CN104076393A - Recognizing method for concealed mineralization tectonic zone of granite type uranium deposit - Google Patents
Recognizing method for concealed mineralization tectonic zone of granite type uranium deposit Download PDFInfo
- Publication number
- CN104076393A CN104076393A CN201410326866.1A CN201410326866A CN104076393A CN 104076393 A CN104076393 A CN 104076393A CN 201410326866 A CN201410326866 A CN 201410326866A CN 104076393 A CN104076393 A CN 104076393A
- Authority
- CN
- China
- Prior art keywords
- ore
- zone
- remote sensing
- mineralization
- conducive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052770 Uranium Inorganic materials 0.000 title claims abstract description 41
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000010438 granite Substances 0.000 title claims abstract description 17
- 230000033558 biomineral tissue development Effects 0.000 title abstract description 40
- 230000004075 alteration Effects 0.000 claims abstract description 61
- 238000001514 detection method Methods 0.000 claims abstract description 18
- 239000000126 substance Substances 0.000 claims abstract description 15
- 230000002159 abnormal effect Effects 0.000 claims description 13
- 238000000904 thermoluminescence Methods 0.000 claims description 10
- 239000002689 soil Substances 0.000 claims description 9
- 239000003513 alkali Substances 0.000 claims description 4
- 206010027336 Menstruation delayed Diseases 0.000 claims 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims 1
- 150000001875 compounds Chemical group 0.000 claims 1
- 239000000284 extract Substances 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 239000010436 fluorite Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000006798 recombination Effects 0.000 claims 1
- 238000005215 recombination Methods 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000002349 favourable effect Effects 0.000 description 23
- 230000002547 anomalous effect Effects 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 7
- 210000003462 vein Anatomy 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 229910052595 hematite Inorganic materials 0.000 description 4
- 239000011019 hematite Substances 0.000 description 4
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 4
- 238000012876 topography Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种地质勘察方法,具体涉及一种花岗岩型铀矿隐伏成矿构造带识别方法。The invention relates to a geological survey method, in particular to a method for identifying hidden ore-forming structural belts of granite-type uranium deposits.
背景技术Background technique
花岗岩型铀矿是我国铀矿的四大类型之一,对于花岗岩铀矿,仅有富铀花岗岩是不够的,构造蚀变带在花岗岩热液型铀矿中起着容矿导矿作用,既能为矿液运移提供通道,又能为富集成矿提供场所,同时又是成矿作用信息的综合反映。成矿构造研究对了解成矿构造形成力学机制及构造对矿液运移、富集规律的控制作用具有重要意义。成矿构造蚀变带是构造蚀变带的一部分,如何在众多的构造蚀变带中识别、探测成矿构造蚀变带是面上找矿的关键技术。因此成矿构造蚀变带研究对找矿具有指导意义。Granite-type uranium deposits are one of the four major types of uranium deposits in my country. For granite-type uranium deposits, only uranium-rich granite is not enough. Structural alteration zones play the role of ore-hosting and ore-conducting in granite-hydrothermal uranium deposits. It can provide a channel for the migration of ore liquid, and it can also provide a place for enrichment and integration of ore, and it is also a comprehensive reflection of mineralization information. The study of ore-forming structure is of great significance to understand the formation mechanism of ore-forming structure and the control effect of structure on the migration and enrichment of ore liquid. The metallogenic structural alteration zone is a part of the structural alteration zone, how to identify and detect the ore-forming structural alteration zone among numerous structural alteration zones is the key technology for surface prospecting. Therefore, the study of metallogenic structural alteration zones has guiding significance for ore prospecting.
现有技术对花岗岩型铀矿成矿构造带的识别、探测手段较为单一。南方花岗岩区地形复杂、植被茂盛,成矿构造带的识别主要以伽玛测量为主,辅以其它放射性测量方法,这对寻找浅部成矿构造带的效果好,却很难反映深部成矿构造带。现在深部找矿的难度越来越大,建立成矿构造特别是深部成矿构造的识别标志对寻找花岗岩型铀矿至关重要。因此,需要进一步深化研究地-物-化-遥方法,遴选出一套针对深部成矿构造带的有效方法组合。The identification and detection methods of the granite-type uranium ore-forming structural belt are relatively simple in the existing technology. The southern granite region has complex terrain and lush vegetation. The identification of metallogenic structural belts is mainly based on gamma measurement, supplemented by other radioactive measurement methods. This is good for finding shallow metallogenic structural belts, but it is difficult to reflect deep mineralization. tectonic belt. Now it is more and more difficult to find ore deposits in deep areas, and it is very important to establish ore-forming structures, especially identification marks of deep-seated ore-forming structures, to search for granite-type uranium deposits. Therefore, it is necessary to further study the geo-physics-chemistry-telemetry method and select a set of effective method combinations for deep metallogenic structural belts.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种花岗岩型铀矿隐伏成矿构造带识别方法,该方法能够对铀深部成矿构造带达到较高的识别准确率。The technical problem to be solved by the present invention is to provide a method for identifying hidden ore-forming structural belts of granite-type uranium deposits, which can achieve high identification accuracy for deep uranium ore-forming structural belts.
为解决上述技术问题,本发明所提供的技术方案为:In order to solve the problems of the technologies described above, the technical solution provided by the present invention is:
一种花岗岩型铀矿隐伏成矿构造带识别方法,它包括下列步骤:A method for identifying hidden ore-forming structural belts of granite-type uranium deposits, comprising the following steps:
步骤(1),制作大比例尺遥感构造解译图;Step (1), making a large-scale remote sensing structure interpretation map;
步骤(2),在大比例尺遥感构造解译图上选取有利于成矿的构造蚀变带A;Step (2), selecting structural alteration zone A favorable for mineralization on the large-scale remote sensing structural interpretation map;
步骤(3),提取化学探测信息得到有利于成矿的构造蚀变带B;Step (3), extracting chemical detection information to obtain a structural alteration zone B that is conducive to mineralization;
步骤(4),提取物理探测信息得到有利于成矿的构造蚀变带C;Step (4), extracting physical detection information to obtain structural alteration zone C favorable for mineralization;
步骤(5),确定优选成矿靶区。Step (5), determining the preferred mineralization target area.
所述的步骤(1)包括Described step (1) comprises
(1.1)在遥感影像上建立断裂构造遥感解译标志;(1.1) Establish remote sensing interpretation signs of fault structures on remote sensing images;
(1.2)将断裂构造遥感解译标志在遥感影像上标出,得到大比例尺遥感解译构造图。(1.2) Mark the remote sensing interpretation marks of the fault structure on the remote sensing image to obtain a large-scale remote sensing interpretation structure map.
所述的断裂构造遥感解译标志包括:线状排列的负地形、直线型沟谷、线性色调异常带、直线状断续分布的负地形。The remote sensing interpretation signs of the fault structure include: linearly arranged negative topography, linear valleys, linear tonal anomaly bands, and linear intermittently distributed negative topography.
所述的步骤(2)中有利于成矿的构造蚀变带A包括:①区域上多组断裂构造交汇部位,且成矿构造带以张扭性为主,连通区域性控矿构造;②多期次岩浆活动发育部位,特别是晚期中基性岩脉、细粒花岗岩等发育地段;③热液蚀变发育地段,包括矿前期白云母化、碱交代、绢云化等面型蚀变及成矿期硅化、赤铁矿化、黄铁矿化、紫黑色萤石化等线型蚀变发育地段;④不同类型的成矿结构面发育部位,如不同岩性接触部位、构造蚀变带交叉复合部位。The structural alteration zone A favorable for mineralization in the step (2) includes: ① the intersection of multiple groups of fault structures in the region, and the ore-forming structural belt is mainly tension-torsional, connecting regional ore-controlling structures; ② Multi-stage magmatic activity development sites, especially the late intermediate-basic dikes, fine-grained granite and other development areas; ③ hydrothermal alteration development areas, including early-mine muscovitation, alkali metasomatization, sericitization and other surface alterations and linear alteration development areas such as silicification, hematite mineralization, pyritization, and purple-black fluoritization during the ore-forming period; intersection complex.
所述的步骤(3)包括Described step (3) comprises
(3.1)在步骤(1)得到的大比例尺遥感构造解译图上部署化学探测工作区,包括:①面积较大、连续性较好的铀分量、土壤热释光异常区;②套合和逐步浓集的铀分量异常分布区及较强的铀分量异常浓集中心;③U、Mo、Be分量组合异常与深部断裂构造带对应复合区域;(3.1) Deploy the chemical detection work area on the large-scale remote sensing structure interpretation map obtained in step (1), including: ① large and continuous uranium content, soil thermoluminescence anomaly area; ② overlapping and Anomalous distribution area of gradually enriched uranium content and strong anomalous concentration center of uranium content; ③ U, Mo, Be component combination anomaly and corresponding composite area of deep faulted structural belt;
(3.2)分别绘制化学探测工作区的U分量等值线图、Be分量等值线图、Mo分量等值线图、土壤热释光等值线图,将所得的绘图中的异常区域选取为有利于成矿的构造蚀变带B。(3.2) Draw the U component contour map, the Be component contour map, the Mo component contour map, and the soil thermoluminescence contour map in the chemical detection work area respectively, and select the abnormal area in the obtained drawing as Structural alteration zone B favorable for mineralization.
所述的步骤(4)包括Described step (4) comprises
(4.1)在步骤(1)得到的大比例尺遥感构造解译图上部署物理探测工作区,包括:有大量矿化异常点,但已知构造蚀变带较少,且向深部延伸展布情况不明的区域;(4.1) Deploy the physical exploration work area on the large-scale remote sensing structural interpretation map obtained in step (1), including: there are a large number of mineralized anomalies, but there are few known structural alteration zones, and the distribution extends to the deep unknown area;
(4.2)在物理探测工作区上采集音频大地电磁测深数据和地面高精度磁测数据;根据音频大地电磁测深反演后地下介质电阻率分布特征和地表磁场特征,结合高精度磁测曲线出现的值异常,圈定有利于成矿的构造蚀变带C。(4.2) Collect audio magnetotelluric sounding data and ground high-precision magnetic data in the physical detection work area; according to the audio magnetotelluric sounding inversion, the distribution characteristics of the underground medium resistivity and the characteristics of the surface magnetic field, combined with high-precision magnetic measurement curves The abnormal value appears, delimiting the structural alteration zone C which is favorable for mineralization.
所述的步骤(5)包括Described step (5) comprises
将步骤(2)得到的有利于成矿的构造蚀变带A、步骤(3)得到的有利于成矿的构造蚀变带B和步骤(4)得到的有利于成矿的构造蚀变带C分别在大比例尺遥感构造解译图上标出,共同组成优选成矿靶区,即花岗岩型铀矿隐伏成矿构造带。The structural alteration zone A favorable for mineralization obtained in step (2), the structural alteration zone B favorable for mineralization obtained in step (3) and the structural alteration zone favorable for mineralization obtained in step (4) C are respectively marked on the large-scale remote sensing structural interpretation map, and together they form the optimal metallogenic target area, that is, the concealed ore-forming structural belt of granite-type uranium deposits.
本发明的有益技术效果在于:The beneficial technical effects of the present invention are:
本发明所提供的一种花岗岩型铀矿隐伏成矿构造带识别方法通过将地质、物理、化学、遥感方法组合,能够准确识别铀深部成矿有利区段,为铀矿找矿和优选预测工作提供依据。A method for identifying hidden ore-forming structural belts of granite-type uranium deposits provided by the present invention can accurately identify favorable sections of deep uranium ore-forming by combining geological, physical, chemical, and remote sensing methods, and is useful for uranium ore prospecting and optimal prediction. Provide evidence.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细说明。The present invention is described in further detail below in conjunction with embodiment.
本实施例的应用区域为中国诸广南长排-学堂坳区段(以下简称“本区”)。The application area of this embodiment is the Changpai-Xuetang'ao section in southern Guangxi, China (hereinafter referred to as "this area").
本发明所提供的一种花岗岩型铀矿隐伏成矿构造带识别方法包括下列步骤:A method for identifying hidden ore-forming structural belts of granite-type uranium deposits provided by the present invention includes the following steps:
步骤(1),制作大比例尺遥感构造解译图。Step (1), making a large-scale remote sensing structure interpretation map.
(1.1)在遥感影像上建立断裂构造遥感解译标志;(1.1) Establish remote sensing interpretation signs of fault structures on remote sensing images;
采用法国Pleiades-1卫星遥感影像,通过获取地物的断裂构造特征,识别断裂构造遥感解译标志。本区的主要断裂构造有北东向~北东东向、北西西向和近南北向三组。由于各方面的断裂构造性质不同,它们在遥感影像上也表现出不同的特征。近南北向断裂构造遥感解译标志为较为隐蔽的线性特征,且具较为宽缓的线状排列的负地形;北东向~北东东向断裂构造遥感解译标志为直线型沟谷、线性色调异常带,具有明显的线性影像特征;北西西向断裂构造遥感解译标志为深大的直线型沟谷或直线状断续分布的负地形。Using French Pleiades-1 satellite remote sensing images, by obtaining the fault structure features of ground objects, the remote sensing interpretation signs of fault structures are identified. The main fault structures in this area are three groups of NE-NE, NWW and near-North-South. Due to the different properties of fault structures in various aspects, they also show different characteristics in remote sensing images. The remote sensing interpretation signs of near-north-south fault structures are relatively concealed linear features, and have a relatively wide and gentle negative topography; The abnormal zone has obvious linear image features; the NWW trending fault structure is marked by remote sensing interpretation as deep and large linear valleys or linear intermittently distributed negative topography.
(1.2)将断裂构造遥感解译标志在遥感影像上标出,得到大比例尺遥感解译构造图。(1.2) Mark the remote sensing interpretation marks of the fault structure on the remote sensing image to obtain a large-scale remote sensing interpretation structure map.
将上面得到的断裂构造遥感解译标志在遥感影像上标出,制作完成本区全区1:25000和本区东部1:10000的遥感解译构造图。Mark the remote sensing interpretation marks of the fault structure obtained above on the remote sensing image, and complete the remote sensing interpretation structure map of the whole area at 1:25000 and the eastern part of the area at 1:10000.
步骤(2),在大比例尺遥感构造解译图上选取有利于成矿的构造蚀变带A。In step (2), select structural alteration zone A favorable for mineralization on the large-scale remote sensing structural interpretation map.
有利于成矿的构造蚀变带A包括:①区域上多组断裂构造交汇部位,且成矿构造带以张扭性为主,连通区域性控矿构造;②多期次岩浆活动发育部位,特别是晚期中基性岩脉、细粒花岗岩等发育地段;③热液蚀变发育地段,包括矿前期白云母化、碱交代、绢云化等面型蚀变及成矿期硅化、赤铁矿化、黄铁矿化、紫黑色萤石化等线型蚀变发育地段;④不同类型的成矿结构面发育部位,如不同岩性接触部位、构造蚀变带交叉复合部位。Structural alteration zone A favorable for mineralization includes: ① the intersection of multiple groups of fault structures in the region, and the ore-forming structural belt is mainly tension-torsion, connecting regional ore-controlling structures; ② multi-stage magmatic activity development site, Especially in the areas where intermediate-basic dikes and fine-grained granite developed in the late stage; ③The areas where hydrothermal alteration developed, including muscovitation, alkali metasomatization, sericitization and other planar alterations in the early mineralization period and silicification, hematite Mineralization, pyritization, purple-black fluoritization and other linear alteration development areas; ④ different types of mineralization structural plane development sites, such as different lithological contact sites, structural alteration zone intersection composite sites.
本区的长排区段位于棉花坑矿床南部,并与油洞断裂交叉复合。主要含矿构造带有a带、b带、c带。a带为本区重要的储矿构造,控制了油洞矿床和众多异常点,a带内可见硅化碎裂岩、碎裂花岗岩、硅质脉及中基性岩脉,且在油洞矿床、油洞-陀筒岭一带见明显铀矿化。b带、c带南部构造规模较大,热液蚀变发育。野外观察可见,b带、c带构造带南部均沿深沟展布,且延伸较远。b带南部地区可见明显的硅质骨架,由硅质脉、硅化碎裂岩及强蚀变碎裂花岗岩组成,见明显的灰绿色水云母及红褐色赤铁矿化蚀变;c带南部野外虽未观察到明显的热液蚀变,仅见少量硅质小脉及局部蚀变,但c带沿走倾向有分枝弯曲现象。The Changpai section of this area is located in the south of the Mianhuakeng deposit, and intersects with the Youdong fault. The main ore-bearing structural belts are zone a, zone b and zone c. Zone a is an important ore storage structure in this area, controlling the oil cave deposit and many anomalous points. In zone a, silicified cataclysmic rocks, cataclysmic granites, siliceous veins and intermediate-basic veins can be seen, and in the oil cave deposits, Obvious uranium mineralization is seen in the Youdong-Tuotongling area. The structures in the south of belt b and c are relatively large in scale, and hydrothermal alteration is well developed. It can be seen from the field observation that the southern parts of the b-zone and c-zone structural belts are distributed along deep trenches and extend far. An obvious siliceous skeleton can be seen in the southern part of the b-zone, which is composed of siliceous veins, silicified cataclysmic rocks and strongly altered cataclatic granites, and obvious gray-green hydromica and reddish-brown hematite mineralization alterations are seen; in the southern part of the c-zone, the field Although no obvious hydrothermal alteration was observed, only a small amount of siliceous veinlets and local alterations were observed, but the c-zone has branches and bends along the trend.
本区的学堂坳区段位于水石矿床北部,位于油洞断裂带与棉花坑断裂带夹持区。该地区发育有d带、e带等近南北向构造蚀变带,蚀变带均有一定规模。该地区热液蚀变发育,地表多见灰绿色水云母化、红褐色赤铁矿化,局部见宽约1m肉红色硅质脉。The Xuetang'ao section of this area is located in the northern part of the Shuishi deposit, in the clamping area between the Youdong fault zone and the Mianmiankeng fault zone. There are near-north-south structural alteration zones such as d zone and e zone developed in this area, and the alteration zones have a certain scale. Hydrothermal alteration is developed in this area, gray-green hydromicitization and reddish-brown hematite are mostly seen on the surface, and fleshy red siliceous veins with a width of about 1m can be seen locally.
因此,选取a带、b带、c带、d带、e带为有利于成矿的构造蚀变带A。Therefore, zone a, zone b, zone c, zone d, and zone e are selected as the structural alteration zone A favorable for mineralization.
步骤(3),提取化学探测信息得到有利于成矿的构造蚀变带B。In step (3), the chemical detection information is extracted to obtain the structural alteration zone B favorable for mineralization.
(3.1)在步骤(1)得到的大比例尺遥感构造解译图上部署化学探测工作区,包括:①面积较大、连续性较好的铀分量、土壤热释光异常区;②套合和逐步浓集的铀分量异常分布区及较强的铀分量异常浓集中心;③U、Mo、Be分量组合异常与深部断裂构造带对应复合区域;(3.1) Deploy the chemical detection work area on the large-scale remote sensing structure interpretation map obtained in step (1), including: ① large and continuous uranium content, soil thermoluminescence anomaly area; ② overlapping and The anomalous distribution area of gradually enriched uranium content and the strong anomalous concentration center of uranium content; ③ U, Mo, Be component combination anomalies and corresponding composite areas of deep faulted structural belts;
本区的长排区段与含矿构造油洞断裂带相交,长排区段和学塘坳区段的西部有明显的化学探测异常。学堂坳区段位于棉花坑断裂带与油洞断裂带之间,多期次岩浆活动发育,发育多条近东西向煌斑岩脉和花岗斑岩脉,且发育碱交代岩;学塘坳区段东部可见明显的化学探测异常。The Changpai section of this area intersects with the ore-bearing structural oil cave fault zone, and there are obvious chemical detection anomalies in the west of the Changpai section and the Xuetang'ao section. The Xuetang'ao section is located between the Mianmiankeng fault zone and the Youdong fault zone, where multi-phase magmatic activities developed, with multiple nearly east-west lamprophyre veins and granite porphyry veins, and alkali metasomatites developed; Xuetang'ao Significant chemical detection anomalies are visible in the eastern part of the segment.
为此,在长排区段和学塘坳区段的西部部署第一化学探测工作区,按线距100m,点距20m采样,共设置55条测线,4817个测点。在学塘坳区段东部部署第二化学探测工作区,按线距100m,点距20m采样,共需设置46条测线,7800个点测点。在所选取的测点上分别采样U、Mo、Be元素的含量信息和热释光信息。To this end, the first chemical detection work area was deployed in the west of the Changpai section and the Xuetang'ao section, and samples were taken at a line spacing of 100m and a point spacing of 20m. A total of 55 survey lines and 4,817 survey points were set. Deploy the second chemical detection work area in the east of the Xuetang'ao section, and take samples at a line spacing of 100m and a point spacing of 20m. A total of 46 survey lines and 7,800 point survey points need to be set up. The content information and thermoluminescence information of U, Mo, and Be elements were sampled at the selected measuring points.
(3.2)分别绘制化学探测工作区的U分量等值线图、Be分量等值线图、Mo分量等值线图、土壤热释光等值线图,将所得的绘图上的异常区域选取为有利于成矿的构造蚀变带B。(3.2) Draw the U component contour map, the Be component contour map, the Mo component contour map, and the soil thermoluminescence contour map respectively in the chemical detection work area, and select the abnormal area on the resulting drawing as Structural alteration zone B favorable for mineralization.
用Sufer软件制作U分量等值线图、Be分量等值线图、Mo分量等值线图和土壤热释光等值线图。在U分量等值线图上,以全部测点的U平均含量作为背景值,用背景值加2倍标准方差之和确定U元素的异常下限值,圈定大于异常下限值的区域为U异常区。同理,圈定Be异常区、Mo异常区、土壤热释光异常区。U component contour map, Be component contour map, Mo component contour map and soil thermoluminescence contour map were made with Sufer software. On the U component contour map, the U average content of all measuring points is used as the background value, and the sum of the background value plus 2 times the standard deviation is used to determine the abnormal lower limit value of the U element, and the area greater than the abnormal lower limit value is delineated as U abnormal area. Similarly, delineate Be anomalous areas, Mo anomalous areas, and soil thermoluminescence anomalous areas.
长排区段f带、g带、学堂坳区段h带、i带等含矿构造带具有明显的U、Mo、Be分量组合异常及土壤热释光异常,异常带内异常清晰、面积较大、有逐步浓集的铀分量异常分布模式和3个铀分量异常浓集中心,这些部位均为有利的成矿地段。The ore-bearing structural belts such as the f zone and g zone of the Changpai section, the h zone and the i zone of the Xuetang'ao section have obvious combination anomalies of U, Mo, and Be components and soil thermoluminescence anomalies. Large, progressively enriched uranium component anomalous distribution pattern and 3 uranium component anomalous concentration centers, all of these locations are favorable ore-forming areas.
因此,选取f带、g带、h带、i带为有利于成矿的构造蚀变带B。Therefore, the f-zone, g-zone, h-zone and i-zone are selected as structural alteration zone B that is favorable for mineralization.
步骤(4),提取物理探测信息得到有利于成矿的构造蚀变带C。In step (4), physical detection information is extracted to obtain a structural alteration zone C favorable for mineralization.
(4.1)在步骤(1)得到的大比例尺遥感构造解译图上部署物理探测工作区,包括:有大量矿化异常点,但已知构造蚀变带较少,且向深部延伸展布情况不明的区域;(4.1) Deploy the physical exploration work area on the large-scale remote sensing structural interpretation map obtained in step (1), including: there are a large number of mineralized anomalies, but there are few known structural alteration zones, and the distribution extends to the deep unknown area;
根据本区有大量异常点,但已知构造蚀变带较少,且向深部延伸展布情况不明等特点,共设计7条AMT测线及7条高精度磁测线。高精度磁测线总长41.5km,点距按10m测量,共需设置4150个采样点;AMT测线总长41.5km,点距按20m测量,共需设置2075个采样点。According to the fact that there are a large number of anomalies in this area, but there are few known structural alteration zones, and the deep extension is unknown, a total of 7 AMT survey lines and 7 high-precision magnetic survey lines were designed. The total length of the high-precision magnetic survey line is 41.5km, the point distance is measured at 10m, and a total of 4150 sampling points need to be set; the total length of the AMT survey line is 41.5km, and the point distance is measured at 20m, and a total of 2075 sampling points need to be set.
(4.2)在物理探测工作区上采集音频大地电磁测深(AMT)数据和地面高精度磁测数据;根据音频大地电磁测深反演后地下介质电阻率分布特征和地表磁场特征,结合高精度磁测曲线出现的值异常,圈定有利于成矿的构造蚀变带C。(4.2) Collect audio-frequency magnetotelluric sounding (AMT) data and surface high-precision magnetic data in the physical detection work area; according to the audio-frequency magnetotelluric sounding inversion, the resistivity distribution characteristics of the underground medium and the surface magnetic field characteristics, combined with high-precision The abnormal value of the magnetic survey curve delineates the structural alteration zone C that is conducive to mineralization.
物理探测测量结果显示,本区发育大量近南北向构造带,如j带、k带、m带、n带,局部可见其交叉复合。特别j带、k带北部和南部地区,深部延伸规模较大,普遍垂深可达1000m,对铀成矿的形成非常有利。本区还发育大量近南北向隐伏构造带,且向深部延伸可达1000m左右,特别是不同断裂构造的复合部位为铀成矿有利空间,最重要的为p带与q带深部接触部位。The results of physical exploration and measurement show that a large number of near-north-south structural belts are developed in this area, such as j-zone, k-zone, m-zone, and n-zone, and their cross-combination can be seen locally. Especially in the northern and southern regions of j-belt and k-belt, the deep extension scale is relatively large, and the vertical depth can generally reach 1000m, which is very favorable for the formation of uranium mineralization. There are also a large number of nearly north-south hidden structural belts developed in this area, which can extend to about 1000m in depth. In particular, the composite parts of different fault structures are favorable space for uranium mineralization, and the most important one is the deep contact part between p zone and q zone.
因此,选取j带、k带、m带、n带和p带与q带深部接触部位为有利于成矿的构造蚀变带C。Therefore, the deep contact parts of j-zone, k-zone, m-zone, n-zone and p-zone and q-zone are selected as the structural alteration zone C favorable for mineralization.
步骤(5),确定优选成矿靶区。Step (5), determining the preferred mineralization target area.
将步骤(2)得到的有利于成矿的构造蚀变带A、步骤(3)得到的有利于成矿的构造蚀变带B和步骤(4)得到的有利于成矿的构造蚀变带C在大比例尺遥感构造解译图上标出,共同组成优选成矿靶区,即花岗岩型铀矿隐伏成矿构造带。The structural alteration zone A favorable for mineralization obtained in step (2), the structural alteration zone B favorable for mineralization obtained in step (3) and the structural alteration zone favorable for mineralization obtained in step (4) C is marked on the large-scale remote sensing structural interpretation map, and together they form the optimal metallogenic target area, that is, the concealed ore-forming structural belt of granite-type uranium deposits.
则a带、b带、c带、d带、e带、f带、g带、h带、i带、j带、k带、m带、n带和p带与q带深部接触部位等构造带共同组成了本发明所需获得的花岗岩型铀矿隐伏成矿构造带。Then the a-band, b-band, c-band, d-band, e-band, f-band, g-band, h-band, i-band, j-band, k-band, m-band, n-band, p-band and q-band deep contact parts and other structures These belts together constitute the buried ore-forming structural belt of granite-type uranium deposits required by the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410326866.1A CN104076393B (en) | 2014-07-10 | 2014-07-10 | A kind of granite type U-ore lies concealed ore-forming structure band recognition methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410326866.1A CN104076393B (en) | 2014-07-10 | 2014-07-10 | A kind of granite type U-ore lies concealed ore-forming structure band recognition methods |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104076393A true CN104076393A (en) | 2014-10-01 |
CN104076393B CN104076393B (en) | 2017-10-27 |
Family
ID=51597775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410326866.1A Active CN104076393B (en) | 2014-07-10 | 2014-07-10 | A kind of granite type U-ore lies concealed ore-forming structure band recognition methods |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104076393B (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105510989A (en) * | 2014-10-20 | 2016-04-20 | 核工业北京地质研究院 | A Research Method Applicable to the Characteristics of Interlayer Oxidation Zones in Sandstone Type Uranium Deposits |
CN105549113A (en) * | 2014-10-31 | 2016-05-04 | 核工业北京地质研究院 | Site Selection Method for Scientific Deep Drilling in Volcanic Rock Type Uranium Ore Field |
CN105807327A (en) * | 2014-12-29 | 2016-07-27 | 核工业北京地质研究院 | Sedimentary basin base uranium fertility and sandstone-type uranium deposit mineralization potentiality evaluation method |
CN106257310A (en) * | 2015-06-18 | 2016-12-28 | 核工业北京地质研究院 | Sedimentary basin oil gas strong reducing action district Prospecting Sandstone-type Uranium Deposits method for establishing model |
CN106526078A (en) * | 2016-10-28 | 2017-03-22 | 核工业北京地质研究院 | Radon gas-geogas combined measurement method for extracting deep uranium mineralization information |
CN106842333A (en) * | 2015-12-04 | 2017-06-13 | 核工业北京地质研究院 | A kind of space-location method of interlayer oxidation zone sandstone-type uranium Favourable Target Areas |
CN106932460A (en) * | 2015-12-30 | 2017-07-07 | 核工业北京地质研究院 | A kind of latent sandstone type uranium mineralization information identifying method |
CN107346038A (en) * | 2017-06-08 | 2017-11-14 | 昆明理工大学 | The method of " four step formulas " large scale coordinate detection deep hydrothermal deposit or ore body |
CN107576996A (en) * | 2017-08-04 | 2018-01-12 | 核工业北京地质研究院 | A kind of method for building alkalic-metasomatism type uranium deposit ore_forming model |
CN107727829A (en) * | 2017-09-11 | 2018-02-23 | 核工业北京地质研究院 | A kind of granite type U-ore denudation degree sxemiquantitative evaluation method |
CN107993222A (en) * | 2017-11-27 | 2018-05-04 | 王俊锋 | A kind of altering remote sensing abnormal extraction method based on Anomaly region of chemical exploration |
CN109324355A (en) * | 2018-11-14 | 2019-02-12 | 青海省地质调查院((青海省地质矿产研究所)) | A kind of pegmatite type rare metal prospecting method |
CN109444982A (en) * | 2018-10-17 | 2019-03-08 | 青海省柴达木综合地质矿产勘查院 | Exploration method for deep brine potassium salt or lithium salt ore in basin area |
CN109596536A (en) * | 2018-12-27 | 2019-04-09 | 核工业北京地质研究院 | A method of potential ultra-large type sandstone uranium deposits are found based on remote sensing image |
CN109633779A (en) * | 2018-12-18 | 2019-04-16 | 核工业北京地质研究院 | A kind of heat transfer structure recognition methods suitable for geothermal prospecting |
CN110133748A (en) * | 2019-05-08 | 2019-08-16 | 核工业北京地质研究院 | A Method of Integrating Deep Metallogenic Information of Alkali Metasomatized Uranium Deposits |
CN111044515A (en) * | 2019-12-20 | 2020-04-21 | 核工业北京地质研究院 | A method for identifying favorable sections of hydrothermal uranium deposits |
CN111402194A (en) * | 2019-12-17 | 2020-07-10 | 核工业北京地质研究院 | Method suitable for identifying exposed and hidden fracture structure of granite uranium mining area |
CN112327369A (en) * | 2020-11-02 | 2021-02-05 | 核工业北京地质研究院 | Method and system for detecting extending direction of low-resistance mineralization alteration zone in drill hole |
CN112465965A (en) * | 2020-11-20 | 2021-03-09 | 核工业北京地质研究院 | Method for accurately delineating concealed volcano activity center in uranium deposit |
CN112734076A (en) * | 2020-11-27 | 2021-04-30 | 核工业北京地质研究院 | Large-scale positioning prediction method for hard rock type uranium ore resources |
CN112801808A (en) * | 2020-12-30 | 2021-05-14 | 核工业北京地质研究院 | Abnormal superposition prediction method for iron-uranium ore |
CN113703068A (en) * | 2021-10-26 | 2021-11-26 | 核工业北京地质研究院 | Method for determining uranium ore distribution |
CN114386497A (en) * | 2021-12-31 | 2022-04-22 | 核工业北京地质研究院 | Aerial hyperspectral and gamma spectroscopy data fusion method for uranium metallogenic structures |
CN114814982A (en) * | 2022-06-29 | 2022-07-29 | 核工业北京地质研究院 | Method for predicting favorable ore-forming part of granite uranium ore |
CN117272005A (en) * | 2023-07-24 | 2023-12-22 | 成都理工大学 | Identification and positioning method for hidden uranium-containing construction alteration zone in granite region |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4267446A (en) * | 1979-04-03 | 1981-05-12 | Geoco, Inc. | Dual scintillation detector for determining grade of uranium ore |
CN103454693A (en) * | 2013-09-12 | 2013-12-18 | 核工业北京地质研究院 | Method for identifying ore-forming element remote sensing map feature for alaskite type uranium mine exploration |
CN103824133A (en) * | 2014-03-06 | 2014-05-28 | 核工业北京地质研究院 | Comprehensive prediction method for prospective area of granite type uranium mine field |
CN103886383A (en) * | 2012-12-20 | 2014-06-25 | 核工业北京地质研究院 | Granite type uranium mine target optimization method based on element geochemical abnormity |
-
2014
- 2014-07-10 CN CN201410326866.1A patent/CN104076393B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4267446A (en) * | 1979-04-03 | 1981-05-12 | Geoco, Inc. | Dual scintillation detector for determining grade of uranium ore |
CN103886383A (en) * | 2012-12-20 | 2014-06-25 | 核工业北京地质研究院 | Granite type uranium mine target optimization method based on element geochemical abnormity |
CN103454693A (en) * | 2013-09-12 | 2013-12-18 | 核工业北京地质研究院 | Method for identifying ore-forming element remote sensing map feature for alaskite type uranium mine exploration |
CN103824133A (en) * | 2014-03-06 | 2014-05-28 | 核工业北京地质研究院 | Comprehensive prediction method for prospective area of granite type uranium mine field |
Non-Patent Citations (1)
Title |
---|
王正庆 等: "诸广铀矿集区高空间分辨率遥感数据的地质构造特征及地质微构造的发现", 《南华大学学报(自然科学版)》 * |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105510989A (en) * | 2014-10-20 | 2016-04-20 | 核工业北京地质研究院 | A Research Method Applicable to the Characteristics of Interlayer Oxidation Zones in Sandstone Type Uranium Deposits |
CN105510989B (en) * | 2014-10-20 | 2018-07-06 | 核工业北京地质研究院 | A Research Method Applicable to the Characteristics of Interlayer Oxidation Zones in Sandstone Type Uranium Deposits |
CN105549113A (en) * | 2014-10-31 | 2016-05-04 | 核工业北京地质研究院 | Site Selection Method for Scientific Deep Drilling in Volcanic Rock Type Uranium Ore Field |
CN105807327A (en) * | 2014-12-29 | 2016-07-27 | 核工业北京地质研究院 | Sedimentary basin base uranium fertility and sandstone-type uranium deposit mineralization potentiality evaluation method |
CN106257310A (en) * | 2015-06-18 | 2016-12-28 | 核工业北京地质研究院 | Sedimentary basin oil gas strong reducing action district Prospecting Sandstone-type Uranium Deposits method for establishing model |
CN106257310B (en) * | 2015-06-18 | 2019-02-26 | 核工业北京地质研究院 | A method for establishing a prospecting model for sandstone-type uranium deposits in the strong reduction zone of oil and gas in sedimentary basins |
CN106842333A (en) * | 2015-12-04 | 2017-06-13 | 核工业北京地质研究院 | A kind of space-location method of interlayer oxidation zone sandstone-type uranium Favourable Target Areas |
CN106932460A (en) * | 2015-12-30 | 2017-07-07 | 核工业北京地质研究院 | A kind of latent sandstone type uranium mineralization information identifying method |
CN106526078A (en) * | 2016-10-28 | 2017-03-22 | 核工业北京地质研究院 | Radon gas-geogas combined measurement method for extracting deep uranium mineralization information |
CN106526078B (en) * | 2016-10-28 | 2019-07-12 | 核工业北京地质研究院 | A kind of radon gas for extracting deep U metallogeny information-ground vapour union measuring method |
CN107346038A (en) * | 2017-06-08 | 2017-11-14 | 昆明理工大学 | The method of " four step formulas " large scale coordinate detection deep hydrothermal deposit or ore body |
CN107346038B (en) * | 2017-06-08 | 2019-02-19 | 昆明理工大学 | The method of " four step formulas " large scale coordinate detection deep hydrothermal deposit or ore body |
CN107576996A (en) * | 2017-08-04 | 2018-01-12 | 核工业北京地质研究院 | A kind of method for building alkalic-metasomatism type uranium deposit ore_forming model |
CN107727829A (en) * | 2017-09-11 | 2018-02-23 | 核工业北京地质研究院 | A kind of granite type U-ore denudation degree sxemiquantitative evaluation method |
CN107993222A (en) * | 2017-11-27 | 2018-05-04 | 王俊锋 | A kind of altering remote sensing abnormal extraction method based on Anomaly region of chemical exploration |
CN109444982A (en) * | 2018-10-17 | 2019-03-08 | 青海省柴达木综合地质矿产勘查院 | Exploration method for deep brine potassium salt or lithium salt ore in basin area |
CN109324355A (en) * | 2018-11-14 | 2019-02-12 | 青海省地质调查院((青海省地质矿产研究所)) | A kind of pegmatite type rare metal prospecting method |
CN109633779A (en) * | 2018-12-18 | 2019-04-16 | 核工业北京地质研究院 | A kind of heat transfer structure recognition methods suitable for geothermal prospecting |
CN109596536B (en) * | 2018-12-27 | 2021-04-13 | 核工业北京地质研究院 | A method for finding potential ultra-large sandstone uranium deposits based on remote sensing images |
CN109596536A (en) * | 2018-12-27 | 2019-04-09 | 核工业北京地质研究院 | A method of potential ultra-large type sandstone uranium deposits are found based on remote sensing image |
CN110133748A (en) * | 2019-05-08 | 2019-08-16 | 核工业北京地质研究院 | A Method of Integrating Deep Metallogenic Information of Alkali Metasomatized Uranium Deposits |
CN111402194B (en) * | 2019-12-17 | 2023-10-20 | 核工业北京地质研究院 | Method suitable for identifying exposed and hidden fracture structure of granite uranium mining area |
CN111402194A (en) * | 2019-12-17 | 2020-07-10 | 核工业北京地质研究院 | Method suitable for identifying exposed and hidden fracture structure of granite uranium mining area |
CN111044515A (en) * | 2019-12-20 | 2020-04-21 | 核工业北京地质研究院 | A method for identifying favorable sections of hydrothermal uranium deposits |
CN112327369A (en) * | 2020-11-02 | 2021-02-05 | 核工业北京地质研究院 | Method and system for detecting extending direction of low-resistance mineralization alteration zone in drill hole |
CN112327369B (en) * | 2020-11-02 | 2024-03-12 | 核工业北京地质研究院 | Method and system for detecting extension direction of low-resistance mineralization alteration zone based on drilling |
CN112465965A (en) * | 2020-11-20 | 2021-03-09 | 核工业北京地质研究院 | Method for accurately delineating concealed volcano activity center in uranium deposit |
CN112734076A (en) * | 2020-11-27 | 2021-04-30 | 核工业北京地质研究院 | Large-scale positioning prediction method for hard rock type uranium ore resources |
CN112801808A (en) * | 2020-12-30 | 2021-05-14 | 核工业北京地质研究院 | Abnormal superposition prediction method for iron-uranium ore |
CN113703068A (en) * | 2021-10-26 | 2021-11-26 | 核工业北京地质研究院 | Method for determining uranium ore distribution |
US11460601B1 (en) * | 2021-10-26 | 2022-10-04 | Beijing Research Institute Of Uranium Geology | Method for determining distribution of uranium deposit |
WO2023070915A1 (en) * | 2021-10-26 | 2023-05-04 | 核工业北京地质研究院 | Method for determining distribution of uranium mine |
CN113703068B (en) * | 2021-10-26 | 2022-02-15 | 核工业北京地质研究院 | Method for determining uranium ore distribution |
CN114386497A (en) * | 2021-12-31 | 2022-04-22 | 核工业北京地质研究院 | Aerial hyperspectral and gamma spectroscopy data fusion method for uranium metallogenic structures |
CN114814982A (en) * | 2022-06-29 | 2022-07-29 | 核工业北京地质研究院 | Method for predicting favorable ore-forming part of granite uranium ore |
CN117272005A (en) * | 2023-07-24 | 2023-12-22 | 成都理工大学 | Identification and positioning method for hidden uranium-containing construction alteration zone in granite region |
Also Published As
Publication number | Publication date |
---|---|
CN104076393B (en) | 2017-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104076393B (en) | A kind of granite type U-ore lies concealed ore-forming structure band recognition methods | |
Bian et al. | Paleomagnetic and geochronological results from the Zhela and Weimei Formations lava flows of the eastern Tethyan Himalaya: New insights into the breakup of eastern Gondwana | |
Uwiduhaye et al. | Defining potential mineral exploration targets from the interpretation of aeromagnetic data in western Rwanda | |
Acharya et al. | Study of groundwater prospects of the crystalline rocks in Purulia District, West Bengal, India using remote sensing data | |
CN106646660A (en) | Sandstone type uranium mine integrated geophysical exploration method | |
CN117572509B (en) | Mining method of hydrothermal pulse type mineral product related to porphyry activities | |
Liu et al. | Connection of the proto-Yangtze River to the East China Sea traced by sediment magnetic properties | |
Aliyu et al. | Delineating and interpreting the gold veins within Bida and Zungeru Area, Niger State Nigeria, using aeromagnetic and radiometric data | |
Cella et al. | Characterizing elements of urban planning in Magna Graecia using geophysical techniques: the case of Tirena (Southern Italy) | |
CN107976718B (en) | A direct information exploration method for deep sandstone-type uranium mineralization | |
Metwaly et al. | Combined inversion of electrical resistivity and transient electromagnetic soundings for mapping groundwater contamination plumes in Al Quwy'yia Area, Saudi Arabia | |
Weymouth et al. | A magnetometer survey of the Knife River Indian Villages | |
Choi et al. | Expected segmentation of the Chugaryung fault system estimated by the gravity field interpretation | |
Berdichevsky et al. | Magnetotelluric studies in Russia: Regional-scale surveys and hydrocarbon exploration | |
Munday et al. | Facilitating Long-term Outback Water Solutions (G-FLOWS Stage-1: Hydrogeological Framework | |
Asfahani | Inverse slope method for interpreting vertical electrical soundings in sedimentary phosphatic environments in the Al-Sharquieh mine, Syria | |
Mickus | Magnetic method | |
Austin et al. | Using stratiform magnetic anomalies to map near-surface architecture: insights from the Amadeus Basin | |
Dar et al. | Delineating deep basement faults in eastern Dharwar craton through systematic methods of geophysics and remote sensing vis-à-vis the concerns of moderate seismicity | |
Olomo et al. | Integrated geophysical mapping of groundwater aquifer for spatial distribution of groundwater development in Iperindo and its environs, Southwestern Nigeria | |
Cuss et al. | The application of microgravity in industrial archaeology: an example from the Williamson tunnels, Edge Hill, Liverpool | |
Mathieson et al. | The National Museums of Scotland Saqqara survey project, earth sciences 1990–1998 | |
Helesic | Paleomagnetic Analysis of Vertical Axis Rotation Along the Tascotal Mesa Fault Zone in Far West Texas | |
Maclean et al. | Geophysical Surveys for Underground Storage Tank Locations Hickam Air Force Base, Hawaii: A Case Study | |
Aliyu Bukola et al. | Delineating and Interpreting the Gold (Mineralisation) veins within Bida and Zungeru sheets, Niger State Nigeria using Aeromagnetic and Radiometric Data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |