CN104094164A - Optical lenses used to slow the progression of myopia - Google Patents
Optical lenses used to slow the progression of myopia Download PDFInfo
- Publication number
- CN104094164A CN104094164A CN201280042852.6A CN201280042852A CN104094164A CN 104094164 A CN104094164 A CN 104094164A CN 201280042852 A CN201280042852 A CN 201280042852A CN 104094164 A CN104094164 A CN 104094164A
- Authority
- CN
- China
- Prior art keywords
- region
- optical
- mirror slip
- optical mirror
- refractive power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/04—Contact lenses for the eyes
- G02C7/041—Contact lenses for the eyes bifocal; multifocal
- G02C7/042—Simultaneous type
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/04—Contact lenses for the eyes
- G02C7/041—Contact lenses for the eyes bifocal; multifocal
- G02C7/044—Annular configuration, e.g. pupil tuned
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C2202/00—Generic optical aspects applicable to one or more of the subgroups of G02C7/00
- G02C2202/24—Myopia progression prevention
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Eyeglasses (AREA)
Abstract
Description
技术领域technical field
本发明涉及用于减缓近视加深的光学镜片,特别涉及但不限于隐形眼镜。The present invention relates to optical lenses for slowing myopia progression, especially but not limited to contact lenses.
背景技术Background technique
在美国,近视的经济成本据估计为每年2.5亿美元。具有高度近视的成人可能具有致盲的眼部并发症,例如视网膜裂孔(retinal tear)及黄斑变性。近视的盛行率在都市的亚洲城市中的成人当中最高,包括新加坡(38.7%),而在美国较低(22.7%)。在7岁的新加坡儿童中近视率为27.8%。阐明可有效减少近视加深的介入措施是极为重要的。In the United States, the economic cost of myopia is estimated at $250 million per year. Adults with high myopia may have blinding eye complications such as retinal tears and macular degeneration. The prevalence of myopia was highest among adults in urban Asian cities, including Singapore (38.7%), and was lower in the United States (22.7%). Among 7-year-old Singaporean children, the myopia rate was 27.8%. It is extremely important to elucidate interventions that are effective in reducing myopia progression.
光学介入措施,例如多焦点眼镜与隐形眼镜(CL),尚未获证实能减缓近视加深。仅有阿托品(atropine)与哌仑西平(pirenzipine)可有效地延缓加深,但其可能的长期副作用使得排除了向普通大众的推荐。Optical interventions, such as multifocal glasses and contact lenses (CL), have not been proven to slow myopia progression. Only atropine and pirenzipine are effective in delaying deepening, but their possible long-term side effects preclude their recommendation to the general public.
在新加坡有近似220,000个介于5至16岁之间的近视儿童。世界各地的近视儿童可配戴该隐形眼镜直到成人且受益于该介入措施。由于新加坡的年轻成人中有83%是近视的,此问题越来越受到关注。There are approximately 220,000 myopic children between the ages of 5 and 16 in Singapore. Nearsighted children around the world can wear the contact lenses into adulthood and benefit from this intervention. With 83% of young adults in Singapore being nearsighted, the issue is gaining increasing attention.
本发明的目的为提供一种光学镜片,该光学镜片解决先前技术的缺点及/或给大众提供一个有用的选择。It is an object of the present invention to provide an optical lens that solves the disadvantages of the prior art and/or provides the public with a useful choice.
发明内容Contents of the invention
在第一方案中,提供一种用于人眼的光学镜片,该光学镜片包括多个交替光学区域,该多个交替光学区域布置于该光学镜片的中心与外周之间,该交替光学区域包括(i)多个环形视觉矫正区域,其具有用于矫正近视屈光不正的第一屈光力,以产生聚焦视网膜图像,相较于在该镜片中心处的第一屈光力,在该镜片的外周处的第一屈光力为较远视的;及(ii)多个环形视觉散焦区域,其具有用于产生散焦视网膜图像的第二屈光力,该多个环形视觉散焦区域布置为与该多个环形视觉矫正区域的各区域交替。In a first aspect, there is provided an optical lens for the human eye, the optical lens comprising a plurality of alternating optical zones arranged between the center and the periphery of the optical lens, the alternating optical zones comprising (i) a plurality of annular vision correcting zones having a first optical power for correcting myopic refractive error to produce a focused retinal image, at the periphery of the lens compared to the first optical power at the center of the lens The first optical power is more hypermetropic; and (ii) a plurality of annular vision defocus areas having a second optical power for producing a defocused retinal image, the plurality of annular vision defocus areas being arranged with the plurality of annular vision defocus areas The regions of the correction area alternate.
通过该配置,申请人已发现该布置对于减缓近视加深较为有效,特别是对于儿童。With this configuration, the applicants have found that this arrangement is effective in slowing myopia progression, especially in children.
优选地,该多个环形视觉矫正区域与该多个环形视觉散焦区域的各区域被分组为多个对,用以在相同的对中获得对应的第一与第二屈光力。如此,可基于下式得到第一屈光力:Preferably, each of the plurality of ring-shaped vision correction regions and the plurality of ring-shaped vision defocusing regions is grouped into a plurality of pairs for obtaining corresponding first and second refractive powers in the same pair. In this way, the first refractive power can be obtained based on the following formula:
其中:in:
X为人眼的屈光不正;X is the refractive error of the human eye;
n为所述对的数目;以及n is the number of pairs; and
i为所述等环形视觉矫正区域与环形视觉散焦区域的对的编号。i is the serial number of the pair of the said equal annular vision correction area and the annular visual defocus area.
可基于下式得到所述第二屈光力:The second refractive power can be obtained based on the following formula:
其中:in:
X为人眼的屈光不正;X is the refractive error of the human eye;
n为所述对的数目;以及n is the number of pairs; and
i为所述等环形视觉矫正区域与环形视觉散焦区域的对的编号。i is the serial number of the pair of the said equal annular vision correction area and the annular visual defocus area.
优选地,所述光学镜片进一步包括四个或多于四个的交替光学区域。更优选地,其所述光学镜片包括偶数个交替光学区域,例如4、6、8、10、12个区域。可选地,有十个交替光学区域。Preferably, the optical lens further comprises four or more alternating optical zones. More preferably, the optical lens includes an even number of alternating optical zones, such as 4, 6, 8, 10, 12 zones. Optionally, there are ten alternating optical zones.
所述第一屈光力可包括对于所述多个视觉矫正区域中的每一个的变化的屈光力值。所述第二屈光力可包括对于近视散焦区域中的每一个的变化的屈光力值。The first optical power may include varying optical power values for each of the plurality of vision correction zones. The second optical power may include varying optical power values for each of the myopic defocus regions.
可认识到所述光学镜片可以为隐形眼镜的形式,或者可以作为眼镜的镜片。It will be appreciated that the optical lens may be in the form of a contact lens, or may be used as an eyeglass lens.
附图说明Description of drawings
现在参照附图对本发明的实施例进行描述,其中:Embodiments of the invention are now described with reference to the accompanying drawings, in which:
图1为根据本发明的实施例的用以矫正-3.00D的近视屈光不正且具有十个光学区域的隐形眼镜;1 is a contact lens with ten optical zones for correcting a myopic refractive error of -3.00D according to an embodiment of the present invention;
图2为示出图1的隐形眼镜对于近视眼的效果的示意图;Fig. 2 is a schematic diagram showing the effect of the contact lens of Fig. 1 on myopia;
图3示出用以矫正-2D的近视屈光不正且具有十个光学区域的隐形眼镜,作为图1的隐形眼镜的变型;FIG. 3 shows a contact lens for correcting -2D myopic refractive error and having ten optical zones, as a variation of the contact lens of FIG. 1 ;
图4示出用以矫正-4D的近视屈光不正且具有十个光学区域的隐形眼镜,作为图1的隐形眼镜的变型;Figure 4 shows a contact lens for correcting -4D myopic refractive error and having ten optical zones, as a variation of the contact lens of Figure 1;
图5示出用以矫正-3D的近视屈光不正且具有八个光学区域的隐形眼镜,作为图1的隐形眼镜的变型;以及FIG. 5 shows a contact lens for correcting -3D myopic refractive error and having eight optical zones, as a variation of the contact lens of FIG. 1 ; and
图6示出用以矫正-3D的近视屈光不正且具有六个光学区域的隐形眼镜,作为图1的隐形眼镜的变型。FIG. 6 shows a contact lens for correcting -3D myopic ametropia and having six optical zones, as a modification of the contact lens of FIG. 1 .
具体实施方式Detailed ways
图1示出根据本发明实施例的以隐形眼镜(CL)形式的光学镜片100。隐形眼镜100优选为日抛软式,其具有增加的外周远视及交替的近视散焦区域以减少或延缓近视加深。Figure 1 shows an optical lens 100 in the form of a contact lens (CL) according to an embodiment of the invention. The contact lens 100 is preferably a daily disposable with increased peripheral hyperopia and alternating areas of myopic defocus to reduce or delay myopia progression.
隐形眼镜100包括多个交替的光学区域102,用以矫正-3.00屈光度(D)的近视屈光不正,且在此实施例中,有十个光学区域102。十个光学区域102始于隐形眼镜100的中心104直至隐形眼镜100的外周106,且在各光学区域102处具有变化的屈光力(refractive power)或光强度(optical power),该变化的屈光力或光强度在中心104至外周106之间以如下方式分布:X,X+2.5D,(X+0.5D),(X+0.5D)+2.5D,(X+1.0D),(X+1.0D)+2.5D,(X+1.5D),(X+1.5D)+2.5D,(X+2.0D)以及(X+2.0D)+2.5D。在-3.00屈光度(D)的例子中,十个光学区域102的从中心至外周的屈光力为-3.0D,-0.5D,-2.5D,0D,-2D,+0.5D,-1.5D,+1D,-1D以及+1.5D。在此实施例中,光学区域102为参与覆盖瞳孔区域的等宽环形或同心环。The contact lens 100 includes a plurality of alternating optical zones 102 to correct a myopic refractive error of -3.00 diopters (D), and in this embodiment, there are ten optical zones 102 . The ten optical zones 102 start from the center 104 of the contact lens 100 to the periphery 106 of the contact lens 100 and have varying refractive power or optical power at each optical zone 102, the varying refractive power or optical power The intensity is distributed between the center 104 and the periphery 106 in the following manner: X, X+2.5D, (X+0.5D), (X+0.5D)+2.5D, (X+1.0D), (X+1.0D )+2.5D, (X+1.5D), (X+1.5D)+2.5D, (X+2.0D) and (X+2.0D)+2.5D. In the -3.00 diopter (D) example, the ten optical zones 102 have powers from center to periphery of -3.0D, -0.5D, -2.5D, 0D, -2D, +0.5D, -1.5D, + 1D, -1D and +1.5D. In this embodiment, optic zone 102 is an annular or concentric ring of equal width that participates in covering the pupil region.
交替的光学区域102包括多个环形视觉矫正区域(或简称为“清晰区域”(CZ))及多个环形视觉散焦区域(或简称为“散焦区域”(DZ)),该清晰区域(CZ)用以在视网膜处产生聚焦的图像。在图1中,有五个清晰区域CZ(CZ1、CZ2、CZ3、CZ4及CZ5)与五个散焦区域DZ(DZ1、DZ2、DZ3、DZ4及DZ5)替布置。Alternating optical zones 102 include multiple annular vision correcting zones (or simply "clear zones" (CZ)) and multiple annular vision defocus zones (or simply "defocus zones" (DZ)), the clear zones ( CZ) to produce a focused image at the retina. In Figure 1, there are five sharp zones CZ (CZ 1 , CZ 2 , CZ 3 , CZ 4 and CZ 5 ) and five defocused zones DZ (DZ 1 , DZ 2 , DZ 3 , DZ 4 and DZ 5 ) Alternate arrangement.
可知,图1的清晰区域(CZ)包括屈光力值用以补偿外周远视散焦,如果清晰区域CZ并未准确地矫正外周处存在的较远视屈光不正就可能发生该外周远视散焦。明确地说,如图1中所示,清晰区域(CZ)的屈光力值为(X+0.5D)、(X+1.0D)、(X+1.5D)和(X+2.0D),产生-2.5D、-2.0D、-1.5D及-1.0D的值。换句话说,相较于接近或在镜片的中心处的屈光力,隐形眼镜100的外周106处的屈光力为较远视的,用以在视网膜处产生聚焦图像。It can be seen that the clear zone (CZ) in Figure 1 includes refractive power values to compensate for peripheral hyperopic defocus, which may occur if the clear zone CZ does not accurately correct the relatively hyperopic refractive error existing in the periphery. Specifically, as shown in Figure 1, the power values of the clear zone (CZ) are (X+0.5D), (X+1.0D), (X+1.5D) and (X+2.0D), yielding - Values of 2.5D, -2.0D, -1.5D, and -1.0D. In other words, the optical power at the periphery 106 of the contact lens 100 is more hyperopic to produce a focused image at the retina compared to the optical power near or at the center of the lens.
另一方面,散焦区域(DZ)具有布置为产生散焦视网膜图像的屈光力,且在此实施例中,散焦区域(DZ)具有以下的屈光力:x+2.5D、(x+0.5D)+2.5D、(x+1.0D)+2.5D、(x+1.5D)+2.5D以及(x+2.0D)+2.5D,以产生-0.5D、0D、+0.5D、+1D及+1.5D的值。On the other hand, the defocused zone (DZ) has an optical power arranged to produce a defocused retinal image, and in this embodiment the defocused zone (DZ) has the following optical power: x+2.5D, (x+0.5D) +2.5D, (x+1.0D)+2.5D, (x+1.5D)+2.5D and (x+2.0D)+2.5D to produce -0.5D, 0D, +0.5D, +1D and + 1.5D value.
图2示出隐形眼镜100对于近视眼200的效果的示意图。由于相较于在隐形眼镜100的中心104处的屈光力、在外周106处的屈光力为较远视的或更大的这种变化的屈光力,经过清晰区域CZ进入隐形眼镜100的光束202在清晰区域CZ的焦点FP(CZ)处聚焦于视网膜206上,以产生聚焦图像FP(CZ)。同时,由于散焦区域DZ的屈光力,经过散焦区域DZ进入隐形眼镜100的光束204在散焦区域DZ的焦点FP(DZ)处聚焦于视网膜206的前方。FIG. 2 shows a schematic diagram of the effect of the contact lens 100 on a myopic eye 200 . Due to this varying refractive power that is more hyperopic or greater at the periphery 106 than at the center 104 of the contact lens 100, the light beam 202 entering the contact lens 100 through the clear zone CZ is in the clear zone CZ The focal point FP(CZ) is focused on the retina 206 to generate a focused image FP(CZ). Meanwhile, due to the refractive power of the defocused zone DZ, the light beam 204 entering the contact lens 100 through the defocused zone DZ is focused in front of the retina 206 at the focal point FP(DZ) of the defocused zone DZ.
可见,隐形眼镜100矫正近视同时还补偿外周远视散焦,且因此隐形眼镜100在隐形眼镜的中心104与外周106两处提供明锐的视网膜图像。It can be seen that the contact lens 100 corrects myopia while also compensating for peripheral hyperopic defocus, and thus the contact lens 100 provides a sharp retinal image both at the center 104 and the periphery 106 of the contact lens.
隐形眼镜100具有构造用于不同功能的多环形区域,以更有效地改善或对抗近视,特别是针对儿童。该隐形眼镜也减缓了近视加深。The contact lens 100 has multiple annular regions configured for different functions to more effectively improve or combat myopia, especially for children. The contact lenses also slow the progression of myopia.
设想可将隐形眼镜100的构造延伸至任何数目的光学区域102并/或用于补偿不同屈光不正。此可通过将清晰区域(CZ)及散焦区域(DZ)分组为成对的区域来实现。对于任意的“n”对区域(n≥2),在外周处将较为远视的清晰区域CZ与在相同对中对应的散焦区域DZ的屈光力分布可概括为(自中心104至外周106):It is contemplated that the configuration of the contact lens 100 can be extended to any number of optic zones 102 and/or used to compensate for different refractive errors. This can be achieved by grouping the sharp zone (CZ) and the defocused zone (DZ) into paired zones. For any "n" pairs of zones (n ≥ 2), the distribution of refractive power at the periphery combining the more hyperopic clear zone CZ and the corresponding defocused zone DZ in the same pair can be summarized as (from center 104 to periphery 106):
清晰区域:
散焦区域:
其中:in:
X=屈光不正;X = refractive error;
i=所述区域的对的编号。i = number of the pair for the region.
在图1及图2的实施例中,可理解的是清晰区域CZ及散焦区域DZ已经根据其下标而分组成对:In the embodiment shown in FIG. 1 and FIG. 2, it can be understood that the sharp zone CZ and the defocused zone DZ have been grouped into pairs according to their subscripts:
第1对:(CZ1,DZ1);第2对:(CZ2,DZ2);第3对:(CZ3,DZ3);第4对:(CZ4,DZ4);及第5对:(CZ5,DZ5)。Pair 1: (CZ 1 , DZ 1 ); Pair 2: (CZ 2 , DZ 2 ); Pair 3: (CZ 3 , DZ 3 ); Pair 4: (CZ 4 , DZ 4 ); and 5 pairs: (CZ 5 , DZ 5 ).
根据式(1)及式(2),以第3对为例,该对的编号i=3,对的数目n=5,且用以矫正屈光不正的x为-3D,CZ3、DZ3的对应的屈光力为:According to formula (1) and formula (2), taking the third pair as an example, the number of the pair is i=3, the number of pairs is n=5, and the x used to correct ametropia is -3D, CZ 3 , DZ The corresponding refractive power of 3 is:
CZ3=-2DCZ 3 =-2D
DZ3=+0.5D;其为图1中所示的值。DZ 3 =+0.5D; which is the value shown in FIG. 1 .
根据式(1)及(2),10个区域的隐形眼镜的用以补偿不同屈光不正(-2D、-3D、-4D及-5D)的屈光力分布示于以下表格1中:According to formulas (1) and (2), the refractive power distributions of contact lenses for 10 regions to compensate for different refractive errors (-2D, -3D, -4D and -5D) are shown in Table 1 below:
表1Table 1
对于所有的屈光力,应理解相较于在中心处(即,清晰区域CZ1)的屈光力,在外周处(即,清晰区域CZ5)的屈光力为较远视的。As with all powers, it is understood that powers at the periphery (ie, clear zone CZ 5 ) are more hypermetropic than powers at the center (ie, clear zone CZ 1 ).
图3示出用于补偿-2D的屈光不正的隐形眼镜300且该隐形眼镜300具有对于十个交替光学区域302的表1所示的屈光力分布。图4示出用于补偿-4D的屈光不正的隐形眼镜400且该隐形眼镜400具有对于十个交替光学区域402的表1所示的屈光力分布。FIG. 3 shows a contact lens 300 for compensating -2D ametropia and having the power distribution shown in Table 1 for ten alternating optical zones 302 . FIG. 4 shows a contact lens 400 for compensating for a refractive error of -4D and having the power distribution shown in Table 1 for ten alternating optical zones 402 .
相似地根据式(1)与(2),同样设想图1的实施例可延伸至不同区域。表2表示用以在隐形眼镜的外周处达到较远视效果的屈光力,该隐形眼镜具有8个、6个及4个光学区域,用以矫正-3D的屈光不正:Similarly according to equations (1) and (2), it is also envisioned that the embodiment of FIG. 1 can be extended to different regions. Table 2 shows the refractive powers used to achieve a more hyperopic effect at the periphery of contact lenses with 8, 6 and 4 optical zones for correction of -3D refractive errors:
表2Table 2
图5示出用以补偿-3D的屈光不正且具有八个交替光学区域502(即,n=4对)的隐形眼镜500。根据表2构造八个光学区域502以使在隐形眼镜500的外周处的屈光力为较远视的。图6示出用以补偿-3D的屈光不正且具有六个交替光学区域602(即,n=3对)的隐形眼镜600。根据表2构造六个光学区域602以使在隐形眼镜600的外周处的屈光力为较远视的。FIG. 5 shows a contact lens 500 with eight alternating optical zones 502 (ie, n=4 pairs) to compensate for a -3D refractive error. The eight optical zones 502 are configured according to Table 2 so that the optical power at the periphery of the contact lens 500 is more hyperopic. FIG. 6 shows a contact lens 600 to compensate -3D refractive error and having six alternating optical zones 602 (ie, n=3 pairs). The six optical zones 602 are configured according to Table 2 so that the optical power at the periphery of the contact lens 600 is more hyperopic.
所描述的实施例并非理解为限制性的。在所述实施例中,提出了使用具有近视散焦且增加的外周远视的软式镜片。然而,也可设想其它类型的镜片,例如硬式镜片。可变化隐形眼镜的形状与尺寸,且同样地,对于不同程度的近视,隐形眼镜可适于减缓近视。例如,该镜片可具有8mm、8.3mm及8.6mm的曲率以及13.5mm、13.8mm或14mm的直径。-3.00D的屈光力的中心厚度为0.12mm。对于各附加的屈光力,可使用模具基底开发一对插入件。The described embodiments are not to be understood as limiting. In the described embodiment, the use of soft lenses with myopic defocus and increased peripheral hyperopia is proposed. However, other types of lenses are also conceivable, such as hard lenses. Contact lenses can vary in shape and size, and as such, for varying degrees of myopia, contact lenses can be adapted to reduce myopia. For example, the lens may have a curvature of 8mm, 8.3mm and 8.6mm and a diameter of 13.5mm, 13.8mm or 14mm. The central thickness of -3.00D refractive power is 0.12mm. For each additional power, a pair of inserts can be developed using the mold base.
所图示/描述的光学区域102的宽度为等距的,但也可并非如此,且因此光学区域102的宽度可变化。The widths of the optic zones 102 are shown/described as being equidistant, but may not be so, and thus the widths of the optic zones 102 may vary.
此外,虽然所描述的实施例使用隐形眼镜作为实例,应理解该实施例可适于其它类型的光学镜片,例如,用于眼镜(spectacles/glasses)的光学镜片。虽然所描述的实施例可使用于眼镜,但并不优选为用于眼镜。这是因为与改变凝视定像相关联的不可避免的眼球运动,该凝视定像改变眼镜与眼睛位置之间的对准。另一方面,隐形眼镜为固定的且围绕瞳孔为中心,且因此隐形眼镜随着眼睛的运动而移动,且此可克服人类特别是儿童的连续改变的定像凝视。Additionally, while the described embodiments use contact lenses as examples, it should be understood that the embodiments may be adapted to other types of optical lenses, eg, optical lenses for spectacles/glasses. While the described embodiments may be used with eyeglasses, they are not preferred for use with eyeglasses. This is because of the unavoidable eye movements associated with changing the gaze fixation, which changes the alignment between the glasses and the eye position. On the other hand, the contact lens is fixed and centered around the pupil, and thus the contact lens moves with the movement of the eye, and this can overcome the continuously changing fixed gaze of humans, especially children.
在所描述的实施例中,隐形眼镜具有多环型区域(≥4),其设计用于不同功能,以更有效地治疗近视且因此应理解可根据应用而构造隐形眼镜100以具有任意数目的区域。In the depicted embodiment, the contact lens has multiple annular zones (≥4) designed for different functions to more effectively treat myopia and it is therefore understood that the contact lens 100 can be configured to have any number of annular zones depending on the application. area.
已对本发明进行了全面描述,对于本领域技术人员而言显见的是,在不脱离所要求的权利范围的情况下可对于本发明作多种修改。Having thus fully described the invention, it will be apparent to those skilled in the art that various modifications may be made therein without departing from the scope of the claims.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161512255P | 2011-07-27 | 2011-07-27 | |
US61/512,255 | 2011-07-27 | ||
PCT/SG2012/000255 WO2013015743A1 (en) | 2011-07-27 | 2012-07-17 | Optical lens for slowing myopia progression |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104094164A true CN104094164A (en) | 2014-10-08 |
CN104094164B CN104094164B (en) | 2016-05-11 |
Family
ID=47601370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280042852.6A Active CN104094164B (en) | 2011-07-27 | 2012-07-17 | For slowing down the optical mirror slip of myopia development |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN104094164B (en) |
TW (1) | TWI561885B (en) |
WO (1) | WO2013015743A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9195074B2 (en) | 2012-04-05 | 2015-11-24 | Brien Holden Vision Institute | Lenses, devices and methods for ocular refractive error |
US9201250B2 (en) | 2012-10-17 | 2015-12-01 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
CN109116576A (en) * | 2017-06-23 | 2019-01-01 | 星欧光学股份有限公司 | Contact lenses and products thereof |
US10534198B2 (en) | 2012-10-17 | 2020-01-14 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
US10698232B2 (en) | 2017-06-23 | 2020-06-30 | Largan Medical Co., Ltd. | Contact lens and product thereof |
US10884264B2 (en) | 2018-01-30 | 2021-01-05 | Sightglass Vision, Inc. | Ophthalmic lenses with light scattering for treating myopia |
WO2021047488A1 (en) * | 2019-09-12 | 2021-03-18 | The Hong Kong Polytechnic University | Lens and method for retarding myopia progression |
CN113641007A (en) * | 2021-08-11 | 2021-11-12 | 江苏科技大学 | Lens of wave shape in many rings of many focal distances single ring |
CN114041081A (en) * | 2019-05-10 | 2022-02-11 | 卡尔蔡司光学国际有限公司 | Method for producing optical correction device |
US20220179240A1 (en) * | 2020-12-03 | 2022-06-09 | Eyes Color Co., Ltd. | Contact lens |
CN114637129A (en) * | 2016-10-25 | 2022-06-17 | 华柏恩视觉研究中心有限公司 | Apparatus, system and/or method for myopia control |
CN115032813A (en) * | 2021-03-03 | 2022-09-09 | 永胜光学股份有限公司 | Contact lens |
JP2022136026A (en) * | 2021-03-03 | 2022-09-15 | 永勝光学股▲ふん▼有限公司 | contact lens |
US11543681B2 (en) | 2016-08-01 | 2023-01-03 | University Of Washington | Ophthalmic lenses for treating myopia |
US11718052B2 (en) | 2017-05-08 | 2023-08-08 | Sightglass Vision, Inc. | Contact lenses for reducing myopia and methods for making the same |
TWI824955B (en) * | 2023-03-21 | 2023-12-01 | 精華光學股份有限公司 | vision correction optical lenses |
US12092905B2 (en) | 2018-07-12 | 2024-09-17 | Sightglass Vision, Inc. | Methods and devices for reducing myopia in children |
US12111518B2 (en) | 2019-04-23 | 2024-10-08 | Sightglass Vision, Inc. | Ophthalmic lenses with dynamic optical properties for reducing development of myopia |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014184399A1 (en) * | 2013-05-15 | 2014-11-20 | Tiedra Farmacéutica, S.L. | Myopia-correcting/-stabilising soft contact lens |
US10061143B2 (en) * | 2014-08-29 | 2018-08-28 | Johnson & Johnson Vision Care, Inc. | Multifocal lens design for preventing and/or slowing myopia progression |
US12298602B2 (en) | 2015-09-15 | 2025-05-13 | Largan Medical Co., Ltd. | Multifocal contact lens and contact lens product |
US10845622B2 (en) | 2015-09-15 | 2020-11-24 | Largan Medical Co., Ltd. | Multifocal contact lens and contact lens product |
TWI572939B (en) * | 2015-11-16 | 2017-03-01 | Brighten Optix Corp | Delay myopia with lenses |
US9977257B2 (en) * | 2016-03-22 | 2018-05-22 | Johnson & Johnson Vision Care, Inc. | Multifocal lens design and method for preventing and/or slowing myopia progression |
TWI749325B (en) | 2016-09-02 | 2021-12-11 | 星歐光學股份有限公司 | Contact lens product |
US11768386B2 (en) | 2018-01-22 | 2023-09-26 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens with an optically non-coaxial zone for myopia control |
US11789292B2 (en) | 2018-01-22 | 2023-10-17 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens with an optically non-coaxial zone for myopia control |
US10901237B2 (en) * | 2018-01-22 | 2021-01-26 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens with an optically non-coaxial zone for myopia control |
ES2973504T3 (en) * | 2018-04-26 | 2024-06-20 | Essilor Int | lens element |
CN110376758A (en) * | 2019-08-02 | 2019-10-25 | 上海伟星光学有限公司 | A manufacturing method of Xinyouxue PRO multi-focus polyurethane lens |
US12271057B1 (en) | 2019-12-20 | 2025-04-08 | The Uab Research Foundation | Chromatic aberration tuning ophthalmic corrector lens methods |
CN114967179A (en) * | 2022-06-22 | 2022-08-30 | 珠海博爱之光科技有限公司 | Spectacle structure, contact lens and spectacle |
CN116626915B (en) * | 2023-04-18 | 2024-01-09 | 温州明辉视光科技有限公司 | Lens structure |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4580882A (en) * | 1983-04-21 | 1986-04-08 | Benjamin Nuchman | Continuously variable contact lens |
WO1997026580A1 (en) * | 1993-03-31 | 1997-07-24 | Permeable Technologies, Inc. | Multifocal contact lens |
US5695509A (en) * | 1995-03-10 | 1997-12-09 | El Hage; Sami G. | Aspherical optical molds for continuous reshaping the cornea based on topographical analysis |
CN1105313C (en) * | 1995-05-04 | 2003-04-09 | 庄臣及庄臣视力产品有限公司 | Design for concentric circles non-spherical multi-focus lens |
EP1640785A2 (en) * | 2004-09-27 | 2006-03-29 | S.I.B Investments Llc | Multifocal contact lens |
AU2005289302A1 (en) * | 2004-09-30 | 2006-04-06 | The Hong Kong Polytechnic University | Method of optical treatment |
CN101317120A (en) * | 2005-10-12 | 2008-12-03 | 卡尔蔡司视觉澳大利亚控股有限公司 | Lenses for myopia correction |
WO2009149116A2 (en) * | 2008-06-06 | 2009-12-10 | Global-Ok Vision, Inc. | Soft contact lenses for treating ametropia |
WO2010019397A2 (en) * | 2008-08-11 | 2010-02-18 | Novartis Ag | A lens design and method for preventing or slowing the progression of myopia |
CN101675372A (en) * | 2007-03-09 | 2010-03-17 | 奥克兰联合服务有限公司 | Contact lens and method |
CA2761091A1 (en) * | 2009-05-04 | 2010-11-11 | Coopervision International Holding Company, Lp | Ophthalmic lenses and reduction of accommodative error |
WO2010151585A1 (en) * | 2009-06-25 | 2010-12-29 | Johnson & Johnson Vision Care, Inc. | Design of myopia control ophthalmic lenses |
EP2290411A1 (en) * | 2009-08-27 | 2011-03-02 | Polymer Technologies International (EOU) | Refractive-diffractive lens |
WO2011060176A1 (en) * | 2009-11-13 | 2011-05-19 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lenses for prevention of myopia progression |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8950860B2 (en) * | 2010-09-09 | 2015-02-10 | The Hong Kong Polytechnic University | Method and system for retarding the progression of myopia |
-
2012
- 2012-07-17 CN CN201280042852.6A patent/CN104094164B/en active Active
- 2012-07-17 WO PCT/SG2012/000255 patent/WO2013015743A1/en active Application Filing
- 2012-07-26 TW TW101126983A patent/TWI561885B/en not_active IP Right Cessation
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4580882A (en) * | 1983-04-21 | 1986-04-08 | Benjamin Nuchman | Continuously variable contact lens |
WO1997026580A1 (en) * | 1993-03-31 | 1997-07-24 | Permeable Technologies, Inc. | Multifocal contact lens |
US5695509A (en) * | 1995-03-10 | 1997-12-09 | El Hage; Sami G. | Aspherical optical molds for continuous reshaping the cornea based on topographical analysis |
CN1105313C (en) * | 1995-05-04 | 2003-04-09 | 庄臣及庄臣视力产品有限公司 | Design for concentric circles non-spherical multi-focus lens |
EP1640785A2 (en) * | 2004-09-27 | 2006-03-29 | S.I.B Investments Llc | Multifocal contact lens |
AU2005289302A1 (en) * | 2004-09-30 | 2006-04-06 | The Hong Kong Polytechnic University | Method of optical treatment |
CN101317120A (en) * | 2005-10-12 | 2008-12-03 | 卡尔蔡司视觉澳大利亚控股有限公司 | Lenses for myopia correction |
CN101675372A (en) * | 2007-03-09 | 2010-03-17 | 奥克兰联合服务有限公司 | Contact lens and method |
WO2009149116A2 (en) * | 2008-06-06 | 2009-12-10 | Global-Ok Vision, Inc. | Soft contact lenses for treating ametropia |
WO2009149116A3 (en) * | 2008-06-06 | 2010-03-04 | Global-Ok Vision, Inc. | Soft contact lenses for treating ametropia |
WO2010019397A2 (en) * | 2008-08-11 | 2010-02-18 | Novartis Ag | A lens design and method for preventing or slowing the progression of myopia |
WO2010019397A3 (en) * | 2008-08-11 | 2010-04-08 | Novartis Ag | A lens design and method for preventing or slowing the progression of myopia |
CA2761091A1 (en) * | 2009-05-04 | 2010-11-11 | Coopervision International Holding Company, Lp | Ophthalmic lenses and reduction of accommodative error |
WO2010151585A1 (en) * | 2009-06-25 | 2010-12-29 | Johnson & Johnson Vision Care, Inc. | Design of myopia control ophthalmic lenses |
EP2290411A1 (en) * | 2009-08-27 | 2011-03-02 | Polymer Technologies International (EOU) | Refractive-diffractive lens |
WO2011060176A1 (en) * | 2009-11-13 | 2011-05-19 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lenses for prevention of myopia progression |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10948743B2 (en) | 2012-04-05 | 2021-03-16 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
US10838235B2 (en) | 2012-04-05 | 2020-11-17 | Brien Holden Vision Institute Limited | Lenses, devices, and methods for ocular refractive error |
US11644688B2 (en) | 2012-04-05 | 2023-05-09 | Brien Holden Vision Institute Limited | Lenses, devices and methods for ocular refractive error |
US9195074B2 (en) | 2012-04-05 | 2015-11-24 | Brien Holden Vision Institute | Lenses, devices and methods for ocular refractive error |
US10203522B2 (en) | 2012-04-05 | 2019-02-12 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
US10209535B2 (en) | 2012-04-05 | 2019-02-19 | Brien Holden Vision Institute | Lenses, devices and methods for ocular refractive error |
US10466507B2 (en) | 2012-04-05 | 2019-11-05 | Brien Holden Vision Institute Limited | Lenses, devices and methods for ocular refractive error |
US11809024B2 (en) | 2012-04-05 | 2023-11-07 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
US12298605B2 (en) | 2012-04-05 | 2025-05-13 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
US11320672B2 (en) | 2012-10-07 | 2022-05-03 | Brien Holden Vision Institute Limited | Lenses, devices, systems and methods for refractive error |
US10534198B2 (en) | 2012-10-17 | 2020-01-14 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
US9201250B2 (en) | 2012-10-17 | 2015-12-01 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
US10520754B2 (en) | 2012-10-17 | 2019-12-31 | Brien Holden Vision Institute Limited | Lenses, devices, systems and methods for refractive error |
US12298604B2 (en) | 2012-10-17 | 2025-05-13 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
US9759930B2 (en) | 2012-10-17 | 2017-09-12 | Brien Holden Vision Institute | Lenses, devices, systems and methods for refractive error |
US11333903B2 (en) | 2012-10-17 | 2022-05-17 | Brien Holden Vision Institute Limited | Lenses, devices, methods and systems for refractive error |
US11543681B2 (en) | 2016-08-01 | 2023-01-03 | University Of Washington | Ophthalmic lenses for treating myopia |
CN114637129A (en) * | 2016-10-25 | 2022-06-17 | 华柏恩视觉研究中心有限公司 | Apparatus, system and/or method for myopia control |
US11718052B2 (en) | 2017-05-08 | 2023-08-08 | Sightglass Vision, Inc. | Contact lenses for reducing myopia and methods for making the same |
US11867985B2 (en) | 2017-06-23 | 2024-01-09 | Largan Medical Co., Ltd. | Contact lens and product thereof |
US10698232B2 (en) | 2017-06-23 | 2020-06-30 | Largan Medical Co., Ltd. | Contact lens and product thereof |
CN109116576A (en) * | 2017-06-23 | 2019-01-01 | 星欧光学股份有限公司 | Contact lenses and products thereof |
US11300812B2 (en) | 2017-07-07 | 2022-04-12 | Largan Medical Co., Ltd. | Contact lens and product thereof |
US11914228B2 (en) | 2018-01-30 | 2024-02-27 | Sightglass Vision, Inc. | Ophthalmic lenses with light scattering for treating myopia |
US10884264B2 (en) | 2018-01-30 | 2021-01-05 | Sightglass Vision, Inc. | Ophthalmic lenses with light scattering for treating myopia |
US12092905B2 (en) | 2018-07-12 | 2024-09-17 | Sightglass Vision, Inc. | Methods and devices for reducing myopia in children |
US12111518B2 (en) | 2019-04-23 | 2024-10-08 | Sightglass Vision, Inc. | Ophthalmic lenses with dynamic optical properties for reducing development of myopia |
CN114041081A (en) * | 2019-05-10 | 2022-02-11 | 卡尔蔡司光学国际有限公司 | Method for producing optical correction device |
TWI772881B (en) * | 2019-09-12 | 2022-08-01 | 香港理工大學 | Lens and method for retarding myopia progression |
CN114391121A (en) * | 2019-09-12 | 2022-04-22 | 香港理工大学 | Lenses and methods for retarding myopia progression |
CN114391121B (en) * | 2019-09-12 | 2024-03-26 | 香港理工大学 | Lenses and methods used to slow the progression of myopia |
WO2021047488A1 (en) * | 2019-09-12 | 2021-03-18 | The Hong Kong Polytechnic University | Lens and method for retarding myopia progression |
US20220179240A1 (en) * | 2020-12-03 | 2022-06-09 | Eyes Color Co., Ltd. | Contact lens |
CN115032813A (en) * | 2021-03-03 | 2022-09-09 | 永胜光学股份有限公司 | Contact lens |
JP7355871B2 (en) | 2021-03-03 | 2023-10-03 | 永勝光学股▲ふん▼有限公司 | contact lens |
CN115032813B (en) * | 2021-03-03 | 2024-07-12 | 永胜光学股份有限公司 | Contact lens |
JP2022136026A (en) * | 2021-03-03 | 2022-09-15 | 永勝光学股▲ふん▼有限公司 | contact lens |
CN113641007A (en) * | 2021-08-11 | 2021-11-12 | 江苏科技大学 | Lens of wave shape in many rings of many focal distances single ring |
US11614639B2 (en) | 2021-08-11 | 2023-03-28 | Jiangsu Rare Optics Co., Ltd | Multi-ring multi-focal-length single-ring inner wavy lens |
WO2023016515A1 (en) * | 2021-08-11 | 2023-02-16 | 江苏瑞尔光学有限公司 | Multi-ring and multi-focal-length lens having wavy individual rings |
CN113641007B (en) * | 2021-08-11 | 2022-06-10 | 江苏科技大学 | Lens of wave shape in many rings of many focal distances single ring |
TWI824955B (en) * | 2023-03-21 | 2023-12-01 | 精華光學股份有限公司 | vision correction optical lenses |
Also Published As
Publication number | Publication date |
---|---|
WO2013015743A1 (en) | 2013-01-31 |
CN104094164B (en) | 2016-05-11 |
TW201307942A (en) | 2013-02-16 |
TWI561885B (en) | 2016-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104094164B (en) | For slowing down the optical mirror slip of myopia development | |
US20240126102A1 (en) | Contact Lenses for Myopic Eyes and Methods of Treating Myopia | |
TWI688797B (en) | Contact lens comprising non-coaxial lenslets for preventing and/or slowing myopia progression | |
TWI587035B (en) | Asymmetric lens design and method for preventing and/or slowing myopia progression | |
TWI772881B (en) | Lens and method for retarding myopia progression | |
JP6625373B2 (en) | Freeform lens design and method for preventing and / or delaying myopia progression | |
US9360683B2 (en) | Anti myopia lens | |
EP2537062B1 (en) | Corneal remodelling contact lenses and methods of treating refractive error using corneal remodelling | |
TWI656379B (en) | Multifocal lens design for preventing and/or slowing myopia progression | |
US8950860B2 (en) | Method and system for retarding the progression of myopia | |
CN103097940B (en) | Method and system for reducing myopia progression | |
TW202013017A (en) | Ophthalmic lens comprising lenslets for preventing and/or slowing myopia progression | |
TW202138877A (en) | Spectacle lenses with auxiliary optical elements | |
CN104272173A (en) | Lenses for Nearsightedness | |
CN105388632A (en) | lens design and method for minimizing visual acuity variation experienced by myopia progressors | |
US20240103297A1 (en) | Ophthalmic Lenses and Methods for Correcting, Slowing, Reducing, and/or Controlling the Progression of Myopia | |
CN114994948B (en) | Frame spectacle lens | |
CN115145052A (en) | Ophthalmic lenses and frame glasses having the same | |
CN103885199A (en) | Optical lens for preventing myopia of students | |
Alqahtani | Current Optical Interventions in Controlling Myopia Progression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |