CN104078361B - Method for manufacturing MOS transistor - Google Patents
Method for manufacturing MOS transistor Download PDFInfo
- Publication number
- CN104078361B CN104078361B CN201310109162.4A CN201310109162A CN104078361B CN 104078361 B CN104078361 B CN 104078361B CN 201310109162 A CN201310109162 A CN 201310109162A CN 104078361 B CN104078361 B CN 104078361B
- Authority
- CN
- China
- Prior art keywords
- side wall
- semiconductor substrate
- sidewall
- layer
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000010410 layer Substances 0.000 claims abstract description 126
- 239000004065 semiconductor Substances 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 238000005530 etching Methods 0.000 claims abstract description 39
- 239000011229 interlayer Substances 0.000 claims abstract description 38
- 125000006850 spacer group Chemical group 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 claims 1
- 230000003628 erosive effect Effects 0.000 claims 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims 1
- 238000005468 ion implantation Methods 0.000 abstract description 18
- 230000008569 process Effects 0.000 description 30
- 238000005516 engineering process Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 238000000151 deposition Methods 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/027—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种MOS晶体管的制造方法,包括:提供半导体衬底;在半导体衬底上形成多个栅极结构;在栅极结构的两侧形成第一侧墙;以第一侧墙作为掩膜,对半导体衬底进行离子注入,形成源漏离子注入区;去除第一侧墙;在半导体衬底上和栅极结构的四周以及上表面形成第二侧墙层;进行各向同性刻蚀刻蚀第二侧墙层,在栅极结构的两侧形成为第二侧墙,第二侧墙为上窄下宽的三角形,且第二侧墙的底部宽度大于所述第一侧墙的底部宽度;在所述半导体衬底、第二侧墙和栅极结构上沉积层间介质层,层间介质层的上表面和栅极结构齐平。所述第二侧墙使得相邻栅极结构之间的第二侧墙和半导体衬底构成的开口为上宽下窄的敞口状,便于填入介质层。
A method for manufacturing a MOS transistor, comprising: providing a semiconductor substrate; forming a plurality of gate structures on the semiconductor substrate; forming first sidewalls on both sides of the gate structures; using the first sidewalls as a mask to Perform ion implantation on the semiconductor substrate to form a source-drain ion implantation region; remove the first sidewall; form a second sidewall layer on the semiconductor substrate and around the gate structure and on the upper surface; perform isotropic etching for the second The side wall layer is formed as a second side wall on both sides of the gate structure, the second side wall is a triangle with a narrow top and a wide bottom, and the bottom width of the second side wall is greater than the bottom width of the first side wall; An interlayer dielectric layer is deposited on the semiconductor substrate, the second sidewall and the gate structure, and the upper surface of the interlayer dielectric layer is flush with the gate structure. The second sidewall makes the opening formed by the second sidewall between adjacent gate structures and the semiconductor substrate into an open shape with a wide top and a narrow bottom, which is convenient for filling the dielectric layer.
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种MOS晶体管的制造方法。The invention relates to the field of semiconductor manufacturing, in particular to a method for manufacturing a MOS transistor.
背景技术Background technique
在CMOS大规模集成电路工艺中,一般采用自对准工艺形成MOS晶体管的源漏极。在公开号为CN102569087A的中国专利申请文件中就公开了一种采用自对准工艺形成源漏极的方法。In the CMOS large-scale integrated circuit process, the source and drain of the MOS transistor are generally formed by a self-aligned process. In the Chinese patent application document with the publication number CN102569087A, a method for forming source and drain electrodes using a self-alignment process is disclosed.
具体工艺如图1至图4所示:The specific process is shown in Figure 1 to Figure 4:
参考图1所示,提供半导体衬底10,在半导体衬底10上形成若干栅极结构,在此以相邻的栅极结构21和栅极结构22作为示例。在半导体衬底10的表面和栅极结构21、22的表面形成侧墙层30。Referring to FIG. 1 , a semiconductor substrate 10 is provided, and several gate structures are formed on the semiconductor substrate 10 , here, adjacent gate structures 21 and 22 are taken as examples. A spacer layer 30 is formed on the surface of the semiconductor substrate 10 and the surfaces of the gate structures 21 and 22 .
参考图2所示,利用等离子体干法刻蚀刻蚀侧墙层30,在栅极结构21和栅极结构22两侧形成侧墙31。同时,相邻的栅极结构21、22之间的侧墙31与半导体衬底10构成开口7。Referring to FIG. 2 , the sidewall layer 30 is etched by plasma dry etching to form sidewalls 31 on both sides of the gate structure 21 and the gate structure 22 . Meanwhile, the spacer 31 between the adjacent gate structures 21 , 22 and the semiconductor substrate 10 form the opening 7 .
参考图3所示,以栅极结构21、22和侧墙31为掩膜,对半导体衬底10进行离子注入,在栅极结构21、22两侧的半导体衬底10中形成源漏离子注入区9。Referring to FIG. 3 , using the gate structures 21, 22 and sidewalls 31 as masks, ion implantation is performed on the semiconductor substrate 10, and source-drain ion implantation is formed in the semiconductor substrate 10 on both sides of the gate structures 21, 22. District 9.
参考图4所示,在半导体衬底10和栅极结构21、22之间沉积层间介质层50。然而,随着CMOS大规模集成电路工艺朝特征尺寸越来越小的方向发展,相邻栅极结构21、22之间的距离也在缩小,相应开口7的深宽比也在增大。在开口7中沉积层间介质层50容易出现不均匀,甚至具有空洞的问题。Referring to FIG. 4 , an interlayer dielectric layer 50 is deposited between the semiconductor substrate 10 and the gate structures 21 , 22 . However, as the CMOS large-scale integrated circuit technology develops toward the direction of smaller and smaller feature sizes, the distance between adjacent gate structures 21 and 22 is also reduced, and the aspect ratio of the corresponding opening 7 is also increased. The deposition of the interlayer dielectric layer 50 in the opening 7 tends to be uneven and even have voids.
发明内容Contents of the invention
本发明解决的问题是提供一种MOS晶体管的制造方法,以解决随着特征尺寸的减小,相邻栅极结构之间的侧墙和半导体衬底之间形成的开口深宽比变大,在相邻栅极结构和半导体衬底之间填充层间介质层出现填充不均匀,甚至具有空洞的问题。The problem to be solved by the present invention is to provide a method for manufacturing a MOS transistor, so as to solve the problem that the sidewalls between adjacent gate structures and the aspect ratio of openings formed between the semiconductor substrates become larger as the feature size decreases. Filling the interlayer dielectric layer between the adjacent gate structures and the semiconductor substrate has the problem of uneven filling and even voids.
为解决上述问题,本发明提供一种MOS晶体管的制造方法,In order to solve the above problems, the present invention provides a method for manufacturing a MOS transistor,
提供半导体衬底;Provide semiconductor substrates;
在所述半导体衬底上形成多个栅极结构;forming a plurality of gate structures on the semiconductor substrate;
在所述栅极结构的两侧形成第一侧墙;forming first spacers on both sides of the gate structure;
以第一侧墙作为掩膜,对所述半导体衬底进行离子注入,形成源漏离子注入区;Using the first sidewall as a mask, performing ion implantation on the semiconductor substrate to form a source-drain ion implantation region;
去除第一侧墙;remove the first side wall;
在所述半导体衬底上形成第二侧墙层,且所述第二侧墙层覆盖栅极结构;forming a second spacer layer on the semiconductor substrate, and the second spacer layer covers the gate structure;
利用各向同性刻蚀法刻蚀所述第二侧墙层,在栅极结构的两侧形成第二侧墙,所述第二侧墙为直角三角形,所述第二侧墙的底部宽度大于所述第一侧墙的底部宽度;The second sidewall layer is etched by an isotropic etching method to form second sidewalls on both sides of the gate structure, the second sidewalls are right-angled triangles, and the width of the bottom of the second sidewalls is greater than the bottom width of the first side wall;
在所述半导体衬底、第二侧墙和栅极结构上沉积层间介质层。An interlayer dielectric layer is deposited on the semiconductor substrate, the second sidewall and the gate structure.
可选的,在所述各向同性刻蚀的工艺中,所采用的刻蚀剂为CHF3、CH2F2、CH3F和O2的混合气体,其中CHF3的流量为10-500sccm,CH2F2的流量为10-500sccm,CH3F的流量为10-500sccm,O2的流量为10-500sccm,刻蚀时间为10secs-600secs。Optionally, in the isotropic etching process, the etchant used is a mixed gas of CHF 3 , CH 2 F 2 , CH 3 F and O 2 , wherein the flow rate of CHF 3 is 10-500 sccm , the flow rate of CH 2 F 2 is 10-500 sccm, the flow rate of CH 3 F is 10-500 sccm, the flow rate of O 2 is 10-500 sccm, and the etching time is 10 secs-600 secs.
可选的,在所述各向同性刻蚀的工艺中,设置刻蚀腔室内压强为10-100mTorr,源功率为100-1000W,偏置功率为100-500W。Optionally, in the isotropic etching process, the pressure in the etching chamber is set to 10-100 mTorr, the source power is 100-1000 W, and the bias power is 100-500 W.
可选的,所述第二侧墙材料层的材质为氮化硅。Optionally, the material of the second sidewall material layer is silicon nitride.
可选的,所述直角三角形的一条直角边与半导体衬底上表面重合,另一条直角边与栅极结构侧边重合。Optionally, one right-angled side of the right-angled triangle coincides with the upper surface of the semiconductor substrate, and the other right-angled side coincides with the side of the gate structure.
可选的,所述第二侧墙底角范围为30°~60°。Optionally, the bottom angle of the second side wall ranges from 30° to 60°.
可选的,所述第二侧墙的高度低于所述栅极结构。Optionally, the height of the second sidewall is lower than that of the gate structure.
可选的,所述第二侧墙的高度低于所述栅极结构的一半。Optionally, the height of the second sidewall is lower than half of the gate structure.
可选的,形成第二侧墙后,沉积层间介质层之前,还包括步骤:在所述半导体衬底和栅极结构的表面形成应力层。Optionally, after forming the second spacer and before depositing the interlayer dielectric layer, a step is further included: forming a stress layer on the surface of the semiconductor substrate and the gate structure.
可选的,在形成层间介质层之后,还包括:在所述源漏离子注入区上的层间介质层内形成接触孔,所述第二侧墙与半导体衬底重合的直角边与接触孔的边缘非接触。Optionally, after forming the interlayer dielectric layer, it further includes: forming a contact hole in the interlayer dielectric layer on the source-drain ion implantation region, and the right-angled side of the second sidewall coincident with the semiconductor substrate and the contact The edges of the holes are not touching.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
所述第二侧墙为直角三角形,所述第二侧墙的底部宽度大于所述第一侧墙的底部宽度。由于所述第二侧墙底部较宽,可以填补在相邻栅极结构之间间隙底部的边角,解决了相邻栅极结构之间间隙的底部边角不容易被层间介质层填充到从而会产生空洞的问题;且所述第二侧墙还具有明显倾斜的外侧面,使得在第二侧墙和半导体衬底构成的开口为上宽下窄的敞口状。这样形状的开口在底部需要填充的层间介质层较少,不容易发生在开口底部还未被填充满时,开口顶部就被封住的情况。The second side wall is a right triangle, and the bottom width of the second side wall is larger than the bottom width of the first side wall. Since the bottom of the second sidewall is wider, it can fill the bottom corners of the gap between adjacent gate structures, which solves the problem that the bottom corners of the gap between adjacent gate structures are not easily filled by the interlayer dielectric layer. Therefore, there will be a problem of voids; and the second side wall also has an obviously inclined outer surface, so that the opening formed by the second side wall and the semiconductor substrate is an open shape with a wide top and a narrow bottom. The bottom of the opening with such a shape needs to be filled with fewer interlayer dielectric layers, and it is not easy for the top of the opening to be sealed when the bottom of the opening is not fully filled.
进一步,去除第一侧墙后再重新形成第二侧墙的工艺安排,使得在形成第一侧墙时,可以不考虑后续填充层间介质层的需要,只需要适应于源漏离子注入工艺的需要,形成较薄的第一侧墙;在源漏离子注入之后,形成第二侧墙层之前,去除第一侧墙,能够消除第一侧墙的厚度对减小相邻栅极结构之间间距的影响,避免第一侧墙增加栅极结构之间间隙的深宽比;在形成第二侧墙时,由于已经完成了离子注入,可以不受离子注入对侧墙厚度要求的限制,形成底部比第一侧墙厚的第二侧墙,确保第二侧墙和半导体衬底构成的开口便于填入层间介质层。Further, the process arrangement of removing the first sidewall and then re-forming the second sidewall makes it possible to ignore the need for subsequent filling of the interlayer dielectric layer when forming the first sidewall, and only need to adapt to the source-drain ion implantation process. Need to form a thinner first sidewall; after the source-drain ion implantation, before forming the second sidewall layer, remove the first sidewall, which can eliminate the thickness of the first sidewall and reduce the gap between adjacent gate structures. Influenced by the spacing, avoiding the first sidewall from increasing the aspect ratio of the gap between the gate structures; when forming the second sidewall, since the ion implantation has been completed, it can be formed without the limitation of the ion implantation on the thickness of the sidewall. The second sidewall whose bottom is thicker than the first sidewall ensures that the opening formed by the second sidewall and the semiconductor substrate is conveniently filled into the interlayer dielectric layer.
进一步,第二侧墙的底角为30°~60°时,所述第二侧墙的外侧面倾斜度比较合适,既不倾向于陡直,也不倾向于水平,对相邻栅极结构之间的间隙的形貌的改变比较明显,使得相邻栅极结构之间的第二侧墙和半导体衬底之间构成开口便于填充。进一步,所述第二侧墙的高度比栅极结构低,在半导体衬底、第二侧墙和栅极结构的表面沉积应力层形成的晶体管,与应用一般的双应力层(Dual stress liners,DSL)技术形成的MOS晶体管相比,其中形成的应力层更接近沟道,能更好的施加应力给沟道,能更大幅度的提高MOS晶体管沟道载流子的迁移率。这种在MOS晶体管中形成应力层的技术恰好为应力接近技术(Stressproximity technique,SPT)。Further, when the bottom angle of the second sidewall is 30°-60°, the inclination of the outer surface of the second sidewall is more appropriate, neither tends to be steep, nor tends to be horizontal. The change of the shape of the gap between them is relatively obvious, so that the opening formed between the second sidewall between the adjacent gate structures and the semiconductor substrate is convenient for filling. Further, the height of the second sidewall is lower than that of the gate structure, and the transistor formed by depositing a stress layer on the surface of the semiconductor substrate, the second sidewall, and the gate structure is similar to the application of general dual stress liners (Dual stress liners, Compared with the MOS transistor formed by DSL) technology, the stress layer formed in it is closer to the channel, which can better apply stress to the channel, and can greatly improve the mobility of MOS transistor channel carriers. This technique of forming a stress layer in a MOS transistor is exactly a stress proximity technique (Stressproximity technique, SPT).
附图说明Description of drawings
图1至图4是现有技术中形成MOS晶体管的工艺示意图;1 to 4 are schematic diagrams of processes for forming MOS transistors in the prior art;
图5至图10是本发明的实施例一中形成MOS晶体管的工艺示意图;5 to 10 are schematic diagrams of the process of forming a MOS transistor in Embodiment 1 of the present invention;
图11至图12是本发明的实施例二中形成MOS晶体管的工艺示意图。11 to 12 are schematic diagrams of the process of forming a MOS transistor in Embodiment 2 of the present invention.
具体实施方式detailed description
在现有工艺中,栅极两侧的侧墙主要是作为后续源漏离子注入的掩膜,会非常的薄,其底部宽度一般为且侧墙一般与栅极结构齐平,高度为这样形状的侧墙的外侧面近乎垂直于半导体衬底,相应的,相邻栅极结构之间的侧墙与半导体衬底构成的开口的底角近乎直角。在开口的深宽比较大的情况下,向这样的开口填充层间介质层会很难填充到开口的底角,从而在开口的底角处出现空洞;并且在向所述开口中填充层间介质层时,开口顶部两侧的台阶处容易聚集层间介质层分子,形成凸出部。在所述开口的靠下的部分还未被填满时,开口顶部两侧凸出部已经连接在一起,封住了开口的表面,阻碍层间介质层的继续填充,从而造成开口内空洞。In the existing process, the sidewalls on both sides of the gate are mainly used as masks for the subsequent source-drain ion implantation, which will be very thin, and the width of the bottom is generally And the side wall is generally flush with the gate structure, and the height is The outer side of the sidewall with such a shape is almost perpendicular to the semiconductor substrate, and correspondingly, the bottom angle of the opening formed by the sidewall between adjacent gate structures is almost at right angles to the semiconductor substrate. In the case that the aspect ratio of the opening is large, it is difficult to fill the opening with the interlayer dielectric layer to the bottom corner of the opening, so that a void appears at the bottom corner of the opening; and when filling the opening into the interlayer In the case of a dielectric layer, molecules of the interlayer dielectric layer tend to gather at the steps on both sides of the top of the opening to form protrusions. When the lower portion of the opening is not filled, the protrusions on both sides of the top of the opening have been connected together, sealing the surface of the opening, hindering the continuous filling of the interlayer dielectric layer, thereby causing voids in the opening.
由此,本发明的技术方案提供一种MOS晶体管的制造方法,包括:形成栅极结构和第一侧墙之后,利用栅极结构和第一侧墙作为掩膜进行离子注入形成源漏离子注入区,然后去除第一侧墙,形成第二侧墙层,再利用各向同性刻蚀使得第二侧墙层形成为第二侧墙。所述第二侧墙为上窄下宽的直角三角形,且所述第二侧墙的底部宽度远大于所述第一侧墙的底部宽度,这样的形状的第二侧墙会填补在相邻栅极结构构成的间隙的底角处,并使得相邻栅极结构之间的第二侧墙和半导体衬底构成的开口为上宽下窄的敞口状,便于填入介质层。Therefore, the technical solution of the present invention provides a method for manufacturing a MOS transistor, comprising: after forming the gate structure and the first sidewall, performing ion implantation using the gate structure and the first sidewall as a mask to form source-drain ion implantation area, and then remove the first sidewall layer to form a second sidewall layer, and then use isotropic etching to form the second sidewall layer into a second sidewall layer. The second side wall is a right-angled triangle with a narrow top and a wide bottom, and the bottom width of the second side wall is much larger than the bottom width of the first side wall. Such a shape of the second side wall will fill in the adjacent The bottom corner of the gap formed by the gate structure, and the opening formed by the second side wall between adjacent gate structures and the semiconductor substrate is an open shape with a wide top and a narrow bottom, which is convenient for filling the dielectric layer.
本发明的技术方案中所述第二侧墙的高度低于栅极结构,在后续在半导体衬底、第二侧墙和栅极结构上沉积应力层,所述应力层能够直接接触到所述栅极结构。与一般的应用双应力层(Dual stress liners,DSL)技术形成的具有应力层的MOS晶体管相比,本发明的技术方案形成的MOS晶体管中应力层更接近沟道,能更好的施加应力给沟道,能更大幅度的提高MOS晶体管沟道载流子的迁移率。本发明的技术方案采用的这种应力技术称之为应力接近技术(Stress proximity technique,SPT)。In the technical solution of the present invention, the height of the second sidewall is lower than the gate structure, and a stress layer is subsequently deposited on the semiconductor substrate, the second sidewall and the gate structure, and the stress layer can directly contact the grid structure. Compared with the MOS transistor with a stress layer formed by the general application of dual stress liners (DSL) technology, the stress layer in the MOS transistor formed by the technical solution of the present invention is closer to the channel, and can better apply stress to the channel. The channel can greatly improve the mobility of carriers in the channel of the MOS transistor. The stress technique adopted by the technical solution of the present invention is called stress proximity technique (Stress proximity technique, SPT).
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
实施例一Embodiment one
以下结合图5至图10来详细阐述实施例一中形成具有直角三角形的第二侧墙的MOS晶体管的工艺过程。The process of forming the MOS transistor with the second sidewall of the right triangle in the first embodiment will be described in detail below with reference to FIG. 5 to FIG. 10 .
如图5所示,提供半导体衬底100,在半导体衬底100上形成若干栅极结构,在半导体衬底100和栅极结构的表面形成第一侧墙层300。其中,图5仅图示两相邻的栅极结构210、220作为示意。As shown in FIG. 5 , a semiconductor substrate 100 is provided, several gate structures are formed on the semiconductor substrate 100 , and a first spacer layer 300 is formed on the surface of the semiconductor substrate 100 and the gate structures. Wherein, FIG. 5 only shows two adjacent gate structures 210 and 220 for illustration.
本实施例中,所述栅极结构210、220包括栅绝缘层和位于栅绝缘层上的栅电极层(未图示)。其中,所述栅绝缘层为氧化硅,所述栅极材料层为多晶硅。In this embodiment, the gate structures 210 and 220 include a gate insulating layer and a gate electrode layer (not shown) on the gate insulating layer. Wherein, the gate insulating layer is silicon oxide, and the gate material layer is polysilicon.
本实施例中,形成栅极结构210和栅极结构220工艺为:在半导体衬底上利用沉积工艺或者热氧化工艺形成栅绝缘层;然后在栅绝缘层上利用沉积工艺形成栅电极层;在栅电极层上形成光刻胶层,所述光刻胶层上具有栅电极图形;以光刻胶层为掩膜,对所述栅绝缘层和多晶硅层进行选择性刻蚀以形成栅极结构210和220。In this embodiment, the process of forming the gate structure 210 and the gate structure 220 is: forming a gate insulating layer on the semiconductor substrate by using a deposition process or a thermal oxidation process; then forming a gate electrode layer on the gate insulating layer by using a deposition process; A photoresist layer is formed on the gate electrode layer, and the photoresist layer has a gate electrode pattern; using the photoresist layer as a mask, the gate insulating layer and the polysilicon layer are selectively etched to form a gate structure 210 and 220.
本实施例中,所述第一侧墙层300的材料为氮化硅,利用沉积工艺形成。在其它实施方式中,所述第一侧墙层300也可以为氧化硅层和覆盖氧化硅层的氮化硅层的复合层结构。In this embodiment, the material of the first sidewall layer 300 is silicon nitride, which is formed by a deposition process. In other implementation manners, the first sidewall layer 300 may also be a composite layer structure of a silicon oxide layer and a silicon nitride layer covering the silicon oxide layer.
如图6所示,利用各向异性刻蚀工艺去除栅极结构210、220顶部和半导体衬底100上的第一侧墙层300,形成覆盖在栅极结构210和栅极结构220侧壁处的第一侧墙310。所述栅极结构210、220之间的第一侧墙310和半导体衬底100构成第一开口17。As shown in FIG. 6, an anisotropic etching process is used to remove the top of the gate structures 210, 220 and the first sidewall layer 300 on the semiconductor substrate 100 to form a The first side wall 310 of. The first spacer 310 between the gate structures 210 and 220 and the semiconductor substrate 100 form the first opening 17 .
具体的,本实施例中,所述刻蚀主要包括两个步骤:Specifically, in this embodiment, the etching mainly includes two steps:
首先,对第一侧墙层300进行第一刻蚀,所述第一刻蚀所采用的刻蚀气体为CF4、CHF3、O2和Ar的混合气体,CF4、CHF3、O2和Ar的体积比V(CF4):V(CHF3):V(O2):V(Ar)为40:80:30:250。所述第一刻蚀中主要刻蚀半导体衬底100和栅极结构210、210顶部的第一侧墙层300。一般情况下,第一刻蚀保留少量的半导体衬底100和栅极结构210、220顶部的第一侧墙层300。First, the first etching is performed on the first sidewall layer 300, the etching gas used in the first etching is a mixed gas of CF 4 , CHF 3 , O 2 and Ar, CF 4 , CHF 3 , O 2 The volume ratio of V(CF 4 ):V(CHF 3 ):V(O 2 ):V(Ar) to Ar is 40:80:30:250. In the first etching, the semiconductor substrate 100 and the first spacer layer 300 on top of the gate structures 210 and 210 are mainly etched. Generally, the first etching leaves a small amount of the first spacer layer 300 on top of the semiconductor substrate 100 and the gate structures 210 , 220 .
接着,对第一侧墙层300进行第二刻蚀,所述第二刻蚀中,刻蚀气体对第一侧墙层300的刻蚀速率要小于第一刻蚀中刻蚀气体对第一侧墙层300的刻蚀速率。所采用的刻蚀气体为CH3F、O2和Ar,其中,CH3F、O2和Ar的体积比V(CH3F):V(O2):V(Ar)为20:80:100。在第二刻蚀中,一方面去除半导体衬底100和栅极结构210、220顶部残留的第一侧墙层300,另一方面还要刻蚀栅极结构210、220侧壁上的第一侧墙层300至预定尺寸。经过第二刻蚀后,所述第一侧墙层300形成为第一侧墙310。Next, a second etching is performed on the first sidewall layer 300. In the second etching, the etching rate of the etching gas for the first sidewall layer 300 is lower than that of the etching gas for the first sidewall layer 300 in the first etching. The etch rate of the sidewall layer 300. The etching gas used is CH 3 F, O 2 and Ar, wherein the volume ratio V(CH 3 F):V(O 2 ):V(Ar) of CH 3 F, O 2 and Ar is 20:80 :100. In the second etching, on the one hand, the remaining first sidewall layer 300 on the top of the semiconductor substrate 100 and the gate structure 210, 220 is removed; The side wall layer 300 is to a predetermined size. After the second etching, the first sidewall layer 300 is formed into a first sidewall 310 .
如图7所示,以栅极结构210、220和第一侧墙层310为掩膜对半导体衬底100进行离子注入,在半导体衬底100中形成MOS晶体管的源漏极掺杂区19。As shown in FIG. 7 , the semiconductor substrate 100 is implanted with ions using the gate structures 210 , 220 and the first sidewall layer 310 as a mask to form the source-drain doped region 19 of the MOS transistor in the semiconductor substrate 100 .
如图8所示,去除第一侧墙310,然后在半导体衬底100、第一侧墙310和栅极结构210、220的表面形成第二侧墙层400。As shown in FIG. 8 , the first spacer 310 is removed, and then the second sidewall layer 400 is formed on the surfaces of the semiconductor substrate 100 , the first spacer 310 and the gate structures 210 , 220 .
在本实施例中,去除所述第一侧墙310的工艺为湿法刻蚀,可利用热磷酸进行。In this embodiment, the process of removing the first sidewall 310 is wet etching, which can be performed by using hot phosphoric acid.
本步骤中,去除了第一侧墙310,消除第一侧墙310的厚度对减小栅极结构210、220之间的间距的影响,可避免第一侧墙310增大栅极结构210、220之间间隙的深宽比。In this step, the first sidewall 310 is removed, and the influence of the thickness of the first sidewall 310 on reducing the distance between the gate structures 210 and 220 can be eliminated, which can prevent the first sidewall 310 from increasing the gate structure 210, The aspect ratio of the gap between 220.
在本实施例中,所述第二侧墙层400的厚度远大于第一侧墙层300的厚度,其具体厚度为相邻栅极结构210、220之间间距的1/3~1/2,一般为 In this embodiment, the thickness of the second sidewall layer 400 is much greater than the thickness of the first sidewall layer 300, and its specific thickness is 1/3 to 1/2 of the distance between adjacent gate structures 210 and 220 , usually
在本实施例中,所述第二侧墙层400的材质为氮化硅。形成的方式为等离子体增强化学气相沉积。沉积时所用气源为SiH4、NH3和N2。其中,SiH4的流量为100sccm,NH3的流量为100sccm,N2的流量为30sccm。压强设置为50Pa,功率设置为20W,温度设置为200℃~350℃。In this embodiment, the material of the second sidewall layer 400 is silicon nitride. The way of formation is plasma enhanced chemical vapor deposition. The gas sources used during deposition are SiH 4 , NH 3 and N 2 . Wherein, the flow rate of SiH 4 is 100 sccm, the flow rate of NH 3 is 100 sccm, and the flow rate of N 2 is 30 sccm. The pressure is set to 50Pa, the power is set to 20W, and the temperature is set to 200°C to 350°C.
如图9所示,利用各向同性刻蚀去除栅极结构210、220顶部和半导体衬底100上的第二侧墙层400,以形成第二侧墙410。所述第二侧墙410为上窄下宽的三角形,其底部宽度大于图6至图7中的第一侧墙310的底部宽度。所述栅极结构210、220之间的第二侧墙410和半导体衬底100构成第二开口18。As shown in FIG. 9 , isotropic etching is used to remove the tops of the gate structures 210 , 220 and the second spacer layer 400 on the semiconductor substrate 100 to form the second spacer 410 . The second side wall 410 is a triangle with a narrow top and a wide bottom, and its bottom width is greater than that of the first side wall 310 in FIGS. 6 to 7 . The second spacer 410 between the gate structures 210 and 220 and the semiconductor substrate 100 form the second opening 18 .
本实施例中,所述各向同性刻蚀中,所采用的刻蚀剂为CHF3、CH2F2、CH3F和O2的混合气体,其中CHF3的流量为10-500sccm,CH2F2的流量为10-500sccm,CH3F的流量为10-500sccm,O2的流量为10-500sccm。刻蚀过程中,设置刻蚀腔室内压强为10mTorr-100mTorr,源功率为100W-1000W,偏置功率为100W-500W。其中,源功率用于产生和维持等离子体,偏置功率用于控制蚀刻速率。In this embodiment, in the isotropic etching, the etchant used is a mixed gas of CHF 3 , CH 2 F 2 , CH 3 F and O 2 , wherein the flow rate of CHF 3 is 10-500 sccm, CH The flow rate of 2 F 2 is 10-500 sccm, the flow rate of CH 3 F is 10-500 sccm, and the flow rate of O 2 is 10-500 sccm. During the etching process, the pressure in the etching chamber is set to 10mTorr-100mTorr, the source power is 100W-1000W, and the bias power is 100W-500W. Among them, the source power is used to generate and maintain the plasma, and the bias power is used to control the etching rate.
所述各向同性刻蚀进行的时间具体由第二侧墙410需要的宽度决定。本实施例中,所述各向同性刻蚀的刻蚀时间为:10secs-600secs。The time for the isotropic etching is specifically determined by the required width of the second sidewall 410 . In this embodiment, the etching time of the isotropic etching is: 10 secs-600 secs.
各向同性刻蚀后,形成的第二侧墙410具有明显倾斜的外侧面,构成栅极结构210、220两侧的直角三角形,所述直角三角形的一条直角边与半导体衬底上表面重合,另一条直角边与栅极结构侧边重合。所述第二侧墙410的形貌使得第二开口18为上宽下窄的敞口状。After isotropic etching, the formed second sidewall 410 has an obviously inclined outer surface, forming a right triangle on both sides of the gate structure 210, 220, one right angle side of the right triangle coincides with the upper surface of the semiconductor substrate, The other right-angle side coincides with the side of the gate structure. The shape of the second side wall 410 makes the second opening 18 an open shape with a wide top and a narrow bottom.
所述第二侧墙410底部的宽度越宽,相邻栅极结构之间间隙底部边角处被填补得越多,越不容易发生填充不到的问题;但所述第二侧墙410也不宜太宽。因为在后续工艺中,需要在第二开口18中填充层间介质层材料,然后利用刻蚀工艺刻蚀层间介质层,以在源漏极掺杂区19上形成接触孔。第二侧墙410的材质为氮化硅,层间介质层的材质一般为氧化硅,两者材质不同。若所述第二侧墙410超过了需要形成的接触孔的边缘,在后续利用刻蚀工艺刻蚀层间介质层形成接触孔时,所述第二侧墙410会阻挡接触孔底部的刻蚀。所以所述第二侧墙410与半导体衬底100上表面重合的直角边不接触到后续要形成的接触孔的边缘。The wider the width of the bottom of the second sidewall 410 is, the more the corners at the bottom of the gap between adjacent gate structures are filled, and the problem of insufficient filling is less likely to occur; but the second sidewall 410 also It should not be too wide. Because in the subsequent process, it is necessary to fill the second opening 18 with an interlayer dielectric layer material, and then use an etching process to etch the interlayer dielectric layer to form a contact hole on the source-drain doped region 19 . The material of the second side wall 410 is silicon nitride, and the material of the interlayer dielectric layer is generally silicon oxide, and the materials of the two are different. If the second sidewall 410 exceeds the edge of the contact hole to be formed, the second sidewall 410 will block the etching of the bottom of the contact hole when the interlayer dielectric layer is etched by an etching process to form a contact hole. . Therefore, the right-angled side of the second sidewall 410 coincident with the upper surface of the semiconductor substrate 100 does not touch the edge of the contact hole to be formed later.
经过多次试验,所述第二侧墙410的外侧面与半导体衬底100上表面构成的底角a的范围为30°~60°时,所述第二侧墙外侧面的倾斜度比较合适,既不倾向于陡直,也不倾向于水平,对相邻栅极结构之间间隙的形貌改变比较明显,使所述第二开口18便于填充。当所述底角a为45°时,所述第二开口18最便于填充。After several tests, when the bottom angle a formed by the outer surface of the second sidewall 410 and the upper surface of the semiconductor substrate 100 ranges from 30° to 60°, the inclination of the outer surface of the second sidewall is more appropriate. , neither tends to be steep, nor tends to be horizontal, and the shape change of the gap between adjacent gate structures is relatively obvious, so that the second opening 18 is easy to fill. When the base angle a is 45°, the second opening 18 is most convenient to fill.
如图10所示,在半导体衬底100,栅极结构210、220和第二侧墙410的表面形成层间介质层600。As shown in FIG. 10 , an interlayer dielectric layer 600 is formed on the surface of the semiconductor substrate 100 , the gate structures 210 , 220 and the second spacer 410 .
本实施例中,所述层间介质层600材质为氧化硅,形成方式为化学气相沉积。In this embodiment, the interlayer dielectric layer 600 is made of silicon oxide and formed by chemical vapor deposition.
所述第二侧墙410底部较宽,可以填补在相邻栅极结构之间间隙底部的边角处,从而避免在往相邻栅极结构之间间隙填充层间介质层时,间隙底部边角处不容易填充到从而形成空洞;并且所述第二侧墙410还具有明显倾斜的外侧面,可以改善图6中第一开口17的形貌,使得在图10中第二侧墙410和半导体衬底100构成的第二开口18为上宽下窄的敞口状。这样形状的第二开口18在底部需要填充的层间介质层600较少,不容易出现在第二开口18底部还未填充满,第二开口18顶部就被封住的问题。The bottom of the second sidewall 410 is wider and can fill the corners at the bottom of the gap between adjacent gate structures, thereby avoiding the gap at the bottom of the gap when filling the gap between adjacent gate structures with the interlayer dielectric layer. The corners are not easily filled to form a cavity; and the second side wall 410 also has a significantly inclined outer surface, which can improve the shape of the first opening 17 in FIG. 6 , so that in FIG. 10 the second side wall 410 and The second opening 18 formed by the semiconductor substrate 100 has an open shape with a wide top and a narrow bottom. The bottom of the second opening 18 with such a shape requires less interlayer dielectric layer 600 to be filled, and the problem that the top of the second opening 18 is sealed before the bottom of the second opening 18 is not filled is not easy to occur.
在这一步骤中,在第二开口18中填充的层间介质层600具有良好的均匀性,没有空洞。In this step, the interlayer dielectric layer 600 filled in the second opening 18 has good uniformity without voids.
并且,本实施例中去除第一侧墙310后再重新形成第二侧墙410的工艺安排,使得在形成第一侧墙310时,可以不考虑后续填充层间介质层600的需要,只需要适应于源漏离子注入工艺的要求,形成较薄的第一侧墙310;在源漏离子注入之后,形成第二侧墙层300之前,去除第一侧墙310,能够消除第一侧墙310的厚度对减小栅极结构210、220之间间距的影响,避免第一侧墙310增加栅极结构之间间隙的深宽比;在形成第二侧墙410时,由于已经完成了离子注入,可以不受离子注入要求侧墙较薄的限制,形成底部较厚的第二侧墙410,确保形成的第二侧墙410的形貌使得第二开口18便于填入层间介质层600。Moreover, in this embodiment, the process arrangement of removing the first sidewall 310 and then re-forming the second sidewall 410 makes it possible to ignore the need for subsequent filling of the interlayer dielectric layer 600 when forming the first sidewall 310, and only need to To adapt to the requirements of the source-drain ion implantation process, a thinner first sidewall 310 is formed; after the source-drain ion implantation and before forming the second sidewall layer 300, the first sidewall 310 can be removed to eliminate the first sidewall 310 The influence of the thickness of the thickness on reducing the spacing between the gate structures 210, 220, avoiding the first spacer 310 from increasing the aspect ratio of the gap between the gate structures; when forming the second spacer 410, since the ion implantation has been completed , the second sidewall 410 with a thicker bottom can be formed without being limited by the thinner sidewall required by ion implantation, and the shape of the second sidewall 410 can be ensured so that the second opening 18 can be easily filled into the interlayer dielectric layer 600 .
实施例二Embodiment two
在本实施例中,需要在半导体衬底100和栅极结构210、220上形成应力层,以下结合图11至图12来详细阐述实施例二的情况。In this embodiment, a stress layer needs to be formed on the semiconductor substrate 100 and the gate structures 210 , 220 . The situation of Embodiment 2 will be described in detail below with reference to FIGS. 11 to 12 .
一般情况下,在不同类型的MOS晶体管上形成不同应力类型的应力层的技术为双应力层(Dual stress liners,DSL)技术。DSL技术能够将应力施加于MOS晶体管的沟道上,从而引起晶格应变,提高载流子(电子或者空穴)的迁移率,保证集成电路在较小的工作电压下能够保持较好的性能。满足集成电路的工作电压随着工艺特征尺寸不断减小也相应不断减小的发展趋势。Generally, the technology of forming stress layers of different stress types on different types of MOS transistors is a dual stress layer (Dual stress liners, DSL) technology. DSL technology can apply stress to the channel of MOS transistors, thereby causing lattice strain, improving the mobility of carriers (electrons or holes), and ensuring that integrated circuits can maintain better performance at lower operating voltages. To meet the development trend that the operating voltage of integrated circuits is continuously reduced with the continuous reduction of process feature size.
另一种建立在DSL基础上的应力技术为:在去除栅极两侧的侧墙顶部部分后再沉积应力层,这种应力技术称为应力接近技术(Stress proximity technique,SPT)。与一般的DSL技术相比,SPT中应力层能直接接触到栅极结构,应力层会更接近沟道,能好的施加应力给沟道,能更大幅度的提高MOS晶体管沟道载流子的迁移率。Another stress technology based on DSL is: after removing the top part of the sidewall on both sides of the gate and then depositing a stress layer, this stress technology is called stress proximity technique (SPT). Compared with the general DSL technology, the stress layer in SPT can directly contact the gate structure, and the stress layer will be closer to the channel, which can better apply stress to the channel, and can greatly improve the channel carrier of MOS transistors. the mobility.
如图11所示,在形成好第二侧墙410之后,在填充层间介质层600之前,在半导体衬底100、第二侧墙410和栅极结构210、220的表面形成应力层500。As shown in FIG. 11 , after forming the second spacer 410 and before filling the interlayer dielectric layer 600 , a stress layer 500 is formed on the surfaces of the semiconductor substrate 100 , the second spacer 410 and the gate structures 210 , 220 .
在本实施例中,所述应力层500的材质为氮化硅,应力类型由栅极结构210或栅极结构220所在的晶体管类型决定。一般的,在NMOS晶体管上形成的应力层500为张应力层,在PMOS晶体管上形成的所述应力层500为压应力层。所述应力层500的应力的类型由沉积氮化硅的具体工艺条件决定。In this embodiment, the material of the stress layer 500 is silicon nitride, and the type of stress is determined by the type of transistor where the gate structure 210 or the gate structure 220 is located. Generally, the stress layer 500 formed on the NMOS transistor is a tensile stress layer, and the stress layer 500 formed on the PMOS transistor is a compressive stress layer. The stress type of the stress layer 500 is determined by the specific process conditions for depositing silicon nitride.
在本实施例中,所述第二侧墙410需要满足同实施例一类似的对第二侧墙410的底角a和底部宽度要求。在满足这些要求的情况下,所述第二侧墙410的高度会低于栅极结构210、220的高度。且一般情况下,第二侧墙410的高度不会超过栅极结构210、220的一半高度。In this embodiment, the second side wall 410 needs to meet the requirements for the bottom angle a and the bottom width of the second side wall 410 similar to those in the first embodiment. When these requirements are met, the height of the second sidewall 410 will be lower than the height of the gate structures 210 , 220 . And generally, the height of the second sidewall 410 will not exceed half of the height of the gate structures 210 and 220 .
在这样的情况下,应力层500形成好之后,能够直接接触到栅极结构,能很好的施加应力给沟道,能更大幅度的提高MOS晶体管沟道载流子的迁移率。In this case, after the stress layer 500 is formed, it can directly contact the gate structure, can apply stress to the channel well, and can greatly improve the mobility of carriers in the channel of the MOS transistor.
本实施例提供的制造MOS晶体管的工艺中,不需要如一般MOS晶体管的工艺特意再增加工艺去除侧墙的上部,才能够应用应力接近技术(Stress proximity technique,SPT)。In the process for manufacturing MOS transistors provided in this embodiment, the stress proximity technique (SPT) can be applied without adding a special process to remove the upper part of the sidewall as in the process of general MOS transistors.
如图12所示,在所述应力层500表面形成层间介质层600。As shown in FIG. 12 , an interlayer dielectric layer 600 is formed on the surface of the stress layer 500 .
在本实施例中,所述层间介质层600的材质为氧化硅。形成层间介质层600的工艺为沉积氧化硅层,然后利用化学机械研磨磨平氧化硅层的表面。In this embodiment, the material of the interlayer dielectric layer 600 is silicon oxide. The process of forming the interlayer dielectric layer 600 is to deposit a silicon oxide layer, and then use chemical mechanical polishing to smooth the surface of the silicon oxide layer.
所述应力层500表面形貌由栅极结构210、220、第二侧墙410和半导体衬底100共同构成的表面轮廓决定。由于第二侧墙410的外侧面的倾斜度比较大,在本实施例中,相邻栅极结构210、220之间的应力层500构成的开口16内部依然为上宽下窄的敞口状,便于后续工艺中介质层的填充。在这一步骤中,形成的层间介质层600具有良好的均匀性,没有空洞。The surface topography of the stress layer 500 is determined by the surface profile jointly formed by the gate structures 210 , 220 , the second sidewall 410 and the semiconductor substrate 100 . Due to the relatively large inclination of the outer surface of the second side wall 410, in this embodiment, the interior of the opening 16 formed by the stress layer 500 between the adjacent gate structures 210 and 220 is still an open shape that is wide at the top and narrow at the bottom. , to facilitate the filling of the dielectric layer in the subsequent process. In this step, the formed interlayer dielectric layer 600 has good uniformity and no voids.
但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。However, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310109162.4A CN104078361B (en) | 2013-03-29 | 2013-03-29 | Method for manufacturing MOS transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310109162.4A CN104078361B (en) | 2013-03-29 | 2013-03-29 | Method for manufacturing MOS transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104078361A CN104078361A (en) | 2014-10-01 |
CN104078361B true CN104078361B (en) | 2017-05-17 |
Family
ID=51599549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310109162.4A Active CN104078361B (en) | 2013-03-29 | 2013-03-29 | Method for manufacturing MOS transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104078361B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108389831A (en) * | 2018-02-02 | 2018-08-10 | 上海华虹宏力半导体制造有限公司 | The fill method of interlayer dielectric layer |
CN115579284B (en) * | 2022-11-21 | 2023-07-04 | 广州粤芯半导体技术有限公司 | Semiconductor structure and its preparation method |
CN117316876A (en) * | 2023-11-28 | 2023-12-29 | 粤芯半导体技术股份有限公司 | Method for preparing semiconductor structure and semiconductor structure |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6251764B1 (en) * | 1999-11-15 | 2001-06-26 | Chartered Semiconductor Manufacturing Ltd. | Method to form an L-shaped silicon nitride sidewall spacer |
US7514370B2 (en) * | 2006-05-19 | 2009-04-07 | International Business Machines Corporation | Compressive nitride film and method of manufacturing thereof |
US7834389B2 (en) * | 2007-06-15 | 2010-11-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Triangular space element for semiconductor device |
JP4568336B2 (en) * | 2008-02-21 | 2010-10-27 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
CN101989576A (en) * | 2009-08-07 | 2011-03-23 | 中芯国际集成电路制造(上海)有限公司 | Manufacture method of semiconductor device |
-
2013
- 2013-03-29 CN CN201310109162.4A patent/CN104078361B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104078361A (en) | 2014-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10431671B2 (en) | Fin field-effect transistor | |
CN104124174B (en) | Semiconductor structure and forming method thereof | |
CN103515321B (en) | The formation method for side wall of semiconductor device | |
CN108305850B (en) | Semiconductor structure and method of forming the same | |
CN105789129B (en) | Improve the method and method, semi-conductor device manufacturing method of grid curb wall pattern | |
CN105870019A (en) | Manufacturing method of semiconductor device and electronic device | |
CN103779279B (en) | A method of manufacturing a semiconductor device | |
CN108321090A (en) | Semiconductor devices and forming method thereof | |
CN110911476A (en) | A buried gate structure and its manufacturing method | |
CN108573862A (en) | Semiconductor structures and methods of forming them | |
CN111613583B (en) | Semiconductor device and method of forming the same | |
CN107785318A (en) | The manufacture method of semiconductor structure | |
CN111627820B (en) | Shielded gate field effect transistor and method of making the same | |
CN104078361B (en) | Method for manufacturing MOS transistor | |
CN103872129B (en) | Semiconductor devices and its manufacturing method | |
KR100700332B1 (en) | Method for manufacturing a semiconductor device having a flask-type recess gate | |
US10522619B2 (en) | Three-dimensional transistor | |
CN107256892B (en) | The memory of semiconductor devices, its production method and its making | |
CN103531476B (en) | Semiconductor device manufacturing method | |
CN104576392A (en) | Method for preparing finned field-effect transistor | |
CN103839981B (en) | A kind of semiconductor device and manufacture method thereof | |
CN104241355A (en) | Semiconductor device and formation method thereof | |
US11502194B2 (en) | MOSFET manufacturing method | |
CN103531473B (en) | Etching method of silicon oxide and silicon nitride double-layer composite side wall | |
KR100912960B1 (en) | Transistor having recess channel and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |