CN104090490B - A kind of input shaper closed loop control method based on Chaos particle swarm optimization algorithm - Google Patents
A kind of input shaper closed loop control method based on Chaos particle swarm optimization algorithm Download PDFInfo
- Publication number
- CN104090490B CN104090490B CN201410317759.2A CN201410317759A CN104090490B CN 104090490 B CN104090490 B CN 104090490B CN 201410317759 A CN201410317759 A CN 201410317759A CN 104090490 B CN104090490 B CN 104090490B
- Authority
- CN
- China
- Prior art keywords
- particle
- chaos
- input shaper
- value
- search
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002245 particle Substances 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000005457 optimization Methods 0.000 title claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 18
- 238000004088 simulation Methods 0.000 claims description 10
- 230000033001 locomotion Effects 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 4
- NAXKFVIRJICPAO-LHNWDKRHSA-N [(1R,3S,4R,6R,7R,9S,10S,12R,13S,15S,16R,18S,19S,21S,22S,24S,25S,27S,28R,30R,31R,33S,34S,36R,37R,39R,40S,42R,44R,46S,48S,50R,52S,54S,56S)-46,48,50,52,54,56-hexakis(hydroxymethyl)-2,8,14,20,26,32,38,43,45,47,49,51,53,55-tetradecaoxa-5,11,17,23,29,35,41-heptathiapentadecacyclo[37.3.2.23,7.29,13.215,19.221,25.227,31.233,37.04,6.010,12.016,18.022,24.028,30.034,36.040,42]hexapentacontan-44-yl]methanol Chemical group OC[C@H]1O[C@H]2O[C@H]3[C@H](CO)O[C@H](O[C@H]4[C@H](CO)O[C@H](O[C@@H]5[C@@H](CO)O[C@H](O[C@H]6[C@H](CO)O[C@H](O[C@H]7[C@H](CO)O[C@@H](O[C@H]8[C@H](CO)O[C@@H](O[C@@H]1[C@@H]1S[C@@H]21)[C@@H]1S[C@H]81)[C@H]1S[C@@H]71)[C@H]1S[C@H]61)[C@H]1S[C@@H]51)[C@H]1S[C@@H]41)[C@H]1S[C@H]31 NAXKFVIRJICPAO-LHNWDKRHSA-N 0.000 claims 2
- 230000006978 adaptation Effects 0.000 claims 1
- 210000001367 artery Anatomy 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 210000003462 vein Anatomy 0.000 claims 1
- 230000000739 chaotic effect Effects 0.000 abstract description 26
- 230000005540 biological transmission Effects 0.000 abstract description 11
- 230000004044 response Effects 0.000 abstract description 4
- 244000145845 chattering Species 0.000 abstract description 2
- 230000007246 mechanism Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000013404 process transfer Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明涉及一种基于混沌粒子群优化算法的输入整形器闭环控制方法,属于共轴传动机械启动过程的驱动控制方法技术领域;针对共轴传动机械启动过程存在抖振问题,本发明提出的控制方法对传动机构进行闭环控制,并且经实验结果证明了这种控制方法的有效性和可行性;在离线的状态下,运用混沌粒子群优化算法对双脉冲输入整形器进行优化,得到其优化参数,然后运用优化的输入整形器对PD闭环执行机构进行控制;本发明针对共轴传动印刷机械启动过程中的扭振问题,提出了一种基于混沌粒子群优化的输入整形器参数自整定的控制算法。此控制在大幅抑制了系统的扭振的同时实现系统的快速无振响应。
The invention relates to a closed-loop control method of an input shaper based on a chaotic particle swarm optimization algorithm, which belongs to the technical field of drive control methods in the start-up process of coaxial transmission machinery; for the chattering problem in the start-up process of coaxial transmission machinery, the control proposed by the invention The method performs closed-loop control on the transmission mechanism, and the effectiveness and feasibility of this control method are proved by the experimental results; in the off-line state, the double pulse input shaper is optimized by using the chaotic particle swarm optimization algorithm, and its optimized parameters are obtained , and then use the optimized input shaper to control the PD closed-loop actuator; the present invention aims at the torsional vibration problem during the start-up process of the coaxial transmission printing machine, and proposes a control based on chaotic particle swarm optimization for the parameter self-tuning of the input shaper algorithm. This control greatly suppresses the torsional vibration of the system and at the same time realizes the fast vibration-free response of the system.
Description
技术领域technical field
本发明涉及一种基于混沌粒子群优化算法的输入整形器闭环控制方法,属于共轴传动机械启动过程的驱动控制方法技术领域。The invention relates to a closed-loop control method of an input shaper based on a chaotic particle swarm optimization algorithm, and belongs to the technical field of drive control methods in the start-up process of coaxial transmission machinery.
背景技术Background technique
共轴传动印刷机在启动过程中,由于采用长轴连接,轴与轴之间传输距离长、系统刚度低、负载质量重等诸多因素的影响造成了启动时会发生扭转振动,扭振现象不仅影响了启动过程的稳态时间,而且对传动轴也会带来很大的冲击,从而影响印刷机的使用寿命。During the start-up process of the coaxial transmission printing machine, due to the long-axis connection, the long transmission distance between the shafts, the low stiffness of the system, the heavy load and many other factors, the torsional vibration will occur during the start-up. The torsional vibration phenomenon is not only It affects the steady-state time of the start-up process, and it will also bring a great impact to the transmission shaft, thereby affecting the service life of the printing press.
针对以上原因采用了输入整形器的方法对系统进行时域滤波,然而传统的零振荡输入整形器需要精确建模,参数间相互影响,整定困难。本发明引入混沌粒子群优化算法对控制器参数进行优化,通过对系统进程传函变换,实现了系统信号的在线采集、离线优化、同时保持了较高地精度。For the above reasons, the input shaper method is used to filter the system in time domain. However, the traditional zero-oscillation input shaper requires precise modeling, and the parameters interact with each other, making tuning difficult. The invention introduces a chaotic particle swarm optimization algorithm to optimize the controller parameters, realizes the online collection and offline optimization of system signals, and maintains high precision at the same time by transforming the system process transfer function.
发明内容Contents of the invention
本发明的目的在于提供了一种基于混沌粒子群优化算法的输入整形器闭环控制方法,针对共轴传动机械启动过程存在抖振问题,本发明提出的控制方法对传动机构进行PD控制,并且经实验结果证明了这种控制方法的有效性和可行性。The purpose of the present invention is to provide a closed-loop control method of input shaper based on chaotic particle swarm optimization algorithm. In view of the chattering problem in the start-up process of coaxial transmission machinery, the control method proposed by the present invention performs PD control on the transmission mechanism, and through Experimental results prove the effectiveness and feasibility of this control method.
为实现上述目的,本发明所采用的技术方案为一种基于混沌粒子群优化算法的输入整形器闭环控制方法,在离线的状态下,运用混沌粒子群优化算法对双脉冲的输入整形器进行优化,得到其最优参数,然后运用得到的最优输入整形器对PD执行机构控制,该方法包括如下具体步骤,In order to achieve the above object, the technical solution adopted in the present invention is a closed-loop control method of the input shaper based on the chaotic particle swarm optimization algorithm. In the off-line state, the input shaper of the double pulse is optimized by using the chaotic particle swarm optimization algorithm. , to obtain its optimal parameters, and then use the obtained optimal input shaper to control the PD actuator, the method includes the following specific steps,
S1用简单的PD参数调节执行机构运动,以后保持不变,系统输入速度信号x(t),驱动机械系统运动,运用编码器从系统输出轴采集到其速度曲线v(t)和最终稳定速度u;S1 uses simple PD parameters to adjust the movement of the actuator, and it will remain unchanged in the future. The system inputs the speed signal x(t) to drive the movement of the mechanical system, and uses the encoder to collect the speed curve v(t) and the final stable speed from the system output shaft. u;
S2根据系统输出轴的稳定速度u,采用混沌粒子群优化算法得到双脉冲输入整形器的参数,双脉冲输入整形器的频域表达式为其中Ai和ti分别是脉冲序列的幅值及其所对应的时滞,由时间最优可令t1=0,则得公式为:为使系统输出达到稳定速度u,添加约束方程A1+A2=1,Ai>0;S2 According to the stable speed u of the output shaft of the system, the parameters of the double-pulse input shaper are obtained by using the chaotic particle swarm optimization algorithm. The frequency domain expression of the double-pulse input shaper is: Among them, A i and t i are respectively the amplitude of the pulse sequence and its corresponding time lag, and t 1 = 0 can be set for optimal time, then the formula is: In order to make the system output reach a stable speed u, add the constraint equation A 1 +A 2 =1, A i >0;
所述混沌粒子群优化算法的过程如下,The process of the chaotic particle swarm optimization algorithm is as follows,
S2.1初始化并设置输入整形器相关参数;包括A1、A2和t2的取值范围,由于A1+A2=1,Ai>0,故A2的取值范围[0~1],A1=1-A2;t2的选取比较重要,因为过大的t2的取值范围会使混沌粒子群算法早熟,陷入局部极小值,然而过小的取值范围优化时会漏掉最优解,要首先根据系统的模型来估算信号的延时时间,多质转动平台的延时较小,故给定t2的取值范围为[0~5]。S2.1 Initialize and set the relevant parameters of the input shaper; including the value range of A 1 , A 2 and t 2 , since A 1 +A 2 =1, A i >0, the value range of A 2 is [0~ 1], A 1 =1-A 2 ; the selection of t 2 is more important, because too large value range of t 2 will make the chaotic particle swarm optimization algorithm premature and fall into local minimum value, but too small value range optimizes When the optimal solution is missed, the delay time of the signal should be estimated according to the model of the system first. The delay time of the multi-substance rotating platform is small, so the value range of t2 is given as [0-5].
设置混沌粒子群相关参数;包括确定粒子群规模m=30,粒子搜索空间维数D=2 (即A2、t2两个粒子),迭代次数k最大为30,混沌搜索最大步数n为10,搜索空间范围即根据A2、t2范围确定),学习因子c1=c2=2,惯性权 重范围wmin=0.6,第i个粒子个体最优位置为其中为所有 中的最优(即全局最优),随机初始化每个粒子的位置和速度; Set the relevant parameters of chaotic particle swarm; including determining the size of particle swarm m=30, particle search space dimension D=2 (that is, two particles A 2 and t 2 ), the maximum number of iterations k is 30, and the maximum number of steps n of chaotic search is 10. Search space range That is, it is determined according to the range of A 2 and t 2 ), the learning factor c 1 =c 2 =2, the range of inertial weight w min =0.6, and the individual optimal position of the i-th particle is the optimal among all (that is, the global optimal ), randomly initialize the position and velocity of each particle;
S2.2将每个粒子的位置向量依次作为输入整形器参数,依次对采集回来的速度运动曲线进行仿真,得到仿真曲线;根据仿真曲线计算每个粒子的适应度值,并将其作为衡量粒子位置优劣的依据;设置适应度函数为S2.2 Use the position vector of each particle as the input shaper parameter in turn, and simulate the speed motion curve collected back in turn to obtain the simulation curve; calculate the fitness value of each particle according to the simulation curve, and use it as a measure of particle The basis of the position is good or bad; set the fitness function as
式中,v(t)为仿真曲线的瞬时速度,u为系统输出轴最终稳定速度,ftr为一较大的惩罚函数值,具体定义为In the formula, v(t) is the instantaneous speed of the simulation curve, u is the final stable speed of the system output shaft, ftr is a large penalty function value, specifically defined as
其中,tr为仿真曲线上升时间,当在指定仿真周期内没有达到上升时间时,ftr为一较大的惩罚函数值;当时间达到上升时间时,ftr取值为tr;Among them, t r is the rise time of the simulation curve, when the rise time is not reached within the specified simulation period, ftr is a larger penalty function value; when the time reaches the rise time, ftr takes the value t r ;
S2.3根据适应度函数计算每一个粒子的适应度值,如果该粒子的适应度值小于粒子自身以前的适应度值,则用该粒子的当前位置替换如果该粒子适应度值小于粒子群以前的适应度值,则用该粒子的位置替换 S2.3 Calculate the fitness value of each particle according to the fitness function, if the fitness value of the particle is less than the previous fitness value of the particle itself, replace it with the current position of the particle If the fitness value of the particle is less than the previous fitness value of the particle swarm, replace it with the particle's position
S2.4对每个粒子的速度和位置进行更新,第k次循环时,此时第i个粒子位 置矢量为飞行速度为当前粒子个体最优位置为当前全局最优位置为(d=1,2...,D),则 第k+1次循环时,第i个粒子速度迭代方程为位置矢 量迭代方程 S2.4 Update the velocity and position of each particle. In the kth cycle, the position vector of the i-th particle is The flight speed is The optimal position of the current particle individual is The current global optimal position is (d=1,2...,D), then during the k+1th cycle, the i-th particle velocity iterative equation is position vector iterative equation
S2.5计算每个微粒的适应度值,保留群体中最好的20%最佳粒子;S2.5 Calculate the fitness value of each particle, and retain the best 20% of the best particles in the group;
S2.6对最佳粒子执行混沌局部搜索,并更新和 S2.6 Perform a chaotic local search for the best particle, and update and
所述混沌局部搜索算法的过程如下,The process of the chaotic local search algorithm is as follows,
S2.6.1循环初始化n=0,d=1;S2.6.1 loop initialization n=0, d=1;
S2.6.2运用第i个粒子位置矢量的第d维变量,按照下式得到混沌变量d=1,2,...D,其中xmax,d和xmin,d为第d维变量的搜索上下界;S2.6.2 Using the i-th particle position vector The d-th dimension variable of , according to the following formula to get the chaotic variable d=1,2,...D, where x max,d and x min,d are the upper and lower bounds of the search for the d-th dimension variable;
S2.6.3计算下步迭代的混沌变量d=1,2,3...D;S2.6.3 Calculate the chaotic variables for the next iteration d=1,2,3...D;
S2.6.4根据混沌变量得到位置矢量 若d=D,则转S2.6.5,否则d=d+1,转S2.6.2;S2.6.4 According to chaotic variables get the position vector If d=D, then go to S2.6.5, otherwise d=d+1, go to S2.6.2;
S2.6.5根据新的位置矢量得到适应度值,与原始的位置矢量相比较,若适应度值较好或者混沌搜索已达到最大迭代步数,将新位置矢量作为混沌搜索结果,否则置k=k+1,转S2.6.2.S2.6.5 According to the new position vector Get the fitness value, compare it with the original position vector, if the fitness value is better or the chaotic search has reached the maximum number of iteration steps, use the new position vector as the result of the chaotic search, otherwise set k=k+1, go to S2.6.2 .
S2.7当k达到设定的迭代次数后,结束滚动优化过程,输出参数优化值。否则,转到步骤S2.8。S2.7 When k reaches the set number of iterations, end the rolling optimization process, and output parameter optimization values. Otherwise, go to step S2.8.
S2.8按下面的式子对矢量的每个空间变量收缩搜索区域:S2.8 Shrink the search area for each space variable of the vector according to the following formula:
xmin,d=max{xmin,d,xg,d-r*(xmax,d-xmin,d)}x min,d =max{x min,d ,x g,d -r*(x max,d -x min,d )}
xmax,d=min{xman,j,xg,d-r*(xmax,d-xmin,d)}x max,d =min{x man,j ,x g,d -r*(x max,d -x min,d )}
其中xg,d表示当前的第d维变量的值,r为[0,1]的随机数;where x g, d represent the current The value of the d-th dimension variable, r is a random number of [0,1];
S2.9当k达到设定的迭代次数后,结束滚动优化过程,输出参数优化值;否则在收缩后的空间内随机产生群体中剩余的80%的微粒,转S2.2;S2.9 When k reaches the set number of iterations, end the rolling optimization process, and output the parameter optimization value; otherwise, randomly generate the remaining 80% of the particles in the group in the shrunk space, and turn to S2.2;
S3运用得到的最优整形器对执行机构进行PD控制。S3 uses the obtained optimal shaper to perform PD control on the actuator.
与现有技术相比,本发明的有益效果在于:本发明针对共轴传动印刷机械启动过程中的扭振问题,提出了一种基于混沌粒子群优化算法的输入整形器闭环控制方法。此控制在大幅抑制了系统的扭振的同时实现系统的快速无振响应。Compared with the prior art, the beneficial effect of the present invention is that the present invention proposes a closed-loop control method of the input shaper based on the chaotic particle swarm optimization algorithm for the torsional vibration problem during the start-up process of the coaxial transmission printing machine. This control greatly suppresses the torsional vibration of the system and at the same time realizes the fast vibration-free response of the system.
附图说明Description of drawings
图1是该控制方法应用系统结构框图。Figure 1 is a structural block diagram of the control method application system.
图2是混沌粒子群优化过程图。Figure 2 is a diagram of the chaotic particle swarm optimization process.
图3是simulink下的优化模型图。Figure 3 is the optimization model diagram under simulink.
图4a是原始PD系统启动曲线图。Figure 4a is the original PD system start-up curve.
图4b是原始PD系统启动曲线傅里叶变换图。Fig. 4b is a Fourier transform diagram of the start-up curve of the original PD system.
图5a是带输入整形器的PD系统启动曲线图。Figure 5a is a graph showing the start-up of a PD system with an input shaper.
图5b是带输入整形器的PD系统启动曲线傅里叶变换图。Figure 5b is a Fourier transform diagram of the start-up curve of a PD system with an input shaper.
具体实施方式Detailed ways
本发明是一种基于混沌粒子群优化算法的输入整形器闭环控制方法,参照图1,在线情况下输入信号进入机械系统后采集输出轴速度运动曲线,再根据采集曲线运用混沌粒子群优化算法离线优化出输入整形器的参数,然后将优化出的输入整形器控制PD机械系统运动,这样可以滤掉启动信号中与执行机构共振的频点,在大幅抑制了系统扭振的同时实现了系统快速无振响应。The present invention is an input shaper closed-loop control method based on chaotic particle swarm optimization algorithm. Referring to Fig. 1, the input signal enters the mechanical system in the online state and collects the output shaft speed motion curve, and then uses the chaotic particle swarm optimization algorithm to go offline according to the collection curve. Optimize the parameters of the input shaper, and then use the optimized input shaper to control the movement of the PD mechanical system, which can filter out the frequency points that resonate with the actuator in the start signal, greatly suppressing the torsional vibration of the system and realizing fast system speed. No vibration response.
混沌粒子群离线的优化方法如图2所示,混沌粒子群算法与simulink模型之间链接的桥梁是粒子(即输入整形器公式中的A2、t2)。优化过程如下,随机产生粒子群,将该粒子群中的粒子依次赋值给simulink模型输入整形器中的参数A2、t2,然后运行控制系统的simulink模型,得到该粒子的适应度值,最后判断是否判断是否可以退出算法,若不退出,则对粒子的速度和位置进行更新,即对A2、t2更新。The off-line optimization method of chaotic particle swarm optimization is shown in Figure 2. The bridge between the chaotic particle swarm algorithm and the simulink model is the particle (that is, A 2 and t 2 in the input shaper formula). The optimization process is as follows: randomly generate a particle swarm, assign the particles in the particle swarm to the simulink model in turn and input the parameters A 2 and t 2 in the shaper, then run the simulink model of the control system to obtain the fitness value of the particle, and finally Judging whether it is possible to exit the algorithm, if not, update the velocity and position of the particles, that is, update A 2 and t 2 .
图3是simulink下的优化模型图,采集的速度信号经过输入整形器模块后得到仿真曲线,再经过适应度函数模块得到适应度值。Figure 3 is an optimization model diagram under simulink. The collected speed signal is input to the shaper module to obtain the simulation curve, and then the fitness value is obtained through the fitness function module.
图4a是原始系统启动曲线图,是多质量PD闭环转动系统输入幅值为8600的阶跃信号的响应,系统振荡一直存在,超调约为13.953%;图4b是原始PD系统启动曲线傅里叶变换图,可以明显看出存在一个低频振点。Figure 4a is the start-up curve of the original system, which is the response to a step signal with an input amplitude of 8600 in the multi-mass PD closed-loop rotating system. System oscillation always exists, and the overshoot is about 13.953%; From the leaf transformation diagram, it can be clearly seen that there is a low-frequency vibration point.
图5a是带输入整形器的PD系统启动曲线图,在同样的幅值的阶跃信号激励下,则系统的超调仅仅为3.488%,振荡得到抑制,且调整时间仅为700ms;图5b是带输入整形器的PD系统启动曲线傅里叶变换图,看出低频振点消除。Figure 5a is the start-up curve of the PD system with an input shaper. Under the excitation of the same amplitude step signal, the overshoot of the system is only 3.488%, the oscillation is suppressed, and the adjustment time is only 700ms; Figure 5b is The Fourier transform plot of the start-up curve of the PD system with an input shaper, and it can be seen that the low-frequency vibration point is eliminated.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410317759.2A CN104090490B (en) | 2014-07-04 | 2014-07-04 | A kind of input shaper closed loop control method based on Chaos particle swarm optimization algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410317759.2A CN104090490B (en) | 2014-07-04 | 2014-07-04 | A kind of input shaper closed loop control method based on Chaos particle swarm optimization algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104090490A CN104090490A (en) | 2014-10-08 |
CN104090490B true CN104090490B (en) | 2018-11-02 |
Family
ID=51638212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410317759.2A Expired - Fee Related CN104090490B (en) | 2014-07-04 | 2014-07-04 | A kind of input shaper closed loop control method based on Chaos particle swarm optimization algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104090490B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105447589B (en) * | 2015-10-15 | 2019-07-23 | 国家电网公司 | A kind of control method and device lowering coal unit NOx discharge |
CN106597851B (en) * | 2016-12-15 | 2019-04-30 | 南京航空航天大学 | A robust fault-tolerant control method for small UAV flight control system |
CN106647283A (en) * | 2017-01-23 | 2017-05-10 | 无锡信捷电气股份有限公司 | Auto-disturbance rejection position servo system optimization design method based on improved CPSO |
CN106950831B (en) * | 2017-03-06 | 2020-06-16 | 湖北工业大学 | Reactive compensation method for off-line optimization/on-line switching |
CN106816877A (en) * | 2017-03-10 | 2017-06-09 | 国网江苏省电力公司常州供电公司 | A kind of distribution network voltage containing photovoltaic falls detection compensation method |
CN107944594B (en) * | 2017-09-30 | 2021-11-23 | 华南理工大学 | Short-term load prediction method based on spearman grade and RKELM microgrid |
CN107729706B (en) * | 2017-11-29 | 2020-02-21 | 湖南科技大学 | A method for constructing a dynamic model of a nonlinear mechanical system |
CN109117751B (en) * | 2018-07-24 | 2021-10-19 | 南京信息工程大学 | Stochastic resonance weak signal detection method based on adaptive chaotic particle swarm optimization |
CN108919652B (en) * | 2018-10-10 | 2021-07-27 | 北京工商大学 | An adaptive disturbance rejection shaping control method and system |
CN110109350A (en) * | 2019-03-29 | 2019-08-09 | 广东工业大学 | A kind of power capture optimization method of wave-power device that catching flame algorithm based on chaos moth |
CN111123705B (en) * | 2019-12-18 | 2021-09-21 | 南京航空航天大学 | Design method for active vibration control of propeller and transmission shaft system |
CN118400088B (en) * | 2024-04-12 | 2025-02-14 | 中国地质大学(武汉) | A minimalist optical chaos secure communication system for enhanced security |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6505085B1 (en) * | 1999-03-04 | 2003-01-07 | Massachusetts Institute Of Technology | Method and apparatus for creating time-optimal commands for linear systems |
CN101816822A (en) * | 2010-05-27 | 2010-09-01 | 天津大学 | Setting method of functional electrical stimulation PID (Proportion Integration Differentiation) parameter double source characteristic fusion particle swarm |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101980470B (en) * | 2010-10-03 | 2013-12-04 | 鲁东大学 | Chaotic particle swarm optimization-based OFDM system resource allocation algorithm |
CN103885338B (en) * | 2014-03-21 | 2016-08-17 | 北京工业大学 | A kind of input shaper parameter self-tuning control method based on particle swarm optimization algorithm |
-
2014
- 2014-07-04 CN CN201410317759.2A patent/CN104090490B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6505085B1 (en) * | 1999-03-04 | 2003-01-07 | Massachusetts Institute Of Technology | Method and apparatus for creating time-optimal commands for linear systems |
CN101816822A (en) * | 2010-05-27 | 2010-09-01 | 天津大学 | Setting method of functional electrical stimulation PID (Proportion Integration Differentiation) parameter double source characteristic fusion particle swarm |
Also Published As
Publication number | Publication date |
---|---|
CN104090490A (en) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104090490B (en) | A kind of input shaper closed loop control method based on Chaos particle swarm optimization algorithm | |
CN103885338B (en) | A kind of input shaper parameter self-tuning control method based on particle swarm optimization algorithm | |
CN104533701B (en) | A kind of automatic setting method of Turbine Governor System control parameter | |
CN107544245B (en) | Discrete repetitive control method for motor servo system using first-order inertial attraction law with disturbance expansion compensation | |
CN105298734B (en) | A kind of parameter identification method of Adaptive System of Water-Turbine Engine | |
CN112650388B (en) | Motor vibration signal generation method and device, computer equipment and storage medium | |
Wang et al. | Nonlinear convergence active vibration absorber for single and multiple frequency vibration control | |
CN103746630A (en) | Active control method for low-frequency vibration of electric drive system | |
CN104090596A (en) | Five-stage S-curve acceleration and deceleration control method based on particle swarm optimization algorithm | |
CN110389528B (en) | Data-driven MEMS gyroscope driving control method based on disturbance observation | |
JP2020119295A (en) | Machine learning system for optimizing filter coefficient, control device and machine learning method | |
CN115143051A (en) | Maximum power capturing method and system for variable speed wind turbine generator and application of maximum power capturing system | |
Xu et al. | Rotor dynamic balancing control method based on fuzzy auto-tuning single neuron PID | |
CN106685290A (en) | Method of self-tuning parameters of permanent magnet synchronous motor speed controller based on chaotic molecular dynamic theory algorithm | |
CN111722530B (en) | Machine learning device, control system, and machine learning method | |
Kim et al. | Deep Q-network based rotary inverted pendulum system and its monitoring on the EdgeX platform | |
Fei et al. | Dynamic sliding mode control of MEMS gyroscope | |
CN111251901A (en) | PR (pulse repetition) jitter suppression method based on stationary point calibration | |
Oh et al. | Self tuning neural network controller for induction motor drives | |
Bracco et al. | Application of linear model predictive control to the ISWEC | |
Chao et al. | Design of reinforcement learning algorathm for single inverted pendulum swing control | |
CN108267970A (en) | Time lag rotor active balance control system and its method based on Smith models and single neuron PID | |
KR101244382B1 (en) | Apparatus for controlling a carrier | |
CN110262227A (en) | A kind of inertance element method for independently controlling for Helicopter Main anti-reflection resonance vibration isolation | |
CN119830616A (en) | Vibration suppression and light weight realization method, system and device for gear transmission system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181102 |
|
CF01 | Termination of patent right due to non-payment of annual fee |