[go: up one dir, main page]

CN104096575A - Method for preparing platinum-nickel nucleocapsid structure fuel cell catalyst through microwave reduction - Google Patents

Method for preparing platinum-nickel nucleocapsid structure fuel cell catalyst through microwave reduction Download PDF

Info

Publication number
CN104096575A
CN104096575A CN201410289122.7A CN201410289122A CN104096575A CN 104096575 A CN104096575 A CN 104096575A CN 201410289122 A CN201410289122 A CN 201410289122A CN 104096575 A CN104096575 A CN 104096575A
Authority
CN
China
Prior art keywords
platinum
nickel
mixture
fuel cell
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410289122.7A
Other languages
Chinese (zh)
Inventor
佟浩
高珍珍
张校刚
白文龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201410289122.7A priority Critical patent/CN104096575A/en
Publication of CN104096575A publication Critical patent/CN104096575A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

微波还原制备铂镍核壳结构燃料电池催化剂的方法,包括以下步骤:将碳粉、表面活性剂依次加入有机溶剂中混合均匀,得混合物A;将镍的化合物加入混合物A中混合均匀,得混合物B;对混合物B进行微波辐照,反应温度为80~800℃,反应时间为0.01~120min,后静置冷却,得混合物C;将铂的化合物加入混合物C中混合均匀,得混合物D;对混合物D进行微波辐照,反应温度为80~800℃,反应时间为0.01~120min,后静置冷却,得混合物E,经洗涤、干燥,即得。本发明制备的铂镍核壳结构催化剂的催化性能可以与商业铂碳的相媲美,性能优异,电子转移数可以接近4。

The method for preparing a fuel cell catalyst with a platinum-nickel core-shell structure by microwave reduction comprises the following steps: adding carbon powder and a surfactant to an organic solvent and mixing uniformly to obtain a mixture A; adding a nickel compound to the mixture A and mixing uniformly to obtain a mixture B; Microwave irradiation is carried out on the mixture B, the reaction temperature is 80~800 ℃, the reaction time is 0.01~120min, after standing for cooling, the mixture C is obtained; the platinum compound is added into the mixture C and mixed uniformly, and the mixture D is obtained; The mixture D is irradiated with microwaves, the reaction temperature is 80-800°C, the reaction time is 0.01-120min, and then left to cool to obtain the mixture E, which is obtained after washing and drying. The catalytic performance of the platinum-nickel core-shell catalyst prepared by the invention is comparable to that of commercial platinum carbon, and the performance is excellent, and the electron transfer number can be close to 4.

Description

微波还原制备铂镍核壳结构燃料电池催化剂的方法Preparation method of platinum-nickel core-shell structure fuel cell catalyst by microwave reduction

技术领域 technical field

本发明属于铂镍核壳结构燃料电池催化剂材料领域,具体涉及一种微波还原制备铂镍核壳结构燃料电池催化剂的方法。 The invention belongs to the field of fuel cell catalyst materials with a platinum-nickel core-shell structure, and in particular relates to a method for preparing a fuel cell catalyst with a platinum-nickel core-shell structure through microwave reduction.

背景技术 Background technique

目前现有的石化能源远不能满足人们的需要,燃料电池的开发和应用从一定程度上缓解即将出现的能源危机。燃料电池不仅利用率高,而且可以实现零污染,是一项非常好的能量来源,燃料电池的发展前景是十分可观的。但是目前燃料电池中所使用的贵金属铂催化剂不仅资源稀缺而且价格很高,从而使研究者们开始了对铂合金催化剂的开发研究。现有的铂合金催化剂制备中往往出现合金分布不均匀、合金颗粒尺寸过大不利于铂的充分利用,生产成本高、产率低等问题。即铂镍合金催化剂材料制备方法仍存在铂利用率较低,催化剂颗粒大小不可控、催化剂颗粒分散不均匀、生产成本高、反应所需设备复杂、反应条件苛刻、产量低从而难以工业化生产等不足。 The existing petrochemical energy is far from meeting people's needs, and the development and application of fuel cells can alleviate the upcoming energy crisis to a certain extent. Fuel cells not only have a high utilization rate, but also can achieve zero pollution. They are a very good source of energy, and the development prospects of fuel cells are very considerable. However, the precious metal platinum catalyst used in fuel cells is not only scarce in resources but also expensive, so researchers have begun to develop research on platinum alloy catalysts. In the preparation of existing platinum alloy catalysts, there are often problems such as uneven alloy distribution, excessive alloy particle size, which is not conducive to the full utilization of platinum, high production costs, and low yields. That is, the preparation method of platinum-nickel alloy catalyst material still has the disadvantages of low utilization rate of platinum, uncontrollable catalyst particle size, uneven dispersion of catalyst particles, high production cost, complex equipment required for reaction, harsh reaction conditions, low yield, and difficulty in industrial production. .

综上所述,解决上述问题已成为现有铂镍核壳结构燃料电池催化剂材料领域亟待解决的技术难题。 To sum up, solving the above problems has become an urgent technical problem to be solved in the field of fuel cell catalyst materials with platinum-nickel core-shell structure.

发明内容 Contents of the invention

解决的技术问题:本发明的目的是克服现有技术的不足而提供一种微波还原制备铂镍核壳结构燃料电池催化剂的方法,本方法制备的铂镍核壳结构燃料电池催化剂材料对铂利用率较高、催化剂颗粒大小可控、催化剂颗粒分散均匀、生产成本低、所需设备简单,实验条件宽松、产量高且易于实现工业化生产。 Technical problem to be solved: the purpose of the present invention is to overcome the deficiencies in the prior art and provide a method for preparing a platinum-nickel core-shell structure fuel cell catalyst by microwave reduction, and the platinum-nickel core-shell structure fuel cell catalyst material prepared by this method can utilize High efficiency, controllable catalyst particle size, uniform dispersion of catalyst particles, low production cost, simple equipment required, loose experimental conditions, high output and easy industrial production.

本发明的技术方案:Technical scheme of the present invention:

微波还原制备铂镍核壳结构燃料电池催化剂的方法,包括以下步骤: A method for preparing a fuel cell catalyst with a platinum-nickel core-shell structure by microwave reduction, comprising the following steps:

第一步:将碳粉、表面活性剂依次加入有机溶剂中混合均匀,得混合物A;其中,所述有机溶剂与碳粉的质量比为100~2968:1,所述的表面活性剂与碳粉的质量比为0.1~50:1,所述有机溶剂为甲醇、乙醇、乙二醇和丙三醇中的至少一种;  The first step: add carbon powder and surfactant in the organic solvent and mix uniformly to obtain mixture A; wherein, the mass ratio of the organic solvent to carbon powder is 100~2968:1, and the surfactant and carbon The mass ratio of powder is 0.1~50:1, and described organic solvent is at least one in methanol, ethanol, ethylene glycol and glycerol;

第二步:将镍的化合物加入步骤一所得混合物A中混合均匀,得混合物B;其中镍的化合物与碳粉的质量比为0.53~50:1,所述镍的化合物为六水合硝酸镍、乙酸镍、碳酸镍、氯化镍、硫酸镍、碱式碳酸镍、氟化镍、三氧化二镍、氧化镍和氧化亚镍中的至少一种; The second step: add the nickel compound into the mixture A obtained in step 1 and mix evenly to obtain the mixture B; wherein the mass ratio of the nickel compound to the carbon powder is 0.53~50:1, and the nickel compound is nickel nitrate hexahydrate, At least one of nickel acetate, nickel carbonate, nickel chloride, nickel sulfate, basic nickel carbonate, nickel fluoride, nickel trioxide, nickel oxide and nickelous oxide;

第三步:对步骤二所得混合物B进行微波辐照,反应温度为80~800℃,反应时间为0.01~120min,后静置冷却,得混合物C; Step 3: Microwave irradiation is carried out on the mixture B obtained in step 2, the reaction temperature is 80-800°C, the reaction time is 0.01-120min, and then left to cool to obtain the mixture C;

第四步:将铂的化合物加入步骤三所得混合物C中混合均匀,得混合物D;其中铂的化合物与碳粉的质量比为0.21~50:1,所述铂的化合物为氟化铂、硝酸铂、酞菁铂、赛特铂、氧化铂、氯铂酸钠、氯化亚铂、二氯化铂、四氯化铂、氯铂酸和氯铂酸钾中的至少一种; Step 4: Add the platinum compound to the mixture C obtained in step 3 and mix evenly to obtain the mixture D; wherein the mass ratio of the platinum compound to the carbon powder is 0.21~50:1, and the platinum compound is platinum fluoride, nitric acid At least one of platinum, platinum phthalocyanine, saturate platinum, platinum oxide, sodium chloroplatinate, platinum subchloride, platinum dichloride, platinum tetrachloride, chloroplatinic acid and potassium chloroplatinate;

第五步:对步骤四所得混合物D进行微波辐照,反应温度为80~800℃,反应时间为0.01~120min,后静置冷却,得混合物E,经蒸馏水、乙醇或丙酮洗涤后,干燥,即得铂镍核壳结构燃料电池催化剂材料。 Step 5: Microwave irradiation is carried out on the mixture D obtained in step 4, the reaction temperature is 80~800°C, the reaction time is 0.01~120min, and then left to cool to obtain the mixture E, which is washed with distilled water, ethanol or acetone, and dried. The fuel cell catalyst material with a platinum-nickel core-shell structure is obtained.

步骤一所述的表面活性剂为阳离子型表面活性剂、阴离子表面活性剂、非离子表面活性剂或两性表面活性剂中的一种。 The surfactant described in step 1 is one of cationic surfactant, anionic surfactant, nonionic surfactant or amphoteric surfactant.

所述阳离子表面活性剂为十六烷基三甲基溴化铵、十六烷基二甲基苄基溴化铵、十六醇聚氧乙烯醚基二甲基辛烷基氯化铵、十二醇聚氧乙烯醚基二甲基甲基氯化铵、辛基酚聚氧乙烯醚基二甲基癸烷基溴化铵、辛基酚聚氧乙烯醚基二甲基癸烷基氯化铵或十六醇聚氧乙烯醚基二甲基辛烷基氯化铵中的一种。 The cationic surfactant is cetyl trimethyl ammonium bromide, cetyl dimethyl benzyl ammonium bromide, cetyl alcohol polyoxyethylene ether dimethyl octyl ammonium chloride, cetyl Diol polyoxyethylene ether based dimethyl methyl ammonium chloride, octylphenol polyoxyethylene ether based dimethyldecyl ammonium bromide, octylphenol polyoxyethylene ether based dimethyldecyl ammonium chloride One of ammonium or cetyl dimethyloctyl ammonium chloride.

所述阴离子型表面活性剂为十二烷基硫酸钠、十二烷基磺酸钠、十六烷基苯磺酸钠、十八烷基硫酸钠、N-油酰基多缩氨基酸钠、脂肪醇聚氧乙烯醚硫酸钠或脂肪醇聚氧乙烯醚磺基琥珀酸单脂二钠。 The anionic surfactant is sodium lauryl sulfate, sodium dodecylsulfonate, sodium cetylbenzenesulfonate, sodium octadecylsulfate, sodium N-oleoyl polypeptide, fatty alcohol Sodium polyoxyethylene ether sulfate or disodium polyoxyethylene ether sulfosuccinate monoester.

所述非离子型表面活性剂为聚乙烯基吡咯烷酮、丙二醇聚氧丙烯聚氧乙烯醚、异构醇聚氧乙烯聚氧丙烯醚、聚氨酯聚氧丙烯聚氧丙烯醚、聚乙二醇单油酸酯或十八烷基乙烯脲中的一种。 The nonionic surfactant is polyvinylpyrrolidone, propylene glycol polyoxypropylene polyoxyethylene ether, isomerized alcohol polyoxyethylene polyoxypropylene ether, polyurethane polyoxypropylene polyoxypropylene ether, polyethylene glycol monooleic acid One of esters or stearyl ethylene urea.

所述两性表面活性剂为EO20PO70EO20(P123)、EO106PO70EO106(F127)、月桂基二甲基氧化铵、椰油烷基二甲基氧化铵、十二烷基二甲基氧化铵、十二烷基二羟乙基氧化铵、十四烷基二羟乙基氧化铵、十六烷基二羟乙基氧化铵、十八烷基二甲基氧化铵或十六烷基二羟乙基氧化铵中的一种。 The amphoteric surfactant is EO 20 PO 70 EO 20 (P123), EO 106 PO 70 EO 106 (F127), lauryl dimethyl ammonium oxide, coconut oil alkyl dimethyl ammonium oxide, dodecyl di Methyl ammonium oxide, lauryl dihydroxyethyl ammonium oxide, tetradecyl dihydroxyethyl ammonium oxide, cetyl dihydroxyethyl ammonium oxide, octadecyl dimethyl ammonium oxide or cetyl ammonium oxide One of the alkyl dihydroxyethyl ammonium oxides.

步骤一所述混合物A、步骤二所述混合物B、步骤四所述混合物D通过超声法或加热搅拌混合均匀而得;其中,超声法是在超声频率为20~40KHz、超声功率为200~700W下,超声30min~1h;加热搅拌是在温度为35~70℃、搅拌速度为150~350r/min下,搅拌25min~3h。。 The mixture A described in step 1, the mixture B described in step 2, and the mixture D described in step 4 are uniformly obtained by ultrasonic method or heating and stirring; wherein, the ultrasonic method is obtained when the ultrasonic frequency is 20~40KHz and the ultrasonic power is 200~700W Ultrasound for 30min~1h; heating and stirring at a temperature of 35~70°C and a stirring speed of 150~350r/min, stirring for 25min~3h. .

有益效果Beneficial effect

第一,本发明的微波还原制备铂镍核壳结构燃料电池催化剂的方法,铂镍合金催化剂颗粒能够在碳纳米管上均匀负载且直径范围为3~10nm,可通过改变加入的铂的化合物以及镍的化合物的用量来控制制备的催化剂材料铂镍合金的金属比例和尺寸; First, the microwave reduction method of the present invention prepares platinum-nickel core-shell structure fuel cell catalysts. Platinum-nickel alloy catalyst particles can be uniformly loaded on carbon nanotubes and have a diameter range of 3 to 10nm, which can be achieved by changing the added platinum compound and The amount of the compound of nickel is used to control the metal ratio and size of the prepared catalyst material platinum-nickel alloy;

第二,本发明制备的铂镍核壳结构催化剂的催化性能可以与商业铂碳的相媲美,性能优异,电子转移数可以接近4; Second, the catalytic performance of the platinum-nickel core-shell structure catalyst prepared by the present invention can be compared with that of commercial platinum carbon, and the performance is excellent, and the electron transfer number can be close to 4;

第二,本发明制备的铂镍核壳结构燃料电池催化剂材料的铂利用率较高、催化剂颗粒大小可控、催化剂颗粒分散均匀、生产成本低、所需设备简单,实验条件宽松、产量高且易于实现工业化生产。 Second, the platinum-nickel core-shell structure fuel cell catalyst material prepared by the present invention has high platinum utilization rate, controllable catalyst particle size, uniform dispersion of catalyst particles, low production cost, simple equipment required, loose experimental conditions, high output and It is easy to realize industrialized production.

附图说明 Description of drawings

图1是实施例1制备的燃料电池催化剂的透射电镜照片; Fig. 1 is the transmission electron micrograph of the fuel cell catalyst prepared in embodiment 1;

图2是实施例1至3制备的燃料电池催化剂的循环伏安图; Fig. 2 is the cyclic voltammogram of the fuel cell catalyst prepared in Examples 1 to 3;

图3是实施例1制备的燃料电池催化剂在催化过程中的电子转移数。 Fig. 3 is the number of electron transfers during the catalytic process of the fuel cell catalyst prepared in Example 1.

具体实施方式 Detailed ways

本发明中步骤一中所述混合物A、步骤二所述混合物B、步骤四中所述混合物D通过超声法或加热搅拌混合均匀而得,超声法的条件是:在超声频率为20~40KHz、超声功率为200~700W下,超声30min~1h;加热搅拌的条件:在温度为35~70℃、搅拌速度为150~350r/min下,搅拌25min~3h。 In the present invention, the mixture A described in step 1, the mixture B described in step 2, and the mixture D described in step 4 are uniformly obtained by ultrasonic method or heating and stirring. Ultrasonic power is 200~700W, ultrasonic 30min~1h; heating and stirring conditions: at a temperature of 35~70℃, stirring speed of 150~350r/min, stirring for 25min~3h.

本发明所述镍的化合物为六水合硝酸镍、乙酸镍、碳酸镍、氯化镍、硫酸镍、碱式碳酸镍、氟化镍、三氧化二镍、氧化镍和氧化亚镍中的至少一种;所述铂的化合物为氟化铂、硝酸铂、酞菁铂、赛特铂、氧化铂、氯铂酸钠、氯化亚铂、二氯化铂、四氯化铂、氯铂酸和氯铂酸钾中的至少一种; The nickel compound of the present invention is at least one of nickel nitrate hexahydrate, nickel acetate, nickel carbonate, nickel chloride, nickel sulfate, basic nickel carbonate, nickel fluoride, nickel trioxide, nickel oxide and nickelous oxide The compound of platinum is platinum fluoride, platinum nitrate, platinum phthalocyanine, saturate platinum, platinum oxide, sodium chloroplatinate, subplatinous chloride, platinum dichloride, platinum tetrachloride, chloroplatinic acid and At least one of potassium chloroplatinate;

本发明中所述的表面活性剂为:阳离子表面活性剂为十六烷基三甲基溴化铵、十六烷基二甲基苄基溴化铵、十六醇聚氧乙烯醚基二甲基辛烷基氯化铵、十二醇聚氧乙烯醚基二甲基甲基氯化铵、辛基酚聚氧乙烯醚基二甲基癸烷基溴化铵、辛基酚聚氧乙烯醚基二甲基癸烷基氯化铵或十六醇聚氧乙烯醚基二甲基辛烷基氯化铵中的一种;阴离子型表面活性剂为十二烷基硫酸钠、十二烷基磺酸钠、十六烷基苯磺酸钠、十八烷基硫酸钠、N-油酰基多缩氨基酸钠、脂肪醇聚氧乙烯醚硫酸钠或脂肪醇聚氧乙烯醚磺基琥珀酸单脂二钠;非离子型表面活性剂为聚乙烯基吡咯烷酮、丙二醇聚氧丙烯聚氧乙烯醚、异构醇聚氧乙烯聚氧丙烯醚、聚氨酯聚氧丙烯聚氧丙烯醚、聚乙二醇单油酸酯或十八烷基乙烯脲中的一种;两性表面活性剂为EO20PO70EO20(P123)、EO106PO70EO106(F127)、月桂基二甲基氧化铵、椰油烷基二甲基氧化铵、十二烷基二甲基氧化铵、十二烷基二羟乙基氧化铵、十四烷基二羟乙基氧化铵、十六烷基二羟乙基氧化铵、十八烷基二甲基氧化铵或十六烷基二羟乙基氧化铵中的一种。 The surfactant described in the present invention is: the cationic surfactant is cetyl trimethyl ammonium bromide, cetyl dimethyl benzyl ammonium bromide, cetyl polyoxyethylene ether dimethyl Octyl ammonium chloride, lauryl polyoxyethylene ether group dimethyl methyl ammonium chloride, octylphenol polyoxyethylene ether group dimethyldecyl ammonium bromide, octylphenol polyoxyethylene ether One of dimethyl decyl ammonium chloride or cetyl dimethyl octyl ammonium chloride; anionic surfactants are sodium lauryl sulfate, lauryl Sodium sulfonate, sodium cetylbenzenesulfonate, sodium octadecyl sulfate, sodium N-oleoyl polypeptide, sodium fatty alcohol polyoxyethylene ether sulfate or fatty alcohol polyoxyethylene ether sulfosuccinic acid monoester Disodium; Non-ionic surfactants are polyvinylpyrrolidone, propylene glycol polyoxypropylene polyoxyethylene ether, isomerized alcohol polyoxyethylene polyoxypropylene ether, polyurethane polyoxypropylene polyoxypropylene ether, polyethylene glycol mono oil One of ester or stearyl ethylene urea; the amphoteric surfactant is EO 20 PO 70 EO 20 (P123), EO 106 PO 70 EO 106 (F127), lauryl dimethyl ammonium oxide, coco alkane Dimethyl ammonium oxide, dodecyl dimethyl ammonium oxide, dodecyl dihydroxyethyl ammonium oxide, tetradecyl dihydroxyethyl ammonium oxide, hexadecyl dihydroxyethyl ammonium oxide, One of octadecyl dimethyl ammonium oxide or cetyl dihydroxyethyl ammonium oxide.

本发明中所用微波装置为真空微波反应器或者家用微波炉、功率为200~2000W;所述EO20PO70EO20即P123,EO106PO70EO106即F127。下面结合具体实施例和附图对本发明作进一步详细说明,下列实施例仅用来进一步说明本发明,而不应视为限定本发明的范围。实施例中所用试剂或或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。 The microwave device used in the present invention is a vacuum microwave reactor or a household microwave oven with a power of 200-2000W; the EO 20 PO 70 EO 20 is P123, and the EO 106 PO 70 EO 106 is F127. The present invention will be described in further detail below in conjunction with specific embodiments and accompanying drawings. The following embodiments are only used to further illustrate the present invention, and should not be regarded as limiting the scope of the present invention. The reagents or instruments used in the examples, whose manufacturers are not indicated, are all commercially available conventional products.

实施例1 Example 1

微波还原制备铂镍核壳结构燃料电池催化剂的方法,包括以下步骤: A method for preparing a fuel cell catalyst with a platinum-nickel core-shell structure by microwave reduction, comprising the following steps:

第一步:将18.8mg的碳粉加入50ml乙二醇溶剂中,再加入1.88mg聚乙烯吡咯烷酮,在超声频率为20KHz、超声功率为200W条件下,超声时间为30min,混合均匀,得到混合物A; Step 1: Add 18.8mg of carbon powder into 50ml of ethylene glycol solvent, then add 1.88mg of polyvinylpyrrolidone, under the condition of ultrasonic frequency of 20KHz, ultrasonic power of 200W, ultrasonic time of 30min, mix well to obtain mixture A ;

第二步:将10mg的乙酸镍(镍元素为2.3mg)加入混合物A中加入,在温度为35℃、搅拌速度为150r/min条件下,搅拌30min,得到混合物B; Step 2: Add 10 mg of nickel acetate (nickel element is 2.3 mg) to mixture A, and stir for 30 minutes at a temperature of 35 °C and a stirring speed of 150 r/min to obtain a mixture B;

第三步:对混合物B进行微波辐照,反应温度为200℃,反应时间为2min,然后静置冷却,得到混合物C; The third step: Microwave irradiation is carried out on the mixture B, the reaction temperature is 200°C, the reaction time is 2min, and then left to cool to obtain the mixture C;

第四步:将3.9mg氯铂酸(其中铂元素为2.3mg)加入混合物C中,在温度为35℃、搅拌速度为150r/min条件下,搅拌30min,得到混合物D; Step 4: Add 3.9 mg of chloroplatinic acid (the platinum element is 2.3 mg) into mixture C, and stir for 30 minutes at a temperature of 35° C. and a stirring speed of 150 r/min to obtain a mixture D;

第五步:对混合物D进行微波辐照,反应温度为反应温度为200℃,反应时间为2min,经静置冷却,得到混合物E;后用蒸馏水洗涤,再在60~100℃条件下烘干或者在60℃下真空干燥8h,即得到铂镍核壳结构燃料电池催化剂材料。 Step 5: Microwave irradiation is carried out on the mixture D, the reaction temperature is 200°C, the reaction time is 2min, after standing and cooling, the mixture E is obtained; after that, it is washed with distilled water, and then dried at 60~100°C Alternatively, vacuum-dry at 60° C. for 8 hours to obtain a fuel cell catalyst material with a platinum-nickel core-shell structure.

本实施例制得的铂镍核壳结构燃料电池催化剂材料的投射电镜照片如图1所示,由图可见,产品均匀的分散在碳粉上,颗粒大小为5nm左右;本实施例制得的铂镍核壳结构燃料电池催化剂材料的循环伏安图如图2所示,开路电位为0.72V,氧还原峰为0.5V左右。本实施例制得的铂镍核壳结构燃料电池催化剂材料在氧化还原过程中的电子转移数如图3所示,铂镍质量比为1:1时的催化剂材料的电子转移数比相同负载量金属商业铂碳的电子转移数更接近4,说明铂镍质量比为1:1时更有利于反应进行。 The transmission electron microscope photograph of the platinum-nickel core-shell structure fuel cell catalyst material that the present embodiment makes is as shown in Figure 1, as can be seen from the figure, the product is evenly dispersed on the carbon powder, and the particle size is about 5nm; The cyclic voltammogram of the platinum-nickel core-shell structure fuel cell catalyst material is shown in Figure 2, the open circuit potential is 0.72V, and the oxygen reduction peak is about 0.5V. The electron transfer number of the platinum-nickel core-shell structure fuel cell catalyst material prepared in this example in the oxidation-reduction process is shown in Figure 3, and the electron transfer number of the catalyst material when the platinum-nickel mass ratio is 1:1 is higher than the same loading The electron transfer number of metal commercial platinum carbon is closer to 4, indicating that the mass ratio of platinum to nickel is 1:1, which is more conducive to the reaction.

实施例2 Example 2

本实施例与实施例1步骤相同,不同的是步骤二中所加的乙酸镍为30mg。 The steps of this embodiment are the same as those of Example 1, except that the nickel acetate added in step 2 is 30 mg.

本实施例制得的铂镍核壳结构燃料电池催化剂材料的循环伏安图如图2所示,开路电位较正为0.68V,氧还原峰为0.53V左右。 The cyclic voltammogram of the fuel cell catalyst material with a platinum-nickel core-shell structure prepared in this example is shown in Figure 2. The open circuit potential is corrected at 0.68V, and the oxygen reduction peak is about 0.53V.

实施例3 Example 3

本实施例与实施例1步骤相同,不同的是步骤二中所加的乙酸镍为50mg。 The steps of this embodiment are the same as those of Example 1, except that the nickel acetate added in step 2 is 50 mg.

本实施例制得的铂镍核壳结构燃料电池催化剂材料的循环伏安图如图2所示,开路电位为0.69V,氧还原峰为0.54V左右。 The cyclic voltammogram of the fuel cell catalyst material with a platinum-nickel core-shell structure prepared in this example is shown in Figure 2, the open circuit potential is 0.69V, and the oxygen reduction peak is about 0.54V.

实施例4 Example 4

微波还原制备铂镍核壳结构燃料电池催化剂的方法,包括以下步骤: A method for preparing a fuel cell catalyst with a platinum-nickel core-shell structure by microwave reduction, comprising the following steps:

第一步:将18.8mg的碳粉加入50ml乙醇溶剂中,再加入940mg聚乙烯吡咯烷酮,在超声频率为40KHz、超声功率为700W条件下,超声时间为1h,混合均匀,得到混合物A; Step 1: Add 18.8mg of carbon powder into 50ml of ethanol solvent, then add 940mg of polyvinylpyrrolidone, under the condition of ultrasonic frequency of 40KHz, ultrasonic power of 700W, ultrasonic time of 1h, mix well to obtain mixture A;

第二步:将940mg的乙酸镍加入混合物A中加入,在温度为70℃、搅拌速度为350r/min条件下,搅拌3h,得到混合物B; Step 2: Add 940mg of nickel acetate to mixture A, and stir for 3 hours at a temperature of 70°C and a stirring speed of 350r/min to obtain mixture B;

第三步:对混合物B进行微波辐照,反应温度为800℃,反应时间为1min,然后静置冷却,得到混合物C; The third step: Microwave irradiation is carried out on the mixture B, the reaction temperature is 800°C, the reaction time is 1min, and then left to cool to obtain the mixture C;

第四步:将940mg氯铂酸加入混合物C中,在温度为70℃、搅拌速度为350r/min条件下,搅拌3h,得到混合物D; Step 4: Add 940mg of chloroplatinic acid into mixture C, and stir for 3 hours at a temperature of 70°C and a stirring speed of 350r/min to obtain mixture D;

第五步:对混合物D进行微波辐照,反应温度为800℃,反应时间为120min,经静置冷却,得到混合物E;然后用乙醇洗涤,在80℃下真空干燥6h,即得到铂镍核壳结构燃料电池催化剂材料。 Step 5: Microwave irradiation is carried out on the mixture D, the reaction temperature is 800°C, the reaction time is 120min, and the mixture E is obtained after standing and cooling; then, it is washed with ethanol, and vacuum-dried at 80°C for 6 hours to obtain the platinum-nickel nucleus Shell structure fuel cell catalyst materials.

实施例5 Example 5

微波还原制备铂镍核壳结构燃料电池催化剂的方法,包括以下步骤: A method for preparing a fuel cell catalyst with a platinum-nickel core-shell structure by microwave reduction, comprising the following steps:

第一步:将18.8mg的碳粉加入1.88g丙三醇溶剂中,再加入564mg聚乙烯吡咯烷酮,在超声频率为30KHz、超声功率为400W条件下,超声时间为30min,混合均匀,得到混合物A; The first step: add 18.8mg of carbon powder to 1.88g of glycerol solvent, then add 564mg of polyvinylpyrrolidone, under the condition of ultrasonic frequency of 30KHz, ultrasonic power of 400W, ultrasonic time of 30min, mix well to obtain mixture A ;

第二步:将10mg的乙酸镍加入混合物A中加入,在温度为35℃、搅拌速度为300r/min条件下,搅拌25min,得到混合物B; Step 2: Add 10 mg of nickel acetate to mixture A, and stir for 25 minutes at a temperature of 35°C and a stirring speed of 300 r/min to obtain mixture B;

第三步:对混合物B进行微波辐照,反应温度为300℃,反应时间为1min,然后静置冷却,得到混合物C; Step 3: Microwave irradiation is carried out on the mixture B, the reaction temperature is 300°C, the reaction time is 1min, and then left to cool to obtain the mixture C;

第四步:将607.8mg氯铂酸加入混合物C中,在温度为35℃、搅拌速度为300r/min条件下,搅拌25min,得到混合物D; Step 4: Add 607.8 mg of chloroplatinic acid to mixture C, and stir for 25 minutes at a temperature of 35°C and a stirring speed of 300 r/min to obtain mixture D;

第五步:对混合物D进行微波辐照,反应温度为300℃,反应时间为1min,经静置冷却,得到混合物E;然后用丙酮洗涤,在60℃下真空干燥8h,即得到铂镍核壳结构燃料电池催化剂材料。 Step 5: Microwave irradiation is carried out on the mixture D, the reaction temperature is 300°C, and the reaction time is 1min. After standing and cooling, the mixture E is obtained; then washed with acetone, and vacuum-dried at 60°C for 8 hours to obtain the platinum-nickel nucleus Shell structure fuel cell catalyst materials.

实施例6 Example 6

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为十二烷基磺酸钠,步骤二中加入的镍的化合物为六水合硝酸镍,步骤四中加入的铂的化合物为氟化铂。 The steps of this embodiment are the same as in Example 1, except that the surfactant added in step 1 is sodium dodecylsulfonate, the compound of nickel added in step 2 is nickel nitrate hexahydrate, and the platinum added in step 4 The compound is platinum fluoride.

实施例7 Example 7

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为十六烷基三甲基溴化铵,所用溶剂为甲醇,步骤二中加入的镍的化合物为碳酸镍,步骤四中加入的铂的化合物为硝酸铂。 Present embodiment is identical with embodiment 1 step, and difference is that the tensio-active agent that adds in the step 1 is cetyltrimethylammonium bromide, and used solvent is methyl alcohol, and the compound of the nickel that adds in the step 2 is nickel carbonate, The platinum compound added in step 4 is platinum nitrate.

实施例8 Example 8

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为月桂基二甲基氧化铵,步骤二中加入的镍的化合物为氯化镍,步骤四中加入的铂的化合物为酞菁铂。 The steps of this embodiment are the same as in Example 1, except that the surfactant added in step 1 is lauryl dimethyl ammonium oxide, the compound of nickel added in step 2 is nickel chloride, and the compound of platinum added in step 4 is The compound is platinum phthalocyanine.

实施例9 Example 9

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为十六烷基二甲基苄基溴化铵,步骤二中加入的镍的化合物为硫酸镍,步骤四中加入的铂的化合物为赛特铂。 The steps of this embodiment are the same as in Example 1, except that the surfactant added in step 1 is cetyl dimethyl benzyl ammonium bromide, and the compound of nickel added in step 2 is nickel sulfate. The added platinum compound is Saite Platinum.

实施例10 Example 10

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为十六烷基二甲基苄基溴化铵,步骤二中加入的镍的化合物为硫酸镍,步骤四中加入的铂的化合物为赛特铂。 The steps of this embodiment are the same as in Example 1, except that the surfactant added in step 1 is cetyl dimethyl benzyl ammonium bromide, and the compound of nickel added in step 2 is nickel sulfate. The added platinum compound is Saite Platinum.

实施例11 Example 11

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为丙二醇聚氧丙烯聚氧乙烯醚,步骤二中加入的镍的化合物为碱式碳酸镍,步骤四中加入的铂的化合物为氧化铂。 The steps of this embodiment are the same as in Example 1, except that the surfactant added in step 1 is propylene glycol polyoxypropylene polyoxyethylene ether, the compound of nickel added in step 2 is basic nickel carbonate, and the surfactant added in step 4 The compound of platinum is platinum oxide.

实施例12 Example 12

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为EO20PO70EO20,步骤二中加入的镍的化合物为氟化镍,步骤四中加入的铂的化合物为氧化铂。 This example is the same as Example 1, except that the surfactant added in step 1 is EO 20 PO 70 EO 20 , the nickel compound added in step 2 is nickel fluoride, and the platinum compound added in step 4 to platinum oxide.

实施例13 Example 13

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为异构醇聚氧乙烯聚氧丙烯醚,步骤二中加入的镍的化合物为氧化镍,步骤四中加入的铂的化合物为氯铂酸钠。 The steps of this embodiment are the same as in Example 1, except that the surfactant added in step 1 is isomerized alcohol polyoxyethylene polyoxypropylene ether, the compound of nickel added in step 2 is nickel oxide, and the surfactant added in step 4 is nickel oxide. The compound of platinum is sodium chloroplatinate.

实施例14 Example 14

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为十二烷基硫酸钠,步骤二中加入的镍的化合物为三氧化二镍,步骤四中加入的铂的化合物为氯化亚铂。 The steps of this embodiment are the same as those of Example 1, except that the surfactant added in step 1 is sodium lauryl sulfate, the compound of nickel added in step 2 is nickel trioxide, and the compound of platinum added in step 4 The compound is platinum chloride.

实施例15 Example 15

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为聚氨酯聚氧丙烯聚氧丙烯醚,步骤二中加入的镍的化合物为氧化亚镍,步骤四中加入的铂的化合物为二氯化铂。 The steps of this embodiment are the same as in Example 1, except that the surfactant added in step one is polyurethane polyoxypropylene polyoxypropylene ether, the compound of nickel added in step two is nickelous oxide, and the platinum added in step four The compound is platinum dichloride.

实施例16 Example 16

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为EO106PO70EO106,步骤二中加入的镍的化合物为乙酸镍,步骤四中加入的铂的化合物为四氯化铂。 The steps of this embodiment are the same as those of Example 1, except that the surfactant added in step 1 is EO 106 PO 70 EO 106 , the compound of nickel added in step 2 is nickel acetate, and the compound of platinum added in step 4 is Platinum tetrachloride.

实施例17 Example 17

本实施例与实施例1步骤相同,不同的是步骤一中加入的表面活性剂为聚氨酯聚氧丙烯聚氧丙烯醚,步骤二中加入的镍的化合物为乙酸镍,步骤四中加入的铂的化合物为氯铂酸钾。 The steps of this embodiment are the same as in Example 1, except that the surfactant added in step one is polyurethane polyoxypropylene polyoxypropylene ether, the compound of nickel added in step two is nickel acetate, and the compound of platinum added in step four is The compound is potassium chloroplatinate.

Claims (7)

1.微波还原制备铂镍核壳结构燃料电池催化剂的方法,其特征在于,包括以下步骤: 1. microwave reduction prepares the method for platinum-nickel core-shell structure fuel cell catalyst, is characterized in that, comprises the following steps: 第一步:将碳粉、表面活性剂依次加入有机溶剂中混合均匀,得混合物A;其中,所述有机溶剂与碳粉的质量比为100~2968:1,所述的表面活性剂与碳粉的质量比为0.1~50:1,所述有机溶剂为甲醇、乙醇、乙二醇和丙三醇中的至少一种;  The first step: add carbon powder and surfactant in the organic solvent and mix uniformly to obtain mixture A; wherein, the mass ratio of the organic solvent to carbon powder is 100~2968:1, and the surfactant and carbon The mass ratio of powder is 0.1~50:1, and described organic solvent is at least one in methanol, ethanol, ethylene glycol and glycerol; 第二步:将镍的化合物加入步骤一所得混合物A中混合均匀,得混合物B;其中镍的化合物与碳粉的质量比为0.53~50:1,所述镍的化合物为六水合硝酸镍、乙酸镍、碳酸镍、氯化镍、硫酸镍、碱式碳酸镍、氟化镍、三氧化二镍、氧化镍和氧化亚镍中的至少一种; The second step: add the nickel compound into the mixture A obtained in step 1 and mix evenly to obtain the mixture B; wherein the mass ratio of the nickel compound to the carbon powder is 0.53~50:1, and the nickel compound is nickel nitrate hexahydrate, At least one of nickel acetate, nickel carbonate, nickel chloride, nickel sulfate, basic nickel carbonate, nickel fluoride, nickel trioxide, nickel oxide and nickelous oxide; 第三步:对步骤二所得混合物B进行微波辐照,反应温度为80~800℃,反应时间为0.01~120min,后静置冷却,得混合物C; Step 3: Microwave irradiation is carried out on the mixture B obtained in step 2, the reaction temperature is 80-800°C, the reaction time is 0.01-120min, and then left to cool to obtain the mixture C; 第四步:将铂的化合物加入步骤三所得混合物C中混合均匀,得混合物D;其中铂的化合物与碳粉的质量比为0.21~50:1,所述铂的化合物为氟化铂、硝酸铂、酞菁铂、赛特铂、氧化铂、氯铂酸钠、氯化亚铂、二氯化铂、四氯化铂、氯铂酸和氯铂酸钾中的至少一种; Step 4: Add the platinum compound to the mixture C obtained in step 3 and mix evenly to obtain the mixture D; wherein the mass ratio of the platinum compound to the carbon powder is 0.21~50:1, and the platinum compound is platinum fluoride, nitric acid At least one of platinum, platinum phthalocyanine, saturate platinum, platinum oxide, sodium chloroplatinate, platinum subchloride, platinum dichloride, platinum tetrachloride, chloroplatinic acid and potassium chloroplatinate; 第五步:对步骤四所得混合物D进行微波辐照,反应温度为80~800℃,反应时间为0.01~120min,后静置冷却,得混合物E,经蒸馏水、乙醇或丙酮洗涤后,干燥,即得铂镍核壳结构燃料电池催化剂材料。 Step 5: Microwave irradiation is carried out on the mixture D obtained in step 4, the reaction temperature is 80~800°C, the reaction time is 0.01~120min, and then left to cool to obtain the mixture E, which is washed with distilled water, ethanol or acetone, and dried. The fuel cell catalyst material with a platinum-nickel core-shell structure is obtained. 2.根据权利要求1所述的微波还原制备铂镍核壳结构燃料电池催化剂的方法,其特征在于,步骤一所述的表面活性剂为阳离子型表面活性剂、阴离子表面活性剂、非离子表面活性剂或两性表面活性剂中的一种。 2. microwave reduction according to claim 1 prepares the method for platinum-nickel core-shell structure fuel cell catalyst, it is characterized in that, the surfactant described in step one is cationic surfactant, anionic surfactant, nonionic surfactant One of active agent or amphoteric surfactant. 3.根据权利要求2所述的微波还原制备铂镍核壳结构燃料电池催化剂的方法,其特征在于,所述阳离子表面活性剂为十六烷基三甲基溴化铵、十六烷基二甲基苄基溴化铵、十六醇聚氧乙烯醚基二甲基辛烷基氯化铵、十二醇聚氧乙烯醚基二甲基甲基氯化铵、辛基酚聚氧乙烯醚基二甲基癸烷基溴化铵、辛基酚聚氧乙烯醚基二甲基癸烷基氯化铵或十六醇聚氧乙烯醚基二甲基辛烷基氯化铵中的一种。 3. microwave reduction according to claim 2 prepares the method for platinum-nickel core-shell structure fuel cell catalyst, is characterized in that, described cationic surfactant is cetyl trimethyl ammonium bromide, cetyl di Methyl benzyl ammonium bromide, cetyl polyoxyethylene ether dimethyl octyl ammonium chloride, lauryl polyoxyethylene ether dimethyl methyl ammonium chloride, octylphenol polyoxyethylene ether One of dimethyl decyl ammonium bromide, octylphenol polyoxyethylene ether dimethyl decyl ammonium chloride or cetyl alcohol polyoxyethylene ether dimethyl octyl ammonium chloride . 4.根据权利要求3所述的微波还原制备铂镍核壳结构燃料电池催化剂的方法,其特征在于,所述阴离子型表面活性剂为十二烷基硫酸钠、十二烷基磺酸钠、十六烷基苯磺酸钠、十八烷基硫酸钠、N-油酰基多缩氨基酸钠、脂肪醇聚氧乙烯醚硫酸钠或脂肪醇聚氧乙烯醚磺基琥珀酸单脂二钠。 4. microwave reduction according to claim 3 prepares the method for platinum-nickel core-shell structure fuel cell catalyst, is characterized in that, described anionic surfactant is sodium lauryl sulfate, sodium lauryl sulfonate, Sodium cetylbenzene sulfonate, sodium stearyl sulfate, sodium N-oleoyl polypeptide, sodium fatty alcohol polyoxyethylene ether sulfate or disodium fatty alcohol polyoxyethylene ether sulfosuccinate monoester. 5.根据权利要求4所述的微波还原制备铂镍核壳结构燃料电池催化剂的方法,其特征在于,所述非离子型表面活性剂为聚乙烯基吡咯烷酮、丙二醇聚氧丙烯聚氧乙烯醚、异构醇聚氧乙烯聚氧丙烯醚、聚氨酯聚氧丙烯聚氧丙烯醚、聚乙二醇单油酸酯或十八烷基乙烯脲中的一种。 5. microwave reduction according to claim 4 prepares the method for platinum-nickel core-shell structure fuel cell catalyst, is characterized in that, described nonionic surfactant is polyvinylpyrrolidone, propylene glycol polyoxypropylene polyoxyethylene ether, One of isomeric alcohol polyoxyethylene polyoxypropylene ether, polyurethane polyoxypropylene polyoxypropylene ether, polyethylene glycol monooleate or stearyl ethylene urea. 6.根据权利要求5所述的微波还原制备铂镍核壳结构燃料电池催化剂的方法,其特征在于,所述两性表面活性剂为EO20PO70EO20、EO106PO70EO106、月桂基二甲基氧化铵、椰油烷基二甲基氧化铵、十二烷基二甲基氧化铵、十二烷基二羟乙基氧化铵、十四烷基二羟乙基氧化铵、十六烷基二羟乙基氧化铵、十八烷基二甲基氧化铵或十六烷基二羟乙基氧化铵中的一种。 6. The method for preparing a platinum-nickel core-shell structure fuel cell catalyst by microwave reduction according to claim 5, wherein the amphoteric surfactant is EO 20 PO 70 EO 20 , EO 106 PO 70 EO 106 , lauryl Dimethyl Ammonium Oxide, Cocoalkyl Dimethyl Ammonium Oxide, Lauryl Dimethyl Ammonium Oxide, Lauryl Dihydroxyethyl Ammonium Oxide, Tetradecyl Dihydroxyethyl Ammonium Oxide, Cetyl Dihydroxyethyl Ammonium Oxide One of alkyl dihydroxyethyl ammonium oxide, octadecyl dimethyl ammonium oxide or cetyl dihydroxyethyl ammonium oxide. 7.根据权利要求6所述的微波还原制备铂镍核壳结构燃料电池催化剂的方法,其特征在于,步骤一所述混合物A、步骤二所述混合物B、步骤四所述混合物D通过超声法或加热搅拌混合均匀而得;其中,超声法是在超声频率为20~40KHz、超声功率为200~700W下,超声30min~1h;加热搅拌是在温度为35~70℃、搅拌速度为150~350r/min下,搅拌25min~3h。 7. microwave reduction according to claim 6 prepares the method for platinum-nickel core-shell structure fuel cell catalyst, is characterized in that, the mixture A described in step 1, the mixture B described in step 2, the mixture D described in step 4 are by ultrasonic method Or heating and stirring to mix evenly; Among them, the ultrasonic method is at an ultrasonic frequency of 20~40KHz, ultrasonic power is 200~700W, ultrasonic 30min~1h; heating and stirring is at a temperature of 35~70°C, and a stirring speed of 150~ Stir for 25min~3h at 350r/min.
CN201410289122.7A 2014-06-26 2014-06-26 Method for preparing platinum-nickel nucleocapsid structure fuel cell catalyst through microwave reduction Pending CN104096575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410289122.7A CN104096575A (en) 2014-06-26 2014-06-26 Method for preparing platinum-nickel nucleocapsid structure fuel cell catalyst through microwave reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410289122.7A CN104096575A (en) 2014-06-26 2014-06-26 Method for preparing platinum-nickel nucleocapsid structure fuel cell catalyst through microwave reduction

Publications (1)

Publication Number Publication Date
CN104096575A true CN104096575A (en) 2014-10-15

Family

ID=51665349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410289122.7A Pending CN104096575A (en) 2014-06-26 2014-06-26 Method for preparing platinum-nickel nucleocapsid structure fuel cell catalyst through microwave reduction

Country Status (1)

Country Link
CN (1) CN104096575A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833862A (en) * 2016-03-31 2016-08-10 湖南省吉安特技术有限公司 Preparation method and application of nanometer platinum oxide catalyst
CN106180751A (en) * 2016-08-03 2016-12-07 红河学院 A kind of Platinum Nanoparticles nickel alloy and preparation and application thereof
CN112349918A (en) * 2020-11-06 2021-02-09 昆明理工大学 Method for preparing nitrogen-doped platinum-carbon catalyst by pyrolyzing chitosan and application thereof
CN114335580A (en) * 2022-03-03 2022-04-12 南京大学 Platinum-based alloy catalyst for fuel cell and preparation method thereof
CN115019999A (en) * 2022-06-30 2022-09-06 航天特种材料及工艺技术研究所 High-temperature-resistant platinum-coated nickel conductive slurry and preparation method thereof
CN116706106A (en) * 2023-05-30 2023-09-05 一汽解放汽车有限公司 Platinum nickel alloy catalyst and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1577928A (en) * 2003-07-29 2005-02-09 中国科学院大连化学物理研究所 High electrocatalytic active fuel battery platinum-base noble metal catalyst and producing process thereof
CN1832233A (en) * 2005-03-09 2006-09-13 中国科学院大连化学物理研究所 A highly active PtNi-based proton exchange membrane fuel cell anode catalyst
US20080020924A1 (en) * 2006-07-19 2008-01-24 Atomic Energy Council-Institute Of Nuclear Energy Research Method of fabricating platinum alloy electrocatalysts for membrane fuel cell applications
CN101664685A (en) * 2009-09-27 2010-03-10 西北师范大学 Low-platinum high active core-shell structure catalyst and preparation method thereof
CN102500365A (en) * 2011-10-19 2012-06-20 华南理工大学 Preparation method of catalyst with core-shell structure for low-temperature fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1577928A (en) * 2003-07-29 2005-02-09 中国科学院大连化学物理研究所 High electrocatalytic active fuel battery platinum-base noble metal catalyst and producing process thereof
CN1832233A (en) * 2005-03-09 2006-09-13 中国科学院大连化学物理研究所 A highly active PtNi-based proton exchange membrane fuel cell anode catalyst
US20080020924A1 (en) * 2006-07-19 2008-01-24 Atomic Energy Council-Institute Of Nuclear Energy Research Method of fabricating platinum alloy electrocatalysts for membrane fuel cell applications
CN101664685A (en) * 2009-09-27 2010-03-10 西北师范大学 Low-platinum high active core-shell structure catalyst and preparation method thereof
CN102500365A (en) * 2011-10-19 2012-06-20 华南理工大学 Preparation method of catalyst with core-shell structure for low-temperature fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
车如心: "《界面与胶体化学》", 31 August 2012, article "表面活性剂的分类、结构特点及应用", pages: 19-24 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833862A (en) * 2016-03-31 2016-08-10 湖南省吉安特技术有限公司 Preparation method and application of nanometer platinum oxide catalyst
CN105833862B (en) * 2016-03-31 2018-09-28 湖南省吉安特技术有限公司 A kind of preparation method and application of nano oxidized platinum catalyst
CN106180751A (en) * 2016-08-03 2016-12-07 红河学院 A kind of Platinum Nanoparticles nickel alloy and preparation and application thereof
CN112349918A (en) * 2020-11-06 2021-02-09 昆明理工大学 Method for preparing nitrogen-doped platinum-carbon catalyst by pyrolyzing chitosan and application thereof
CN112349918B (en) * 2020-11-06 2023-03-10 昆明理工大学 A method and application of pyrolyzing chitosan to prepare nitrogen-doped platinum-carbon catalyst
CN114335580A (en) * 2022-03-03 2022-04-12 南京大学 Platinum-based alloy catalyst for fuel cell and preparation method thereof
CN115019999A (en) * 2022-06-30 2022-09-06 航天特种材料及工艺技术研究所 High-temperature-resistant platinum-coated nickel conductive slurry and preparation method thereof
CN116706106A (en) * 2023-05-30 2023-09-05 一汽解放汽车有限公司 Platinum nickel alloy catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN104096575A (en) Method for preparing platinum-nickel nucleocapsid structure fuel cell catalyst through microwave reduction
CN103280560B (en) The preparation method of the sub-silicon-carbon composite cathode material of the mesoporous oxidation of a kind of lithium ion battery
CN104028269B (en) Graphene-loaded metal nanocomposite, preparation method and application
CN113856713B (en) For CO 2 Lead-free double perovskite quantum dot@two-dimensional material composite photocatalyst for photocatalytic reduction and preparation method and application thereof
CN109678193B (en) A kind of preparation method of nanometer cerium oxide particles
CN103007930B (en) Preparation method of high-catalytic-activity Pd nanoparticle electrocatalyst
CN110624583A (en) Preparation method of a composite graphite phase carbon nitride heterojunction photocatalyst
CN109092331B (en) A hollow tubular cobalt-selenium compound/molybdenum-selenium compound composite nanomaterial and its preparation method and application
CN105006559A (en) Core-shell structure of graphene coated silicon or silicon oxide, and preparation method thereof
CN107746051A (en) A kind of nitrogen-doped graphene nanobelt nano-cobaltic-cobaltous oxide hybrid material and preparation method thereof
CN111167488B (en) Visible light-responsive platinum/black phosphorus/oxygen-deficient bismuth tungstate composite material and its preparation method and application
CN107175105A (en) Graphene-supported palladium iridium nanoparticle catalyst preparation method and its Oxidation of Formic Acid electro-catalysis application
CN112151814A (en) A kind of catalyst with transition metal compound/hollow carbon sphere composite structure, preparation method and application
CN108878910A (en) A kind of preparation method of used in proton exchange membrane fuel cell support type high dispersive platinum alloy catalyst
CN111342060A (en) Preparation method of platinum-nickel/nitrogen-doped reduced graphene oxide
CN106654304A (en) CuO/rGO composite material having efficient electrocatalysis oxygen reducing performance
CN108832140A (en) Preparation of low-platinum-loaded copper nanowire composite catalyst by atomic layer deposition method and its application in oxygen reduction reaction
CN111146455B (en) Petal-shaped microsphere molybdenum disulfide composite carbon material loaded Pd metal catalyst and preparation method thereof
Li et al. A photothermal assisted zinc-air battery cathode based on pyroelectric and photocatalytic effect
CN103811729B (en) The preparation method of the cancellated nano-silicon particle of a kind of coated silicon monoxide and Graphene lithium cell cathode material mixture
CN108832139A (en) Preparation method and application of a core-shell structure Cu@Pd nano-electrocatalyst for fuel cells
CN104624191A (en) CoO/C catalyst and preparation method thereof
CN113198453B (en) A kind of lamellar Bi2O2SiO3-Si2Bi24O40 heterocomposite photocatalyst and preparation method thereof
CN111933955A (en) Preparation method of surface carbon-supported platinum-cobalt alloy electrocatalyst with high electrochemical activity
CN104437545B (en) A kind of preparation method of NiAuPd Nanoalloy/graphene high-efficiency catalyst and products thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20141015

RJ01 Rejection of invention patent application after publication