之能抵抗从结构内径向向外的内力的方法。根据本发明的这一方面的一种方法包括一个提供一具有多个高拉伸强度复合材料圈的螺旋带的步骤,每一圈有至少一个基本平的表面。螺旋带的多个圈用一种粘结剂包绕在结构上,使多个圈不会相互间相对运动,也不会相对于结构而运动。Another aspect of the invention provides a method of strengthening an axially extending structure against internal forces radially outward from the interior of the structure. A method according to this aspect of the invention includes a step of providing a helical ribbon having a plurality of turns of high tensile strength composite material, each turn having at least one substantially flat surface. The turns of the helical ribbon are wrapped around the structure with an adhesive such that the turns do not move relative to each other or the structure.
通过参照下面结合附图所进行的详细描述,可更完全地理解本发明的主题及其各种优点。A more complete understanding of the present subject matter and its various advantages may be obtained by referring to the following detailed description taken in conjunction with the accompanying drawings.
图1a是剖切过处于一绕装位置的实验螺旋带的相邻两圈所取的放大示意横剖图;Fig. 1 a is the enlarged schematic cross-sectional view taken by cutting two adjacent turns of the experimental helical band in a winding position;
图2是剖切过本发明之螺旋带的相邻两圈所取的放大示意横剖图;Fig. 2 is the magnified schematic cross-sectional view that two adjacent circles of the helical band of the present invention are cut through;
图3是螺旋带的主体图;Fig. 3 is the main figure of spiral band;
图4是显示本发明的一个实施例的螺旋带制作工艺方法的示意图;Fig. 4 is the schematic diagram showing the spiral ribbon production process method of an embodiment of the present invention;
图5是示意地显示处于制作过程中的螺旋带的相邻各圈的放大剖分剖视图;Figure 5 is an enlarged cut-away sectional view schematically showing adjacent turns of the helical ribbon in the process of manufacture;
图6是显示本发明之另一实施例的螺旋带缠绕过程的剖分示意图;FIG. 6 is a schematic cutaway view showing a spiral ribbon winding process according to another embodiment of the present invention;
图7是用本发明的一个实施例的螺旋带加强的一个结构的剖分前视图;Figure 7 is a cutaway front view of a structure reinforced with a helical band of an embodiment of the present invention;
图8是沿图7中A-A线的横剖示意图;Fig. 8 is a schematic cross-sectional view along line A-A in Fig. 7;
图9是一结构的部分示意前视图,为了加强其上已绕装有本发明的多个螺旋带。几个螺旋带切除了一部分;Figure 9 is a partially schematic front view of a structure to which a plurality of helical ribbons of the present invention have been wound for reinforcement. Several helical bands were partially excised;
图10是一结构的剖分前视图,其上已绕装有本发明的多个螺旋带,以便按照本发明的另一实施例进行加强。Figure 10 is a cutaway front view of a structure on which a plurality of helical ribbons of the present invention have been wound for reinforcement according to another embodiment of the present invention.
本发明的工艺方法采用由轻质高拉伸强度材料制成的连续纤维。尽管也可采用由任何高拉伸强度材料制成的纤维,但一般最好是非金属不导电的纤维。从这一点看,玻璃纤维较可取,并且E型玻璃纤维因其成本较低而特别可取。然而,本发明设想采用由其他高拉伸强度材料制成的纤维,诸如S型玻璃纤维、R型玻璃纤维和开夫拉(Kevlar)之类。纤维以相互独立的单根纤维形式提供。即,纤维不包括任何横向细丝、任何热融胶或任何可能将一些纤维保持在一起的其他连接件。希望的是,每一单根纤维的直径不超过0.001英寸。纤维可以以束的形式提供,每束纤维都独立于近旁的纤维且可以包括数百甚至数千单根纤维。The process of the present invention utilizes continuous fibers made of lightweight high tensile strength material. Non-metallic, non-conductive fibers are generally preferred, although fibers made of any high tensile strength material may be used. From this point of view, glass fibers are preferred, and E-glass fibers are particularly preferred because of their lower cost. However, the present invention contemplates the use of fibers made from other high tensile strength materials, such as S-glass fibers, R-glass fibers, and Kevlar. Fibers are provided as individual fibers. That is, the fibers do not include any transverse filaments, any hot melt glue, or any other connectors that might hold some fibers together. Desirably, each individual fiber is no more than 0.001 inches in diameter. Fibers may be provided in bundles, each bundle being independent of nearby fibers and comprising hundreds or even thousands of individual fibers.
参看图4,多个纤维束10从包装(未示)中通过一导引装置12拉出,导引装置12有多个给料孔13,给料孔13导引着纤维束10,这样,它们就不会相互纠缠而且基本上向同一方向正确对准以便随后的处理。提供的纤维束10的数目取决于准备制造的螺旋带的宽度和厚度以及所希望的带内纤维/树脂比例。Referring to Fig. 4, a plurality of
纤维束10从导引装置12拉过一装有树脂16的浴槽14。在选择用于本发明的合适的树脂时必须考虑几个标准。合适的树脂最好为未固化状态,在此状态下它是可充分流动的,从而可完全涂覆于纤维束10中的各单根纤维上,但又有足够的粘性从而能充填并保留在各纤维之间的间隙内。这种树脂最好也能达到表现一种弹性记忆的固态。通过调整加入树脂的催化剂数量,树脂固化至固态所需要的时间可以控制,以便可进行下面描述的各个成形步骤而树脂仍处于未固化的流体状态。The
在树脂选择中需要考虑的另一个因素是固化状态的树脂要有能保护嵌埋在其中的纤维免受化学和机械损害的能力。从这一点看,在采用由复合材料构成的螺旋带来加强一结构时,螺旋带内的纤维一般是主要承载件。相应地,处于固化状态的树脂最好有足够的强度以及抵抗由潮气、土壤的化学作用及其他环境作用造成破坏的能力,以防止纤维被损害或减弱。Another factor to consider in resin selection is the ability of the resin in its cured state to protect the embedded fibers from chemical and mechanical damage. In this regard, when reinforcing a structure with helical tapes of composite material, the fibers within the helical tapes are generally the main load-carrying elements. Accordingly, the resin in its cured state preferably has sufficient strength and resistance to damage by moisture, soil chemistry, and other environmental effects to prevent damage or weakening of the fibers.
同时最好是选用在固化状态其延展性和伸长率可与纤维相协调的树脂。如果纤维和树脂两者的延展性和伸长率显著不同,在作为加强件使用时施加于螺旋带的拉伸应力将在纤维和树脂之间的交界面处产生一剪切力,这个力会破坏这两构成部分之间的界面粘结。当粘结被破坏时,空气和土壤中的诸如酸和碱之类的侵蚀性介质就会迅速地沿纤维侵入而使之破坏和减弱。通过使树脂的延展性及伸长率与纤维的尽量接近,就会使界面处的剪切力达到最小,从而减小树脂和纤维之间发生脱结的可能性。At the same time, it is preferable to use a resin whose ductility and elongation can be coordinated with the fiber in the cured state. If the ductility and elongation of the fibers and the resin are significantly different, the tensile stress applied to the helical tape when used as a reinforcement will generate a shear force at the interface between the fibers and the resin, which will destroy the Interfacial bonding between these two components. When the bond is broken, aggressive media such as acid and alkali in the air and soil will quickly invade along the fibers to destroy and weaken it. By making the ductility and elongation of the resin as close as possible to that of the fiber, the shear force at the interface is minimized, thereby reducing the possibility of debonding between the resin and the fiber.
考虑到上述标准,用于本发明的合适的树脂可从包括聚酯树脂、乙烯基酯树脂、聚氨酯树脂、环氧树脂、沥青瓷漆和煤焦油瓷漆的物组中选取。在这些材料中,聚酯树脂、乙烯基酯树脂、聚氨酯树脂及环氧树脂较可取。也可采用性能与上述材料相似且满足上述要求的其他材料。一种特别可取的树脂是一种间苯二聚酯树脂,它由间苯二聚酯苯组分和用来将树脂胶化和固化至固态的甲乙酮过氧化物催化剂组成。除这种催化剂外各种常规的成分也可加入树脂中以获得所需的特殊性能。这些添加物包括比如防止树脂受紫外线伤害的保护剂、粘性控制剂、为了可见或识别的目的而对树脂着色的颜料,等等。Suitable resins for use in the present invention may be selected from the group consisting of polyester resins, vinyl ester resins, polyurethane resins, epoxy resins, bituminous enamel and coal tar enamel, considering the above criteria. Among these materials, polyester resins, vinyl ester resins, polyurethane resins, and epoxy resins are preferable. Other materials with properties similar to those described above and meeting the above requirements may also be used. A particularly preferred resin is a isophthalic polyester resin consisting of the isophthalic polyester benzene component and a methyl ethyl ketone peroxide catalyst used to gel and cure the resin to a solid state. In addition to this catalyst, various conventional ingredients can also be added to the resin to obtain the desired special properties. These additives include, for example, protectants to protect the resin from UV damage, tack control agents, pigments to color the resin for visibility or identification purposes, and the like.
在经过导引机构12之前,纤维束10可以进给过一组展开杆或变向杆18。一杆组18包括三根杆20、22和24,它们在水平面内相互隔开,对于导引机构12的每排进给孔13都有一组杆18。这样,一组纤维束10可从最上的杆组18内的杆20的上面、杆22的下面以及杆24的上面拉过,然后经过导引装置12的顶排进给孔13。其余的纤维束10类似地绕过其余的杆组杆18的杆20、22及24而被拉过,然后经过各排进给孔13。变向杆18起到双重作用。首先,当纤维束10绕着杆20、22及24行进时,它们将初步分开并展开成较薄的单根纤维层。其次,变向杆18与下述的后道处理步骤相结合,可对纤维束10施加一拉力以限制纤维束在由箭头26所示的总体过程方向上的运动。此拉力会使在变向杆18下游的纤维张紧,从而消除纤维内的任何波浪形状,这样,纤维在经过树脂浴槽14时就对齐成基本平行的直线。从下面的描述中将可明白,在纤维上施加过大张力会形成劣质的螺旋带。通过调整第一杆组18中的杆20、22和24的水平间距,可调节施加在纤维上的张力—各杆相互间靠得越近,纤维内的张力越大,而各杆相距越远,纤维内的张力越小。The
从导引装置12出来,纤维束10一边进入树脂浴槽14一边相互汇聚。一旦进入树脂浴槽14,纤维束10就从树脂16液面下的布置成梯子状的一组散开杆28、30和32下方拉过。即,诸如纤维束10的拉过顶部两排进给孔13的那一部分将从散开杆28下面拉过;又诸如纤维束70的拉过中间两排进给孔13的那一部分则从散开杆30下面拉过;再诸如纤维束10的那些拉过底部两排进给孔13的最后部分则从散开杆32下面拉过。随着纤维束10分别从散开杆28、30和32下面拉过,它们在行进方向上发生明显的变化,且相互间进一步散开,使得树脂16能够更容易地理入各单根纤维之间而浸透纤维束。而且,散开杆28、30和32保证纤维从树脂16中穿过而不只是从其表面浮过。Coming out of the
在涂覆着树脂的纤维分别从散开杆28、30和32下面经过后,它们将成为复合扁带34、36和38的形式,每个复合扁带都含有许多根相互间基本同方向地延伸于一树脂基体内的连续纤维。复合带34、36和38在被从树脂浴槽14拉出的同时又被拉过一橡皮辗刮机构40,此机构40包括一固定的下杆42和一铰接至一机架(未示)而可自由浮动的较重的上杆44,当复合扁带34、36和38经过杆42和44之间的间隙46时,较重的杆44的辗刮作用使各单根纤维之间的树脂26受力而增加树脂浸透纤维束的程度。过量的树脂被从复合扁带上刮除,而各复合扁带则合并成一单个复合扁带48。复合扁带48可被拉过一梳理装置50,梳理装置50包括一基本垂直于带48的行进方向延伸的细长杆和多个横贯带的宽度方向向上延伸的指形杆52。通过将基本相等数量的连续纤维从每两个指形杆52之间拉过,梳理装置50保证纤维沿复合扁带48的整个宽度基本均匀地分布。After the resin-coated fibers pass under spreading
离开梳理装置50后,扁带48接触并贴合到从一卷筒58沿箭头56方向并连续绕过沿箭头66、68和70方向转动的情辊60、62和64送过来的由一种隔粘材料制成的连续带54上。复合扁带48一边与隔粘带54接触,一边从一用橡胶或另一种柔软材料制成的刮板72下面经过。刮板72将任何过量的树脂16从复合扁带48上刮下,此树脂然后回到浴槽14内。一旦复合扁带48经过了刮板72,其内的树脂与纤维的比例将基本保持不变。希望复合扁带48包含约50%至约90%重量百分比之间的纤维和约10%至约50%重量百分比之间的树脂;更可取的是约65%至约75%重量百分比之间的纤维和约25%至约35%重量百分比之间的树脂;最好是约70%重量百分比的纤维和约30%重量百分比的树脂。After leaving the
离开刮板72,隔粘带54和复合扁带48将作另一叠层带74而一起行进,接着将叠层带一圈一圈地卷绕在沿箭头78方向转动的心轴76上,形成由卷绕成盘旋结构的交替相间的复合扁带层48和隔粘带层54构成的组件80,以保证叠层带74紧紧地卷绕在心轴76上。在卷绕步骤之前,可以心轴76上施加一层隔粘带54或一类似的隔粘涂层,以便在树脂胶凝之后将组件80从心轴上取下来。由于组件80的内径与心轴76的外径相对应,心轴76的直径尺寸的具体选择将取决于特定用途所需的螺旋带的最小内径。一般,心轴76的直径取为最终要绕装螺旋带的结构的直径之半。希望的是,将叠层带76卷绕在心轴76上的隔开的一对法兰84与86之间,从而限定组件80的宽度。Leaving the
一旦已在心轴76上卷绕了所需圈数的叠层带74(典型地在10至20圈之间),就将心轴76上的组件80通过垂直于长度方向切割叠层带而切离叠层带74的其余部分。然后,将装有组件80的心轴在环境条件下存放,存放期间,复合扁带48内的树脂将部分地固化或胶凝至固态,使组件80内的很多圈固定成螺旋构造。此胶凝时间的长短取决于加入树脂基体成分的催化剂的数量。一旦胶凝就可通过比如在一强制空气烘箱内将组件80加热至约100°F至约250°F之间的温度而使树脂完全固化。对于上面讨论过的较可取的间苯二聚酯树脂,一个典型的加热程序可以包括一个分步骤的周期,在此周期中,组件80先加热至约170°F至约180°F之间一小时,然后在约250°F下约两小时。Once the desired number of turns of
当组件80内的树脂16已胶凝至足够硬的固态以致复合材料将不会产生永久变形时,可将组件从心轴76上取下,并可修除其有树脂溢料区的两端边缘,而使组件有所需要的宽度。组件80修整过的边缘然后涂上树脂16,并将组件80通过最后的固化周期进行处理。一旦组件内的树脂完全固化,就可将隔粘带54剥去而留下有很多圈复合材料的螺旋带90,如图3所示。When the
在将叠层带74卷绕于心轴76上的步骤中,沿叠层带74长度方向的纤维张力将典型地使叠层带卷绕得这样紧,以致心轴上的每一圈叠层带都受到随后各圈的挤压。由于在此卷绕过程中,叠层带74内的树脂16处于流体状态,这一挤压作用一般有使复合扁带48的表面发生扭曲的趋势。换句话说,参看图5,由于纤维中的张力,纤维有紧紧卷绕心轴76的趋势,以致于在隔粘带54a由刚性不够的材料制成时,组件80的圈88内的纤维将施加趋使组件的前一圈87内的此隔粘带54a发生变形的局部力。由于此时这圈87的复合扁带48a内的树脂仍然处于未固化的状态,树脂将不能支承隔粘带54a并防止其局部变形。相反,树脂将屈服于这些力,产生沿这圈87的复合扁带48a的长度方向延伸的表面起伏或波纹。随着继续将叠层带74卷绕到心轴76上,叠层带的每一后续圈将以类似的方式使其前面的几圈发生变形。在图1a和1b所示的两圈螺旋带的横剖视图中,“峰”92和“谷”94表明了这些表面波纹。During the step of winding the
会导致形成表面波纹的复合扁带48的变形可通过选择适当的隔粘带54来基本消除。即,通过选择一种具有足够刚性而不会在卷绕步骤中局部变形的隔粘带54,可形成其表面如图2的横剖图中所示的基本是平的组件80的复合扁带48的各圈。同时,隔粘带54又必须足够柔软,以便其能够在卷绕步骤中以光滑弯曲的各圈均匀地缠绕在心轴76上。从这一点来看,合适的隔粘带可由聚酯、聚丙烯、尼龙之类的材料制成,在复合扁带48固化后,这些材料不会牢固地粘结在其上,在树脂胶凝阶段,它们又能承受树脂16所产生的热量,而且还能承受在最后固化过程中施加于组件80的热量。当然,隔粘带的刚性既取决于其成分也取决于其厚度。比如,当聚酯薄膜用作隔粘带材料时,隔粘带的厚度最好在约0.005英寸至约0.010英寸之间。而且,最好隔粘带有至少一个基本平的表面。这里所用的“基本平的”一词是指隔粘带54的表面及螺旋带90的各圈的表面在横剖图内的表面平面度偏差应不超出约1/64英寸每英尺。非常可取的隔粘带的平表面也可以有带有纹理的表面光洁度。Deformation of the
在本发明的工艺过程中,复合扁带42的表面一般将与相接触的隔粘带54的表面的平整度及表面纹理相一致。因此,希望将把叠层带74卷绕到心轴76上的步骤安排成使得复合扁带48的两个表面都与隔粘带的纹理粗糙但基本平的那一表面相接触。这可以通过在卷绕步骤中将复合扁带48夹在两个隔粘带54和55的纹理粗但基本平的表面之间来实现,如图6所示。但最好还是采用只用一个双面都纹理粗但基本平的单一隔粘带的方法。在这样的方法,当叠层带74往心轴76上时,复合扁带48的一个表面将与叠层带74中的隔粘带54的对应表面相一致,而复合扁带48的另一个表面将与隔粘带54的另一表面相一致。During the process of the present invention, the surface of the
基本上随着上述方法,就形成了具有多个高拉伸强度复合材料同心圈的螺旋带90。参看图3,螺旋带90包括有一内端96的最里圈、有一外端98的最外圈、以及多个中间圈。这种复合带合乎需要地包括连续形态的固化树脂基体,树脂基体包封着大量沿螺旋方向相互同向的高拉伸强度的连续纤维。尽管在图3中同向纤维总地用纵向平行线100表示,但每两条相邻平行线100之间的空隙实际上代表几百甚至几千根纵向纤维。螺旋带90的各圈有一种弹性记忆,这意味着可用一个力来使带展开,但一旦卸除这个力,带又回到其初始的螺旋形状。圈的弹性最好是这样的,即带的使其倾向于卷成螺旋状的力要大于其重量,这样当带被以外端98悬挂起来时,带会保留在螺旋状态。显然,带的表面将没有起伏不平,确切地说,至少带的一个表面是基本平的。较可取地,如图2所示,带的两个表面都是基本平的。非常可取的是,带的平面度在横剖面内的偏差不超过1/64英寸每英尺,且表面波浪度(即表面起伏)不超过0.003英寸。而且,非常可取的带的表面在用一表面光度仪测量时为约12.5微英寸的公称表面纹理。Following essentially the method described above, a
用上述工艺方法制成的螺旋带可用来加强轴向延伸的结构以抵抗内部力造成的破坏。这类结构可以包括比如用来在压力下输送流体的管道、储存罐、高压储存容器、加强的混凝土桥支承件,以及有径向地从内向外的内力的可用轴向延伸结构来评价的其他结构。在结构承受很大的内部压力的应用中,比如气体输送管道,可以用一个或多个螺旋带90缠绕在结构上,使带的各圈同心布置。参看图7和图8,这种加强技术包括在结构104的外表面上固定一层粘结垫102的初始步骤。一种合适的这类粘结垫102比如可以是矩形的其两侧都有接触粘结剂闭胞乙烯垫。作为一种优选办法,可在绕闭螺旋带90之前在结构104的外周表面上涂一层适当的粘结剂106。开始时,通过将外端98粘结至粘结垫102把螺旋带90粘结到结构104上,使螺旋带90的取向基本垂直于结构的轴向。由于外端98保持在位,可通过一边放开螺旋带一边将其往结构104上缠绕来绕装螺旋带90。在第一圈已绕到结构104上后,这圈的外表面涂以粘结剂106并再往结构上缠绕螺旋带90以形成下一圈。此下一圈的外表面再涂以粘结剂106且再绕一圈,如图7所示,此过程如此继续下去,直到整个螺旋带90都已施加到结构104上,以绕其形成一盘带110,其中带90的内端96与盘带110的打底的那一圈接触。盘带110包括至少5圈螺旋带90较好,最好为约8圈。The helical ribbons produced by the process described above can be used to strengthen axially extending structures against damage caused by internal forces. Such structures may include, for example, pipes used to convey fluids under pressure, storage tanks, high-pressure storage vessels, reinforced concrete bridge supports, and other axially-extending structures that can be evaluated with internal forces radially from the inside to the outside structure. In applications where the structure is subject to significant internal pressure, such as gas delivery piping, one or more
题为“修补管道的方法”的美国专利申请No.07/942,731中揭示了适于绕装螺旋带90使用的粘结剂。此参考文件中所揭示的内容在此引为参考。简言之,这些粘结剂都有一初始的流体状态,在此状态下,它们有便于施涂及粘结的适当粘性,而在完成绕装后,它们能固化至一种较硬的较牢固的粘结状态。较可取地是,这些粘结剂在固化状态能抵抗因长期暴露于环境而造成损坏。从这一点看,一种特别可取的粘结剂包括甲基丙烯酸甲酯基本组分和用来使基本组分固化的过氧化物催化剂,各组分以适当比例混合以提供一种具有足够固化时间不完成绕装过程的粘结剂。Adhesives suitable for use with wrapping
随着螺旋带90的各圈缠绕到结构104上,复合材料的弹性使各圈以一定紧度抱在一起并抱在结构的外表面上。希望的是,一旦整个螺旋带90都绕装完毕,就用一木块之类的东西轻拍各圈的边缘使其径向对齐,直到盘带110的每侧边缘都基本相互对齐。由于螺旋带90的各圈没有相互咬合在一起而限制其横向运动的表面起伏,这种对齐是容易实现的。然后,可以用机械手段使盘带110的各圈进一步并紧,直到盘带的最内圈与结构104的外表面紧密接触。在此抱紧过程中,相邻圈之间的尚处于未固化的流体状态的粘结剂层106,起到便于各圈抱紧的润滑作用。在使盘带110的各圈抱紧时,随着各圈靠得越来越近,多余的粘结剂就从这些圈之间挤出。由于螺旋带90的表面基本是平的,相邻两图的相对表面能相互贴紧,这样,就只有一薄层粘结剂106位于这些表面之间。结果,将产生牢固的粘结而将盘带110的相邻圈牢牢地粘在一起。而且,螺旋带90的纹理表面将加强粘结剂对带的各圈的粘结力。不需要用粘结剂106涂覆盘带110最后一圈。可以用一条或多条条带,比如纤维带,绕扎住盘带110,使其抱紧在位,直到各圈之间的粘结剂106固化到足够的粘结状态。As the turns of the
在某些应用中,可能需要加强一结构的一个轴向段,其长度大于单个螺旋带90的宽度。这时,如图9所示,可以用几个螺纹带90绕装在结构上,构成覆盖着结构的一对应轴向长度的多个盘带112、114、116、118和120。每个盘带112-120都如盘带110那样来形成。尽管所示的盘带112-120都边对边地相互抵靠,一个盘带与下一个盘带的实际接触不是必需的。相反,结构可以用绕装成其间有小间隙的各盘带112-120来得到足够加强。In some applications, it may be desirable to reinforce an axial segment of a structure whose length is greater than the width of a single
在那些结构内的压力大大低于气体输送管道内的压力的应用情况中,并不很需要加强,比如,加强用钢筋混凝土建成的桥的支柱就是这种情况。为了加强这种结构,如图10所示,可沿相反的升程螺旋方向将一个或多个螺旋带90缠绕在结构上。采用上述对结构104进行加强的技术,采用与粘结垫102类似的粘结垫(未示)来将螺旋带90的外端98以一斜角初始粘结到结构122上。在将一层粘结剂(比如粘结剂106)已施涂在结构122的外表面上后,可将一螺旋带90一边放开一边以升程螺旋的方式绕在结构上,螺旋带90的每一圈都与前一圈边靠边,以形成第一个升程螺旋盘带124。如果需要,可在整个螺旋带90绕装到结构122上之后,将第二个螺旋带90以同样方式绕装在其上。这样,在一第二粘结垫已固定到螺旋盘带124且一层粘结剂已施涂于其上之后,可绕装一第二螺旋带90以覆盖第一螺旋盘带124。典型地,可以将第二螺旋带90绕装成一其各螺旋圈与盘带124的各螺旋圈方向相反的螺旋盘带126,如果需要,还可绕装附加的螺旋带以形成更多的盘带层。还是那样,螺旋带90的平表面能使带如此平整地绕装在结构122上,以致在螺旋盘带124和结构122的外表面之间以及在螺旋盘带126和螺旋盘带124之间只有一薄层粘结剂。通过将粘结剂限制于只有一薄层,在各复合部分之间就形成了牢固的粘结。In those applications where the pressure in the structure is much lower than the pressure in the gas delivery pipeline, reinforcement is not very necessary, as is the case, for example, with the reinforcement of the pillars of bridges made of reinforced concrete. To reinforce the structure, as shown in Figure 10, one or more
尽管这里已结合实施例描述了本发明,但应明白,这些实施例只是表示了本发明的原理及应用。因此应该明白,对所揭示的实施例可作许多改动,并且可以设计出其他的结构布置,而不会偏离由后附权利要求书所限定的本发明的精神和范围。而且,应当明白,本发明除了在权利要求书中特别指明的那些特征外,还意欲包括这里描述的各特征的各种复合。Although the invention has been described with reference to the embodiments, it should be understood that these embodiments are only illustrative of the principles and applications of the invention. It is therefore to be understood that various changes may be made in the disclosed embodiments and that other structural arrangements may be devised without departing from the spirit and scope of the invention as defined by the appended claims. Furthermore, it should be understood that the invention is intended to include various combinations of features described herein in addition to those features specifically indicated in the claims.
工业应用性:Industrial applicability:
本发明工艺方法可提供高拉伸强度的复合加强带,它们能比已知的加强带更有效地用来修补管道的受腐蚀部分以及用来加强管道以限制塑性破坏和脆性破坏沿管道的蔓延。The process of the present invention provides composite reinforcing tapes of high tensile strength which can be used more effectively than known reinforcing tapes to repair corroded sections of pipes and to reinforce pipes to limit the propagation of plastic and brittle failures along the pipe .
Claims (31)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1993/007972 WO1994005499A1 (en) | 1992-09-09 | 1993-08-24 | High tensile strength composite reinforcing bands and methods for making same |
US93/07972 | 1993-08-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1120142A CN1120142A (en) | 1996-04-10 |
CN1041015C true CN1041015C (en) | 1998-12-02 |
Family
ID=22236882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN94102474A Expired - Lifetime CN1041015C (en) | 1993-08-24 | 1994-03-08 | Composite reinforcing tape of high tensile strength and methods of making and using same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1041015C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109228411A (en) * | 2018-10-19 | 2019-01-18 | 洛阳科博思新材料科技有限公司 | A kind of mechanization dipping systems of fibre reinforced composites and its application |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3602416A (en) * | 1969-01-29 | 1971-08-31 | United Aircraft Corp | Method of collimating fibers |
US4559974A (en) * | 1982-10-01 | 1985-12-24 | Fawley Norman | Apparatus and method of arresting ductile fracture propagation |
US4589562A (en) * | 1981-05-04 | 1986-05-20 | Fawley Norman | Structures reinforced by a composite material |
US4700752A (en) * | 1982-10-01 | 1987-10-20 | Fawley Norman | Clock spring crack arrestor |
US4767276A (en) * | 1986-12-19 | 1988-08-30 | General Electric Company | Retainer ring |
US4919739A (en) * | 1986-11-07 | 1990-04-24 | Basf Aktiengesellschaft | Production of improved preimpregnated material comprising a particulate thermosetting resin suitable for use in the formation of a substantially void-free fiber-reinforced composite article |
-
1994
- 1994-03-08 CN CN94102474A patent/CN1041015C/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3602416A (en) * | 1969-01-29 | 1971-08-31 | United Aircraft Corp | Method of collimating fibers |
US4589562A (en) * | 1981-05-04 | 1986-05-20 | Fawley Norman | Structures reinforced by a composite material |
US4559974A (en) * | 1982-10-01 | 1985-12-24 | Fawley Norman | Apparatus and method of arresting ductile fracture propagation |
US4700752A (en) * | 1982-10-01 | 1987-10-20 | Fawley Norman | Clock spring crack arrestor |
US4919739A (en) * | 1986-11-07 | 1990-04-24 | Basf Aktiengesellschaft | Production of improved preimpregnated material comprising a particulate thermosetting resin suitable for use in the formation of a substantially void-free fiber-reinforced composite article |
US4767276A (en) * | 1986-12-19 | 1988-08-30 | General Electric Company | Retainer ring |
Also Published As
Publication number | Publication date |
---|---|
CN1120142A (en) | 1996-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5683530A (en) | Reinforcement methods utilizing high tensile strength composite bands | |
US6889715B2 (en) | Flexible tubular member with sealed tape layer | |
US7781040B2 (en) | Flexible composite tubular assembly with high insulation properties and method for making same | |
US6899140B2 (en) | Flexible pipe and method of manufacturing same using metal reinforced tape | |
CA2513506C (en) | Fiber reinforced pipe | |
WO2006043311A1 (en) | Cable composed of high strength fiber composite material | |
US4559974A (en) | Apparatus and method of arresting ductile fracture propagation | |
US6491779B1 (en) | Method of forming a composite tubular assembly | |
US4700752A (en) | Clock spring crack arrestor | |
CA2455736C (en) | System for joining sections of composite reinforced line pipe | |
EP0149336B1 (en) | Flexible tension members | |
CN1041015C (en) | Composite reinforcing tape of high tensile strength and methods of making and using same | |
EP0371115A1 (en) | Marine antifouling. | |
JP3228368B2 (en) | Method for manufacturing flexible fluid transport tube | |
US20180045339A1 (en) | Ultrathin concrete composite pipe with oriented and localized fiber | |
CN101223313A (en) | A roll of preformed steel cord reinforced strip | |
GB2128287A (en) | Crack arrestor | |
IL108771A (en) | High tensile strength composite reinforcing bands and methods for making same | |
JP4442707B2 (en) | Method for manufacturing hydraulic hose, hydraulic hose, and strip-shaped member for forming spiral reinforcing layer | |
US6319350B1 (en) | Method of manufacture for flexible hose | |
WO2003060372A1 (en) | Connection method and connection structure of plastic pipe | |
JP2004308065A (en) | High-strength fiber composite material cable | |
JPH11222784A (en) | Fiber-reinforced composite material cable and its production | |
JP2009030687A (en) | Fiber reinforced pipe and method for connecting and forming internal pressure-reinforced layer of fiber reinforced pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
ERR | Gazette correction |
Free format text: CORRECT: [30]; FROM: PRIORITY TO: NONE; [32]; FROM: 93.8.24 TO: NONE; [33]; FROM: US TO: NONE; [31]; FROM: 93/07972 TO: NONE |
|
CI01 | Publication of corrected invention patent application |
Correction item: [32] False: 19930824 Number: 15 Page: 83 Volume: 12 Correction item: [30] False: Priority Number: 15 Page: 83 Volume: 12 Correction item: [33] False: US Number: 15 Page: 83 Volume: 12 Correction item: [31] False: 93/07972 Number: 15 Page: 83 Volume: 12 |
|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CX01 | Expiry of patent term |
Expiration termination date: 20140308 Granted publication date: 19981202 |