CN104077444B - Analysis method of indentation data - Google Patents
Analysis method of indentation data Download PDFInfo
- Publication number
- CN104077444B CN104077444B CN201410302066.6A CN201410302066A CN104077444B CN 104077444 B CN104077444 B CN 104077444B CN 201410302066 A CN201410302066 A CN 201410302066A CN 104077444 B CN104077444 B CN 104077444B
- Authority
- CN
- China
- Prior art keywords
- indentation
- data
- indentation data
- finite element
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007373 indentation Methods 0.000 title claims abstract description 94
- 238000004458 analytical method Methods 0.000 title description 6
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000000463 material Substances 0.000 claims abstract description 28
- 238000012897 Levenberg–Marquardt algorithm Methods 0.000 claims abstract description 9
- 238000004088 simulation Methods 0.000 claims abstract description 9
- 238000007405 data analysis Methods 0.000 claims abstract description 8
- 238000012360 testing method Methods 0.000 claims description 35
- 239000011159 matrix material Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 claims 3
- 238000005457 optimization Methods 0.000 abstract description 11
- 230000006870 function Effects 0.000 description 18
- 238000004364 calculation method Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 5
- 238000000418 atomic force spectrum Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011365 complex material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000011326 mechanical measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明涉及一种压痕数据分析方法,该方法的核心是基于Levenberg‑Marquardt算法的数值优化,优化的目标函数为通过有限元模拟得到的压痕数据和实验压痕数据之间的差异,优化参数即为被测材料待求的力学参数。由于可在有限元模型中定义多种加‑卸载方案和材料本构模型,因此本数据分析方法具有很强的通用性。
The invention relates to a method for analyzing indentation data. The core of the method is numerical optimization based on the Levenberg-Marquardt algorithm. The optimized objective function is the difference between the indentation data obtained by finite element simulation and the experimental indentation data. The parameters are the mechanical parameters of the material to be tested. Since a variety of loading-unloading schemes and material constitutive models can be defined in the finite element model, the data analysis method has strong versatility.
Description
技术领域technical field
本发明涉及压痕数据分析方法。The invention relates to an indentation data analysis method.
背景技术Background technique
作为最简单易行的一种方法,压痕方法可能是人类最早应用的力学性能测试方法。根据产生压痕的难易或残留压痕面积的大小,人们定义了各种硬度指标以评估材料抵抗永久形变的能力,其中最常用的是压入硬度,即用一定的载荷将形状确定的压头压入被测材料,根据压入区域残余变形的大小评估该材料的软硬程度。根据压头、载荷以及载荷保持时间的不同,压入硬度有布氏硬度、洛氏硬度、维氏硬度和显微硬度等多种类型。As the simplest and most feasible method, the indentation method may be the earliest mechanical property testing method used by humans. According to the difficulty of indentation or the size of the residual indentation area, various hardness indexes have been defined to evaluate the ability of materials to resist permanent deformation. The head is pressed into the material to be tested, and the softness and hardness of the material are evaluated according to the residual deformation of the pressed-in area. Depending on the indenter, load, and load retention time, there are various types of indentation hardness, such as Brinell hardness, Rockwell hardness, Vickers hardness, and microhardness.
硬度测试简单易行,数据可重复性好。然而,硬度只是衡量材料抵抗塑性变形能力的一种综合指标,它和材料的弹性模量、屈服强度等本构参数之间缺乏明确的换算关系,这导致了硬度测试难以在材料本构关系的表征中获得直接的应用。随着精密测量和控制技术的发展,上世纪七八十年代诞生了一种脱胎于显微硬度测试但精度更高并且可连续记录压入力和压入深度的测试方法,即仪器化压入(instrumented indentation)方法或深度敏感压痕(depth-sensing indentation)方法。由于空间分辨率高(压头尺寸可小至微/纳米级),仪器化压入方法种特别适合于小尺度材料、薄膜及涂层材料系统的力学性能测试。经过近二、三十年的快速发展,该方法已广泛应用于力学量测量和材料变形机理研究的各个方面,大大拓展了压痕方法的应用范围。The hardness test is simple and easy, and the data repeatability is good. However, hardness is only a comprehensive index to measure the ability of materials to resist plastic deformation, and there is no clear conversion relationship between it and constitutive parameters such as elastic modulus and yield strength of materials, which makes it difficult to test hardness in the constitutive relationship of materials. Immediate application in characterization. With the development of precision measurement and control technology, in the 1970s and 1980s, a test method born out of microhardness testing but with higher precision and continuous recording of indentation force and indentation depth, that is, instrumented indentation ( instrumented indentation) method or depth-sensing indentation (depth-sensing indentation) method. Due to the high spatial resolution (the size of the indenter can be as small as micro/nano scale), the instrumented indentation method is especially suitable for the mechanical performance testing of small-scale materials, thin films and coating material systems. After nearly 20 to 30 years of rapid development, this method has been widely used in various aspects of mechanical measurement and material deformation mechanism research, greatly expanding the application range of the indentation method.
由于压入过程涉及复杂的三维变形,压痕测试无法像单轴拉伸或单轴压缩那样,可从实验曲线中直接获得弹性模量、屈服强度等本构参数。对压痕测试,由于本构参数和测试数据之间缺乏简单的对应关系,通常需要应用合适的模型和方法对实验数据进行分析,才能从测试数据中获得所需的本构参数,这个过程称之为压痕数据的反分析(reverseanalysis)。Since the indentation process involves complex three-dimensional deformation, the indentation test cannot directly obtain constitutive parameters such as elastic modulus and yield strength from the experimental curve like uniaxial tension or uniaxial compression. For indentation testing, due to the lack of simple correspondence between constitutive parameters and test data, it is usually necessary to apply appropriate models and methods to analyze the experimental data in order to obtain the required constitutive parameters from the test data. This process is called It is the reverse analysis of indentation data.
目前商业化的仪器化压入设备通常采用昂贵的电容式测距传感器和电磁式的作动装置。为实现高频的加载,通常还采用复杂的测量和控制技术。这导致仪器化压入设备的成本居高不下,严重制约了这种结构简单、用途多样、空间分辨率高的设备在工业检测中的应用。目前的压入设备仍然主要应用实验室研究。另外,待测量的本构参数不同,采用的压痕测试方案和压痕数据反分析方法也往往不同。由于压痕问题的复杂性,目前还没有一种较通用的压痕数据反分析方法,人们往往需要根据待测材料的特点选择或开发合适的数据分析方法,这无疑也限制了仪器化压入方法在工业测量中的应用。The current commercial instrumented press-in equipment usually uses expensive capacitive distance measuring sensors and electromagnetic actuation devices. To achieve high-frequency loading, complex measurement and control techniques are often also used. This leads to the high cost of instrumented press-in equipment, which seriously restricts the application of this equipment with simple structure, diverse uses and high spatial resolution in industrial inspection. The current press-in equipment is still mainly used in laboratory research. In addition, the constitutive parameters to be measured are different, and the indentation test schemes and indentation data back analysis methods used are often also different. Due to the complexity of the indentation problem, there is no general indentation data back-analysis method at present. People often need to select or develop a suitable data analysis method according to the characteristics of the material to be tested, which undoubtedly limits instrumented indentation. Application of the method in industrial measurement.
发明内容Contents of the invention
本发明的目的在于提出一种压痕数据分析方法,其能解决传统的分析方法不通用的问题。The purpose of the present invention is to propose a method for analyzing indentation data, which can solve the problem that traditional analysis methods are not universal.
为了达到上述目的,本发明所采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
一种压痕数据分析方法,其包括以下步骤:A method for analyzing indentation data, comprising the steps of:
步骤1、建立压痕测试过程的有限元模型,其中,被测材料的力学参数定义为变量;Step 1, establishing a finite element model of the indentation test process, wherein the mechanical parameters of the material to be tested are defined as variables;
步骤2、将给定的初始的力学参数输入至所述有限元模型,并对所述有限元模型进行计算,得到模拟压痕数据;Step 2. Input the given initial mechanical parameters into the finite element model, and calculate the finite element model to obtain simulated indentation data;
步骤3、调用所述模拟压痕数据以及读取实验压痕数据,利用公式一计算模拟压痕数据与实验压痕数据之间的差异;Step 3, calling the simulated indentation data and reading the experimental indentation data, and using formula 1 to calculate the difference between the simulated indentation data and the experimental indentation data;
(公式一) (Formula 1)
其中,F(Pk)为目标函数的返回值;P0为力学参数的初始值,Pk为修正k次后的力学参数;N为实验压痕数据包含的数据个数;fexp(ti)为加载时刻等于ti时的实验压痕测试结果;fcal(Pk,ti)为加载时刻等于ti时的模拟压痕测试结果;Among them, F(P k ) is the return value of the objective function; P 0 is the initial value of the mechanical parameters, P k is the mechanical parameters after k times of correction; N is the number of data contained in the experimental indentation data; f exp (t i ) is the experimental indentation test result when the loading time is equal to t i ; f cal (P k , t i ) is the simulated indentation test result when the loading time is equal to t i ;
步骤4、利用Levenberg-Marquardt算法对目标函数进行优化,当判断到F(Pk)小于预设阈值时,输出Pk作为最终的优化结果。Step 4, using the Levenberg-Marquardt algorithm to optimize the objective function, when it is judged that F(P k ) is smaller than the preset threshold, output P k as the final optimization result.
优选的,所述步骤4具体包括如下子步骤:Preferably, said step 4 specifically includes the following sub-steps:
(a)将P0作为Levenberg-Marquardt算法的初始参数;(a) Use P 0 as the initial parameter of the Levenberg-Marquardt algorithm;
(b)利用有限差分方法计算敏感度矩阵或Jacobian矩阵 (b) Calculate the sensitivity matrix or Jacobian matrix using the finite difference method
(c)求解方程(ATA+λI)gk=-ATF(Pk),得到修正量gk,其中I为单位矩阵,λ为非负的标量参数;(c) Solving the equation (A T A+λI)g k =-A T F(P k ) to obtain the correction value g k , where I is the identity matrix, and λ is a non-negative scalar parameter;
(d)计算Pk+1=Pk+gk,并判断目标函数是否小于预设阈值,若是,则输出Pk作为最终的优化结果,若否,则重复步骤a至步骤d。(d) Calculate P k+1 =P k +g k , and judge whether the objective function is smaller than the preset threshold, if yes, output P k as the final optimization result, if not, repeat step a to step d.
优选的,所述有限元模型为轴对称有限元模型。Preferably, the finite element model is an axisymmetric finite element model.
本发明具有如下有益效果:The present invention has following beneficial effects:
采用压痕数据反向分析方法,适用于任何加载方案和材料类型,避免了压入测试不适合测量复杂材料的问题。The indentation data reverse analysis method is applicable to any loading scheme and material type, avoiding the problem that the indentation test is not suitable for measuring complex materials.
附图说明Description of drawings
图1为本发明较佳实施例的压痕数据分析方法的算法流程图;Fig. 1 is the algorithm flowchart of the indentation data analysis method of the preferred embodiment of the present invention;
图2为实验压痕数据曲线;Fig. 2 is the experimental indentation data curve;
图3为本发明建立的有限元模型;Fig. 3 is the finite element model that the present invention establishes;
图4为本发明得到的应力-应变曲线。Fig. 4 is the stress-strain curve obtained by the present invention.
具体实施方式detailed description
下面,结合附图以及具体实施方式,对本发明做进一步描述。In the following, the present invention will be further described in conjunction with the drawings and specific embodiments.
结合图1所示,一种压痕数据分析方法,其包括以下步骤:As shown in Figure 1, a method for analyzing indentation data comprises the following steps:
步骤1、建立压痕测试过程的有限元模型,其中,被测材料的力学参数定义为变量。所述有限元模型包括根据被测材料的类型选定的材料模型。Step 1. Establish a finite element model of the indentation test process, wherein the mechanical parameters of the material to be tested are defined as variables. The finite element model includes a material model selected according to the type of material to be tested.
考虑到在分析压入力-压入深度数据时,Berkovich等棱锥形压头可用等效的圆锥形压头代替,因此本实施例采用轴对称有限元模型。球形压头定义为刚性的1/4圆弧,圆锥形压头定义为刚性的直线。对Berkovich压头,直线的等效倾角为65.03°,对Vicker压头,直线的等效倾角为70.32°。压头和一控制点耦合,其运动由施加在该控制点上的力或位移驱动。样品定义为矩形区域,其长、宽尺寸均大于10倍的压头尺寸。在靠近压头的区域细分有限元网格,细分区域内单元尺寸不大于压头-样品接触半径的1/20。压头和样品的上表面之间定义接触。在该有限元模型中,待求的力学参数如杨氏模量、屈服强度、硬化指数、随动强化参数等待求的力学参数定义为方便替换的参数。另外,该有限元模型的边界条件或载荷和实际的测试加载过程等效,如果测试时以压入力控制压入深度,则在有限元模型中定义等同的压入力历程,如果测试时以压入深度控制作为驱动控制量,则在有限元模型中定义等同的位移边界条件。最终,将该有限元模型保存为一个可供有限元求解器调用的数据文件。Considering that when analyzing the indentation force-indentation depth data, the pyramidal indenter such as Berkovich can be replaced by an equivalent conical indenter, so this embodiment uses an axisymmetric finite element model. A spherical indenter is defined as a rigid 1/4 arc, and a conical indenter is defined as a rigid straight line. For the Berkovich indenter, the equivalent inclination angle of the straight line is 65.03°, and for the Vicker indenter, the equivalent inclination angle of the straight line is 70.32°. The indenter is coupled to a control point and its motion is driven by a force or displacement applied to the control point. The sample is defined as a rectangular area whose length and width are both greater than 10 times the size of the indenter. The finite element grid is subdivided in the area close to the indenter, and the unit size in the subdivided area is not greater than 1/20 of the indenter-sample contact radius. Contact is defined between the indenter and the upper surface of the sample. In the finite element model, the mechanical parameters to be obtained, such as Young's modulus, yield strength, hardening index, dynamic strengthening parameters, etc., are defined as convenient replacement parameters. In addition, the boundary conditions or loads of the finite element model are equivalent to the actual test loading process. If the indentation depth is controlled by the indentation force during the test, the equivalent indentation force history is defined in the finite element model. Depth control is used as the driving control quantity, and the equivalent displacement boundary conditions are defined in the finite element model. Finally, the finite element model is saved as a data file that can be invoked by the finite element solver.
步骤2、将给定的初始的力学参数输入至所述有限元模型,并对所述有限元模型进行计算,得到模拟压痕数据。Step 2. Input the given initial mechanical parameters into the finite element model, and calculate the finite element model to obtain simulated indentation data.
具体实现时,根据被测材料的类型人为给定初始的力学参数,初始的力学参数为大于0的数即可,也可以根据被测材料进行估算,在该被测材料的经验值的范围之内,给定的初始的力学参数并不影响计算结果,只会影响计算速度。将给定的初始的力学参数传入至步骤1中的有限元模型,替换所述有限元模型中的变量然后进行计算,输出为时间-压入力曲线或压入深度-压入力曲线(即模拟压痕数据)。本步骤的流程定义为压痕测试模拟函数。In the specific implementation, the initial mechanical parameters are artificially given according to the type of the material to be tested, and the initial mechanical parameters can be a number greater than 0. It can also be estimated according to the material to be tested, within the range of the empirical value of the material to be tested The given initial mechanical parameters do not affect the calculation results, but only the calculation speed. Pass the given initial mechanical parameters into the finite element model in step 1, replace the variables in the finite element model and then perform calculations, and the output is the time-indentation force curve or indentation depth-indentation force curve (that is, the simulation indentation data). The flow of this step is defined as an indentation test simulation function.
从软件执行的角度描述,过程则如下:压痕测试模拟函数执行时,首先利用数据搜索和替换功能,对步骤1中定义的有限元模型进行分析,利用传入的力学参数替换步骤1中有限元模型中对应的力学参数,并将替换后的有限元模型另存为新的有限元模型。然后根据有限元求解器的命令格式,调用有限元求解器对新生成的有限元模型进行求解。计算完成后,以文件的形式保存计算结果即时间-压入力数据或深度-压入力数据。Described from the perspective of software execution, the process is as follows: when the indentation test simulation function is executed, first use the data search and replace function to analyze the finite element model defined in step 1, and replace the finite element model in step 1 with the input mechanical parameters. The corresponding mechanical parameters in the element model, and save the replaced finite element model as a new finite element model. Then call the finite element solver to solve the newly generated finite element model according to the command format of the finite element solver. After the calculation is completed, save the calculation result in the form of a file, that is, time-indentation force data or depth-indentation force data.
步骤3、调用所述模拟压痕数据以及读取实验压痕数据,所述实验压痕数据由压痕测试设备对被测材料进行测试而得到,可以是时间-压入力曲线或压入深度-压入力曲线,利用公式一计算模拟压痕数据与实验压痕数据之间的差异;Step 3. Call the simulated indentation data and read the experimental indentation data. The experimental indentation data is obtained from the indentation testing equipment for the tested material, which can be time-indentation force curve or indentation depth- Indentation force curve, using formula 1 to calculate the difference between simulated indentation data and experimental indentation data;
(公式一) (Formula 1)
其中,F(Pk)为目标函数的返回值;P0为力学参数的初始值(即为人为给定的初始值),Pk为修正k次后的力学参数;N为实验压痕数据的曲线上包含的数据个数;fexp(ti)为加载时刻等于ti时的实验压痕测试结果(即实验压痕数据);fcal(Pk,ti)为加载时刻等于ti时的模拟压痕测试结果(即模拟压痕数据)。如果ti不等于步骤2中输出的某个时刻,则利用插值方法获得ti时刻的计算压痕测试结果。Among them, F(P k ) is the return value of the objective function; P 0 is the initial value of the mechanical parameter (that is, the initial value given artificially), P k is the mechanical parameter after k times of correction; N is the experimental indentation data The number of data contained on the curve of ; f exp (t i ) is the experimental indentation test result when the loading time is equal to t i (that is, the experimental indentation data); f cal (P k ,t i ) is the loading time is equal to t i The simulated indentation test results at time i (ie simulated indentation data). If t i is not equal to a certain moment output in step 2, use the interpolation method to obtain the calculated indentation test result at t i moment.
步骤4、利用Levenberg-Marquardt算法对目标函数进行优化,当判断到F(Pk)小于预设阈值(如10-3)时,输出Pk作为最终的优化结果。Step 4: Optimizing the objective function using the Levenberg-Marquardt algorithm, and outputting P k as the final optimization result when it is judged that F(P k ) is less than a preset threshold (such as 10 −3 ).
优选的,所述步骤4具体包括如下子步骤:Preferably, said step 4 specifically includes the following sub-steps:
(a)将P0作为Levenberg-Marquardt算法的初始参数;(a) Use P 0 as the initial parameter of the Levenberg-Marquardt algorithm;
(b)利用有限差分方法计算敏感度矩阵或Jacobian矩阵其中F(Pk)为步骤3中定义的目标函数;(b) Calculate the sensitivity matrix or Jacobian matrix using the finite difference method Wherein F(P k ) is the objective function defined in step 3;
(c)求解方程(ATA+λI)gk=-ATF(Pk),得到修正量gk,其中I为单位矩阵,T表示矩阵的转置,λ为非负的标量参数,如果该迭代步骤使得目标函数减小,则应使λ增大,否则减小;(c) Solve the equation (A T A+λI)g k =-A T F(P k ) to obtain the correction value g k , where I is the identity matrix, T represents the transpose of the matrix, and λ is a non-negative scalar parameter , if the iterative step reduces the objective function, then λ should be increased, otherwise it should be decreased;
(d)计算Pk+1=Pk+gk,并判断目标函数是否小于预设阈值,若是,则输出Pk作为最终的优化结果,若否,则重复步骤a至步骤d。(d) Calculate P k+1 =P k +g k , and judge whether the objective function is smaller than the preset threshold, if yes, output P k as the final optimization result, if not, repeat step a to step d.
为了提高优化精度,可以选择3-5组不同的给定的初始力学参数,根据步骤4,分别获得优化的力学参数,然后对获得的多组优化的力学参数进行统计,分别求得每个力学参数的平均值和标准差,如果标准差大于平均值的10%(或自行设定的比例),则认为力学参数不唯一,需要改进测试方案并对重复步骤1-4对改进的测试方案进行评估。In order to improve the optimization accuracy, 3-5 groups of different given initial mechanical parameters can be selected, according to step 4, the optimized mechanical parameters are obtained respectively, and then the obtained multiple groups of optimized mechanical parameters are counted to obtain each mechanical parameter respectively. The mean value and standard deviation of the parameters, if the standard deviation is greater than 10% of the mean value (or the ratio set by oneself), then it is considered that the mechanical parameters are not unique, and it is necessary to improve the test plan and repeat steps 1-4 for the improved test plan Evaluate.
为了便于对本实施例的理解,下面结合具体的案例进行说明。In order to facilitate the understanding of this embodiment, the following description will be made in conjunction with a specific case.
通过压痕测试设备对Q350钢进行了测试,得到3组典型的测得的压痕曲线(即实验压痕数据),如图2所示。The Q350 steel was tested by the indentation test equipment, and three groups of typical measured indentation curves (ie, experimental indentation data) were obtained, as shown in Figure 2.
利用本实施例的压痕数据分析方法,对图2所示的数据进行分析,计算被测材料的杨氏模量、屈服强度和应变硬化指数。Using the indentation data analysis method of this embodiment, the data shown in FIG. 2 is analyzed to calculate the Young's modulus, yield strength and strain hardening exponent of the tested material.
(1)建立压痕测试过程的有限元模型。(1) Establish the finite element model of the indentation test process.
压头的直径为1mm,对压头-样品接触区域进行局部加密,最小单元的尺寸为0.01mm。假定材料遵循Holloman模型,即其应力应变关系为:The diameter of the indenter is 1 mm, and the indenter-sample contact area is locally densified, and the smallest unit size is 0.01 mm. Assume that the material follows the Holloman model, that is, its stress-strain relationship is:
其中E为杨氏模量,σ0为屈服强度,n为应变硬化指数。在有限元模型文件中,定义这三个力学量为可替换的参数,即_E,_S0,_n。线性加载-卸载,加载时间10s、卸载时间10s和测试时采用的时间一致。位移控制加载,输出压入力-时间结果。where E is Young's modulus, σ0 is the yield strength, and n is the strain hardening exponent. In the finite element model file, define these three mechanical quantities as replaceable parameters, namely _E, _S0, _n. Linear loading-unloading, loading time 10s, unloading time 10s is consistent with the time used in the test. Displacement-controlled loading, output press-fit force-time results.
(2)定义压痕测试模拟函数double*VirturalIndentation(double E,double S0,double n),其中E,S0和n分别为杨氏模量、屈服强度和应变硬化指数。利用字符串的搜索功能,获得“_E”,“_S0”,“_n”三个变量名在有限元模型文件中的位置,并利用字符串的替换功能将这三个参数分别替换为E,S0和n的初始数值,将替换后的模型文件保存为新的模型文件,如newIndent.comm。调用系统命令system(“waster-m512newIndent.comm”)进行有限元计算,其中waster为有限元求解器名,-m512指定最大内存为512M。计算完成后,从结果文件中读取压入力-时间数据,以数组的形式返回。(2) Define the indentation test simulation function double*VirturalIndentation(double E, double S0, double n), where E, S0 and n are Young's modulus, yield strength and strain hardening exponent, respectively. Use the string search function to obtain the positions of the three variable names "_E", "_S0", and "_n" in the finite element model file, and use the string replacement function to replace these three parameters with E, S0 respectively and the initial value of n, save the replaced model file as a new model file, such as newIndent.comm. Call the system command system("waster-m512newIndent.comm") to perform finite element calculation, where waster is the name of the finite element solver, and -m512 specifies that the maximum memory is 512M. After the calculation is completed, read the pressing force-time data from the result file and return it in the form of an array.
(3)定义优化目标函数double ObjectiveFun(double E,double S0,double n)。该优化目标函数(流程)先调用压痕模拟函数VirturalIndentation(E,S0,n)得到对应的模拟压痕数据。然后读取实验压痕数据,根据实验压痕数据包含的数据点个数,利用公式一计算模拟压痕数据和实验压痕数据之间的差异,并返回。(3) Define the optimization objective function double ObjectiveFun (double E, double S0, double n). The optimization objective function (process) first calls the indentation simulation function VirtualIndentation(E,S0,n) to obtain the corresponding simulated indentation data. Then read the experimental indentation data, calculate the difference between the simulated indentation data and the experimental indentation data according to the number of data points contained in the experimental indentation data, and return it.
(4)利用Levenberg-Marquardt算法对目标函数ObjectiveFun进行优化,阈值为10-5。(4) Optimize the objective function ObjectiveFun with the Levenberg-Marquardt algorithm, and the threshold is 10 -5 .
根据Q345钢的特性,选取了三组力学参数估值作为优化的初始值,为确认力学参数的唯一性,初始值和典型值之间有较大的偏离:According to the characteristics of Q345 steel, three sets of mechanical parameter estimates were selected as the initial values for optimization. In order to confirm the uniqueness of the mechanical parameters, there is a large deviation between the initial values and typical values:
优化后,获得的弹塑性参数为:After optimization, the elastoplastic parameters obtained are:
可以判定三个力学参数均可以被唯一地确定。It can be judged that all three mechanical parameters can be uniquely determined.
相应的应力-应变曲线如图4所示。The corresponding stress-strain curves are shown in Fig. 4.
总体而言,本实施例涉及一种压痕数据分析方法,该方法的核心是基于Levenberg-Marquardt算法的数值优化,优化的目标函数为通过有限元模拟得到的压痕数据和实验压痕数据之间的差异,优化参数即为被测材料待求的力学参数。由于可在有限元模型中定义多种加-卸载方案和材料本构模型,因此本数据分析方法具有很强的通用性。Generally speaking, this embodiment relates to a method for analyzing indentation data. The core of the method is numerical optimization based on the Levenberg-Marquardt algorithm. The difference between them, the optimized parameters are the mechanical parameters to be found for the tested material. Since various loading-unloading schemes and material constitutive models can be defined in the finite element model, the data analysis method has strong versatility.
和现有技术相比,本实施例的优点在于:Compared with the prior art, the advantages of this embodiment are:
(1)技术成熟、稳定性高:本实施例采用的测力、测距及控制技术均为成熟技术(即可采用传统的压痕测试设备),具有成本可控、工作稳定性好等优点;(1) Mature technology and high stability: The force measurement, distance measurement and control technologies used in this embodiment are all mature technologies (the traditional indentation test equipment can be used), which has the advantages of controllable cost and good working stability. ;
(2)适用的材料类型广:适用于金属、塑料、陶瓷等多种工程材料的测试;(2) Wide range of applicable materials: suitable for testing various engineering materials such as metals, plastics, and ceramics;
(3)可判断结果的唯一性。(3) The uniqueness of the result can be judged.
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。For those skilled in the art, various other corresponding changes and modifications can be made according to the technical solutions and ideas described above, and all these changes and modifications should fall within the protection scope of the claims of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410302066.6A CN104077444B (en) | 2014-06-26 | 2014-06-26 | Analysis method of indentation data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410302066.6A CN104077444B (en) | 2014-06-26 | 2014-06-26 | Analysis method of indentation data |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104077444A CN104077444A (en) | 2014-10-01 |
CN104077444B true CN104077444B (en) | 2017-05-10 |
Family
ID=51598696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410302066.6A Expired - Fee Related CN104077444B (en) | 2014-06-26 | 2014-06-26 | Analysis method of indentation data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104077444B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108645704B (en) * | 2018-03-05 | 2020-07-28 | 上海交通大学 | A method for inversion and calibration of microscopic constitutive parameters of metallic materials based on nanoindentation and finite element simulation |
CN110837714A (en) * | 2019-11-14 | 2020-02-25 | 宁波财经学院 | A full-matrix parameter identification method for piezoelectric materials for intelligent robots |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103808575A (en) * | 2012-11-09 | 2014-05-21 | 徐世铭 | Residual stress testing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101169393B1 (en) * | 2010-04-01 | 2012-07-30 | 서강대학교산학협력단 | Method for evaluating material property of rubber |
-
2014
- 2014-06-26 CN CN201410302066.6A patent/CN104077444B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103808575A (en) * | 2012-11-09 | 2014-05-21 | 徐世铭 | Residual stress testing method |
Non-Patent Citations (2)
Title |
---|
A general inverse analysis method for identifying multiple parameters from indentation measurements;zhang C 等;《中国力学大会》;20131231;第112页第1栏第3段 * |
纳米压痕过程的三维有限元数值试验研究;李敏 等;《力学学报》;20030531;第35卷(第3期);第257-264页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104077444A (en) | 2014-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5582211B1 (en) | Stress-strain relationship simulation method, springback amount prediction method, and springback analysis device | |
Chen et al. | Ratcheting behavior of PTFE under cyclic compression | |
CN104182585B (en) | Silicone elastomer body feel is analyzed and the Finite Element Method of fatigue life prediction | |
CN103698188B (en) | Slow strain rate tension stress corrosion cracking (SCC) spreading rate measuring method | |
CN108982222A (en) | The measurement method of the big range of strain ess-strain of metal plate sample uniaxial tensile test | |
CN108387470A (en) | Method for measuring residual stress and elastic-plastic mechanical property of metal material by continuous indentation method | |
CN108133082B (en) | A Method for Determining Stress Measurement Constants in Indentation Strain Method Based on Finite Element Simulation | |
CN110702886B (en) | Method for inverting parameters of mass concrete material | |
CN102175511A (en) | Method and system for estimating material property | |
CN102122351A (en) | Intelligent identification method for pipeline defect on basis of RBF (Radical Basis Function) neural network | |
CN104655505B (en) | Instrumented-ball-pressing-technology-based residual stress detection method | |
Şerban et al. | Behaviour of semi-crystalline thermoplastic polymers: Experimental studies and simulations | |
Weng et al. | A machine learning based approach for determining the stress-strain relation of grey cast iron from nanoindentation | |
CN108038285A (en) | Material selection method and computer-readable recording medium | |
CN112966347A (en) | Method for predicting double-scale creep fatigue life of discontinuous structure | |
CN106844901B (en) | Structural part residual strength evaluation method based on multi-factor fusion correction | |
CN104715085B (en) | The method and blanking equipment of the actual physics parameter of reverse plate | |
CN106840721B (en) | A kind of Flight Vehicle Structure posting characteristic model test design method | |
CN104077444B (en) | Analysis method of indentation data | |
Zhang et al. | A phase field model for fracture based on the strain gradient elasticity theory with hybrid formulation | |
CN107314938B (en) | The implementation method of nugget region material plastic inverting identification | |
CN102759505B (en) | Auxiliary device for compression test of plate material and determination method of flow stress curve | |
Zerpa et al. | Development of a method for the identification of elastoplastic properties of timber and its application to the mechanical characterisation of Pinus taeda | |
Elango et al. | Analysis on the fundamental deformation effect of a robot soft finger and its contact width during power grasping | |
Li et al. | Identification of material parameters from punch stretch test |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170510 Termination date: 20180626 |