[go: up one dir, main page]

CN104070525B - For the method for space manipulator continuous trajectory tracking - Google Patents

For the method for space manipulator continuous trajectory tracking Download PDF

Info

Publication number
CN104070525B
CN104070525B CN201410271442.XA CN201410271442A CN104070525B CN 104070525 B CN104070525 B CN 104070525B CN 201410271442 A CN201410271442 A CN 201410271442A CN 104070525 B CN104070525 B CN 104070525B
Authority
CN
China
Prior art keywords
theta
space manipulator
milne
matrix
hamming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410271442.XA
Other languages
Chinese (zh)
Other versions
CN104070525A (en
Inventor
张强
刘双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201410271442.XA priority Critical patent/CN104070525B/en
Publication of CN104070525A publication Critical patent/CN104070525A/en
Application granted granted Critical
Publication of CN104070525B publication Critical patent/CN104070525B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1607Calculation of inertia, jacobian matrixes and inverses

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

The invention discloses a kind of method for space manipulator continuous trajectory tracking.Comprise the following steps: first, a known track followed the tracks of by use inverse broad sense Jacobi method control mechanical arm tail end device.But because the accuracy of the method result and numerical integration step-length are inversely proportional to, so larger amount of calculation is needed to obtain separating more accurately.For fixed step size improves computational accuracy, Milne-Hamming linear multi step predicted correction method combines with described method by the present invention.Then, front four values before Runge-Kutta method calculating Milne-Hamming algorithm steps five are utilized.Apply the tracking that this continuous trajectory tracking method can complete continuous path in space manipulator task space more accurately.

Description

用于空间机械臂连续轨迹跟踪的方法Method for Continuous Trajectory Tracking of Space Manipulator

技术领域technical field

本发明属于空间机械臂的路径规划领域,尤其涉及一种用于空间机械臂连续轨迹跟踪的方法。The invention belongs to the field of path planning of a space manipulator, in particular to a method for continuous track tracking of a space manipulator.

背景技术Background technique

空间机械臂的路径规划可分为点到点规划和连续轨迹规划。对于连续路径规划问题,目前的研究主要集中在地面机器人的连续路径规划问题及直线连续路径跟踪的研究。在空间任务中,空间机械臂的连续轨迹规划是非常重要的理论和实际问题。问题转化为一个基于速度级运动学方程和角动量守恒方程的耦合微分方程组的求解,提出了末端器跟踪的预测校正的方法,计算精度从一阶提高到更高阶。The path planning of the space manipulator can be divided into point-to-point planning and continuous trajectory planning. For the problem of continuous path planning, the current research mainly focuses on the problem of continuous path planning of ground robots and the research of linear continuous path tracking. In space missions, the continuous trajectory planning of space manipulators is a very important theoretical and practical problem. The problem is transformed into a solution of coupled differential equations based on the velocity-level kinematics equation and the conservation equation of angular momentum, and a predictive correction method for end-effector tracking is proposed, and the calculation accuracy is improved from the first order to a higher order.

针对空间机械臂的控制,由于太空环境中动量守恒,空间机械臂存在动力学冗余特性,空间机械臂末端器的位姿不仅和关节角有关还和机械臂运动的历史有关。所以本发明使用广义雅可比矩阵来描述空间机械臂的系统状态。由于单纯的计算逆广义雅可比不可避免的会带来奇异,导致奇异点附近的关节角速度无限大,所以本文通过计算广义雅可比的阻尼最小方差逆(DLS)的方法来求解关节角,以对空间机械臂进行运动控制。由于采用DLS避歧义,空间机械臂末端器到达期望位姿产生的误差会增大,本文加入SVD分解,只针对发生歧义的关节进行避歧义计算来降低误差。然而该方法的精度较低,论文又引入数值分析方法中的线性多步预测校正方法来进一步减小误差。For the control of the space manipulator, due to the conservation of momentum in the space environment, the space manipulator has dynamic redundancy characteristics. The pose of the end device of the space manipulator is not only related to the joint angle but also related to the history of the manipulator's motion. Therefore, the present invention uses the generalized Jacobian matrix to describe the system state of the space manipulator. Since the simple calculation of the inverse generalized Jacobian will inevitably bring singularity, resulting in infinite joint angular velocity near the singularity point, so this paper solves the joint angle by calculating the damped minimum variance inverse (DLS) of the generalized Jacobian. Space manipulator for motion control. Due to the use of DLS to avoid ambiguity, the error caused by the end device of the space manipulator reaching the desired pose will increase. In this paper, SVD decomposition is added, and the ambiguity avoidance calculation is only performed on the joints where ambiguity occurs to reduce the error. However, the accuracy of this method is low, and the paper introduces the linear multi-step prediction and correction method in the numerical analysis method to further reduce the error.

在任务空间内空间机械臂的连续轨迹跟踪中,主要问题是求解逆广义雅克比矩阵,基本的分解运动控制采用的是单步长方法,较常用的是龙格-库塔方法,只利用了前一个点的关节信息来计算下一个点,即只用某时刻的关节角Θ(t)来计算下一个时刻的关节角Θ(t+Δt)。本文采用改进的Milne—Hamming线性多步预测校正方法来求解空间机械臂连续轨迹跟踪问题,期望在大解算步长下得到更高的精度,从而使末端器跟踪路径更精确。其优点是通过较多地利用前面几步的已知关节信息,来确定下一个点的关节信息,可以确定局部截断误差,并包含一个校正项以提高每一步的精确度,从而完成构造计算量小精度高的空间机械臂广义雅可比矩阵更新算法。In the continuous trajectory tracking of the space manipulator in the task space, the main problem is to solve the inverse generalized Jacobian matrix. The basic decomposition motion control adopts the single-step method, and the Runge-Kutta method is more commonly used, which only uses The joint information of the previous point is used to calculate the next point, that is, only the joint angle Θ(t) at a certain moment is used to calculate the joint angle Θ(t+Δt) at the next moment. In this paper, the improved Milne-Hamming linear multi-step prediction and correction method is used to solve the continuous trajectory tracking problem of the space manipulator. It is expected to obtain higher accuracy under the large solution step size, so that the tracking path of the end effector is more accurate. Its advantage is that by making more use of the known joint information of the previous steps to determine the joint information of the next point, the local truncation error can be determined, and a correction item is included to improve the accuracy of each step, thereby completing the construction calculation. A generalized Jacobian matrix update algorithm for small and high precision space manipulators.

发明内容Contents of the invention

本发明的目的在于:通过较多地利用前面几步的已知关节信息,来确定下一个点的关节信息以提高每一步精度;完成构造计算量小精度高的空间机械臂广义雅克比矩阵算法,从而更精确地完成了空间机械臂任务空间内连续轨迹的跟踪。The purpose of the present invention is to: determine the joint information of the next point to improve the accuracy of each step by making more use of the known joint information of the previous steps; complete the generalized Jacobian matrix algorithm of the space manipulator with a small amount of calculation and high precision , so that the tracking of the continuous trajectory in the task space of the space manipulator is completed more accurately.

本发明的一种用于空间机械臂连续轨迹跟踪的方法,其特征在于,步骤如下:A method for continuous trajectory tracking of a space manipulator of the present invention is characterized in that the steps are as follows:

1)、用逆广义雅克比法并求解运动学速度级逆解,控制空间机械臂末端器跟踪一条已知的轨迹;1) Using the inverse generalized Jacobian method and solving the inverse solution of kinematic velocity level, control the end device of the space manipulator to track a known trajectory;

2)、将Milne-Hamming线性多步预测校正方法与所述方法相结合;2), combining the Milne-Hamming linear multi-step prediction correction method with the method;

3)、运动龙格-库塔方法求解Milne-Hamming线性多步预测校正方法所需的前四个初值;3) Runge-Kutta method to solve the first four initial values required by the Milne-Hamming linear multi-step prediction and correction method;

4)、将步骤1)-3)得到的机械臂各关节角带入空间机械臂运动学方程得到校正后的连续路径。4) Bring the joint angles of the manipulator obtained in steps 1)-3) into the kinematic equation of the space manipulator to obtain a corrected continuous path.

根据以上所述的用于空间机械臂连续轨迹跟踪的方法,优选,空间机械臂在运动规划过程中存在因动力学奇异而导致的关节速度无限大或无法计算的问题,因此在运用逆广义雅克比矩阵求机械臂各关节角之前要先避奇异,采用的是阻尼最小方差法DLS。由于采用DLS避奇异,空间机械臂末端器到达期望位姿产生的误差会增大,加入SVD分解,只针对发生奇异的关节进行避奇异计算来降低误差。SVD分解公式为:According to the method for continuous trajectory tracking of the space manipulator described above, preferably, there is a problem that the joint velocity of the space manipulator is infinite or cannot be calculated due to the singularity of the dynamics during the motion planning process, so when using the inverse generalized Jacques Before calculating the angles of each joint of the manipulator than the matrix, we must avoid singularities, and the damped minimum variance method DLS is used. Due to the use of DLS to avoid singularities, the error caused by the end device of the space manipulator reaching the desired pose will increase. Add SVD decomposition, and only perform singularity avoidance calculations for joints where singularities occur to reduce errors. The SVD decomposition formula is:

JJ == Uu ‾‾ SVSV TT

该等式的意义为:对于任意矩阵J可分解为S、VT三个矩阵的点乘。其中:V均为正交阵(均为n×n矩阵),S为对角阵,对角线上的元素s1,s2,…..,s6是广义雅克比矩阵的奇异值,且满足S1≥S2≥…≥S6≥0The meaning of this equation is: for any matrix J can be decomposed into The dot product of the three matrices S, V T. in: V is an orthogonal matrix (n×n matrix), S is a diagonal matrix, and the elements s 1 , s 2 , ..., s 6 on the diagonal are the singular values of the generalized Jacobian matrix, and satisfy S 1 ≥S 2 ≥…≥S 6 ≥0

SS == sthe s 11 00 00 00 00 00 00 sthe s 22 00 00 00 00 00 00 sthe s 33 00 00 00 00 00 00 sthe s 44 00 00 00 00 00 00 sthe s 55 00 00 00 00 00 00 sthe s 66 ..

根据以上所述的用于空间机械臂连续轨迹跟踪的方法,优选,结合改进的Milne—Hamming线性多步预测校正方法:According to the above-mentioned method for the continuous trajectory tracking of the space manipulator, preferably, in combination with the improved Milne-Hamming linear multi-step prediction and correction method:

预报: Θ M ( t n + 1 ) = Θ ( t n - 3 ) + 4 3 Δ t ( 2 Θ · ( t n ) - Θ · ( t n - 1 ) + 2 Θ · ( t n - 2 ) ) forecast: Θ m ( t no + 1 ) = Θ ( t no - 3 ) + 4 3 Δ t ( 2 Θ · ( t no ) - Θ · ( t no - 1 ) + 2 Θ &Center Dot; ( t no - 2 ) )

修正: Θ M m ( t n + 1 ) = Θ M ( t n + 1 ) + 112 121 ( Θ H ( t n ) - Θ M ( t n ) ) fix: Θ m m ( t no + 1 ) = Θ m ( t no + 1 ) + 112 121 ( Θ h ( t no ) - Θ m ( t no ) )

校正: Θ H ( t n + 1 ) = 1 8 ( 9 Θ ( t n ) - Θ ( t n - 2 ) ) + 3 8 Δ t ( Θ · ( t n + 1 , Θ M m ( t n + 1 ) ) - 2 Θ · ( t n ) - Θ · ( t n - 1 ) ) Correction: Θ h ( t no + 1 ) = 1 8 ( 9 Θ ( t no ) - Θ ( t no - 2 ) ) + 3 8 Δ t ( Θ &Center Dot; ( t no + 1 , Θ m m ( t no + 1 ) ) - 2 Θ &Center Dot; ( t no ) - Θ · ( t no - 1 ) )

修正: Θ ( t n + 1 ) = Θ H ( t n + 1 ) - 9 121 ( Θ H ( t n + 1 ) - Θ M ( t n + 1 ) ) fix: Θ ( t no + 1 ) = Θ h ( t no + 1 ) - 9 121 ( Θ h ( t no + 1 ) - Θ m ( t no + 1 ) )

ΘH为校正项。当计算Θ(t4)时,取ΘH(t3)=ΘM(t3),Θ(t0)=[000000]TΘ H is the correction item. When calculating Θ(t 4 ), take Θ H (t 3 )=Θ M (t 3 ), Θ(t 0 )=[000000] T .

根据以上所述的用于空间机械臂连续轨迹跟踪的方法,优选,用龙格-库塔单步法求权利要求3中的前四个初值。采用四阶Milne—Hamming线性多步预测校正方法,前四个步长的值是已知的,初始时刻的关节角值为Θ(t0)=[000000]T,t1,t2,t3时刻的值用四阶古典龙格-库塔方法来求解;四阶古典龙格-库塔公式为:According to the method for continuous trajectory tracking of the space manipulator described above, preferably, the first four initial values in claim 3 are obtained by using the Runge-Kutta single-step method. Using the fourth-order Milne-Hamming linear multi-step prediction and correction method, the values of the first four steps are known, and the joint angle value at the initial moment is Θ(t 0 )=[000000] T , t 1 , t 2 , t The value at time 3 is solved by the fourth-order classical Runge-Kutta method; the fourth-order classical Runge-Kutta formula is:

ΘΘ (( tt nno ++ 11 )) == ΘΘ (( tt nno )) ++ 11 66 (( kk 11 ++ 22 kk 22 ++ 22 kk 33 ++ kk 44 ))

k1=Δt*Θ(tn,Θ(tn))k 1 =Δt*Θ(t n ,Θ(t n ))

kk 22 == ΔΔ tt ** ΘΘ (( tt nno ++ ΔΔ tt 22 ,, ΘΘ (( tt nno )) ++ kk 11 22 ))

kk 33 == ΔΔ tt ** ΘΘ (( tt nno ++ ΔΔ tt 22 ,, ΘΘ (( tt nno )) ++ kk 22 22 ))

k4=Δt*Θ(tn+Δt,Θ(tn)+k3)。k 4 =Δt*Θ(t n +Δt,Θ(t n )+k 3 ).

由于空间机器人在运动规划过程中存在因动力学奇异而导致的关节速度无限大或无法计算的问题,因此在运用逆广义雅克比矩阵求机械臂各关节角之前要先避奇异。本文采用的是阻尼最小方差法(DLS):Due to the problem that the joint velocity is infinite or cannot be calculated due to the singularity of the dynamics in the motion planning process of the space robot, it is necessary to avoid the singularity before using the inverse generalized Jacobian matrix to find the joint angles of the manipulator. In this paper, the damped least variance method (DLS) is used:

J*=(Jm TJm2IM)-1Jm T J * =(J m T J m2 I M ) -1 J m T

λλ 22 == 00 ,, ii ff sthe s ^^ 66 ≥&Greater Equal; ϵϵ (( 11 -- (( sthe s ^^ 66 ϵϵ )) 22 )) λλ mm 22 ,, oo tt hh ee rr ww ii sthe s ee

为最小奇异值的估计值,ε为选定的用于判断机械臂是否奇异的阈值,λm为用户设定的奇异区域的最大阻尼值。而是通过对广义雅克比矩阵进行SVD分解得到的。 is the estimated value of the minimum singular value, ε is the selected threshold value for judging whether the manipulator is singular, and λ m is the maximum damping value of the singular region set by the user. and It is obtained by SVD decomposition of the generalized Jacobian matrix.

JJ == Uu ‾‾ SVSV TT

该等式的意义为:对于任意矩阵J可分解为S、VT三个矩阵的点乘。其中:V均为正交阵(均为n×n矩阵),S为对角阵,对角线上的元素s1,s2,…..,s6是广义雅克比矩阵的奇异值,且满足s1≥s1≥…≥s6≥0The meaning of this equation is: for any matrix J can be decomposed into The dot product of the three matrices S, V T. in: V is an orthogonal matrix (n×n matrix), S is a diagonal matrix, and the elements s 1 , s 2 , ..., s 6 on the diagonal are the singular values of the generalized Jacobian matrix, and satisfy s 1 ≥s 1 ≥…≥s 6 ≥0

SS == sthe s 11 00 00 00 00 00 00 sthe s 22 00 00 00 00 00 00 sthe s 33 00 00 00 00 00 00 sthe s 44 00 00 00 00 00 00 sthe s 55 00 00 00 00 00 00 sthe s 66

采用四阶Milne—Hamming线性多步预测校正方法,前四个步长的值是已知的,初始时刻的值为Θ(t0)=[000000]T,前三个时间点的值用四阶古典龙格-库塔方法来求解。Using the fourth-order Milne-Hamming linear multi-step prediction and correction method, the values of the first four steps are known, the value at the initial moment is Θ(t 0 )=[000000] T , and the values at the first three time points are calculated by four The first-order classical Runge-Kutta method is used to solve it.

龙格-库塔法是常用的有效方法,它的优点是:方法简练,易编程序;只需知道起点值即可逐步以定步长外推;具有良好的数值稳定性,即随着计算步长的增大,因初始误差或舍入误差的影响导致数值解的误差不会增长或误差有界。The Runge-Kutta method is a commonly used and effective method. Its advantages are: the method is concise and easy to program; it can be extrapolated step by step with a fixed step length only by knowing the starting point; it has good numerical stability, that is, with the calculation With the increase of the step size, the error of the numerical solution will not increase or the error is bounded due to the influence of the initial error or rounding error.

以下为四阶古典龙格-库塔公式:The following is the fourth-order classical Runge-Kutta formula:

ΘΘ (( tt nno ++ 11 )) == ΘΘ (( tt nno )) ++ 11 66 (( kk 11 ++ 22 kk 22 ++ 22 kk 33 ++ kk 44 ))

k1=Δt*Θ(tn,Θ(tn))k 1 =Δt*Θ(t n ,Θ(t n ))

kk 22 == ΔΔ tt ** ΘΘ (( tt nno ++ ΔΔ tt 22 ,, ΘΘ (( tt nno )) ++ kk 11 22 ))

kk 33 == ΔΔ tt ** ΘΘ (( tt nno ++ ΔΔ tt 22 ,, ΘΘ (( tt nno )) ++ kk 22 22 ))

k4=Δt*Θ(tn+Δt,Θ(tn)+k3)k 4 =Δt*Θ(t n +Δt,Θ(t n )+k 3 )

将基本Milne—Hamming的进行改进,利用外推原理,即Improve the basic Milne-Hamming and use the extrapolation principle, namely

ΘΘ (( tt nno ++ 11 )) -- 11 4040 ΘΘ Mm (( tt nno ++ 11 )) ++ 1414 4545 ΘΘ Hh (( tt nno ++ 11 )) 11 4040 ++ 1414 4545 == Oo (( ΔtΔt 66 ))

其中ΘM(tn+1)为显式的Milne法,ΘH(tn+1)为隐式的Hamming法。Among them, Θ M (t n+1 ) is the explicit Milne method, and Θ H (t n+1 ) is the implicit Hamming method.

从上式可以看出算法的精度提高了一阶,忽略误差项改写为:It can be seen from the above formula that the accuracy of the algorithm has been improved by one order, ignoring the error term and rewriting as:

ΘΘ (( tt nno ++ 11 )) -- ΘΘ Mm (( tt nno ++ 11 )) ≈≈ 112112 121121 (( ΘΘ Hh (( tt nno ++ 11 )) -- ΘΘ Mm (( tt nno ++ 11 )) ))

ΘΘ (( tt nno ++ 11 )) -- ΘΘ Hh (( tt nno ++ 11 )) ≈≈ -- 99 121121 (( ΘΘ Hh (( tt nno ++ 11 )) -- ΘΘ Mm (( tt nno ++ 11 )) ))

由于ΘM(tn+1)和ΘH(tn+1)是在计算过程中获得的数据,可以用式上两式来调整解算步长Δt,即选择一个合适的步长,使Since Θ M (t n+1 ) and Θ H (t n+1 ) are the data obtained during the calculation, the above two formulas can be used to adjust the solution step size Δt, that is, to choose an appropriate step size so that

|| -- 99 121121 (( &Theta;&Theta; Hh (( tt nno ++ 11 )) -- &Theta;&Theta; Mm (( tt nno ++ 11 )) )) || << &epsiv;&epsiv;

其中ε是要求达到的计算精度。Where ε is the calculation accuracy required to be achieved.

则最后修正后的Milne公式为:Then the final revised Milne formula is:

&Theta;&Theta; Mm mm (( tt nno ++ 11 )) == &Theta;&Theta; Mm (( tt nno ++ 11 )) ++ 112112 121121 (( &Theta;&Theta; Hh (( tt nno ++ 11 )) -- &Theta;&Theta; Mm (( tt nno ++ 11 )) ))

&Theta;&Theta; Hh mm (( tt nno ++ 11 )) == &Theta;&Theta; Hh (( tt nno ++ 11 )) -- 99 121121 (( &Theta;&Theta; Hh (( tt nno ++ 11 )) -- &Theta;&Theta; Mm (( tt nno ++ 11 )) ))

结合Milne—Hamming预测校正算法,那么修正后的Milne—Hamming预测校正算法:Combined with the Milne-Hamming predictive correction algorithm, then the revised Milne-Hamming predictive correction algorithm:

预报: &Theta; M ( t n + 1 ) = &Theta; ( t n - 3 ) + 4 3 &Delta; t ( 2 &Theta; &CenterDot; ( t n ) - &Theta; &CenterDot; ( t n - 1 ) + 2 &Theta; &CenterDot; ( t n - 2 ) ) forecast: &Theta; m ( t no + 1 ) = &Theta; ( t no - 3 ) + 4 3 &Delta; t ( 2 &Theta; &CenterDot; ( t no ) - &Theta; &Center Dot; ( t no - 1 ) + 2 &Theta; &CenterDot; ( t no - 2 ) )

修正: &Theta; M m ( t n + 1 ) = &Theta; M ( t n + 1 ) + 112 121 ( &Theta; H ( t n ) - &Theta; M ( t n ) ) fix: &Theta; m m ( t no + 1 ) = &Theta; m ( t no + 1 ) + 112 121 ( &Theta; h ( t no ) - &Theta; m ( t no ) )

校正: &Theta; H ( t n + 1 ) = 1 8 ( 9 &Theta; ( t n ) - &Theta; ( t n - 2 ) ) - 3 8 &Delta; t ( &Theta; &CenterDot; ( t n + 1 , &Theta; M m ( t n + 1 ) ) - 2 &Theta; &CenterDot; ( t n ) - &Theta; &CenterDot; ( t n - 1 ) ) Correction: &Theta; h ( t no + 1 ) = 1 8 ( 9 &Theta; ( t no ) - &Theta; ( t no - 2 ) ) - 3 8 &Delta; t ( &Theta; &CenterDot; ( t no + 1 , &Theta; m m ( t no + 1 ) ) - 2 &Theta; &Center Dot; ( t no ) - &Theta; &Center Dot; ( t no - 1 ) )

修正: &Theta; ( t n + 1 ) = &Theta; H ( t n + 1 ) - 9 121 ( &Theta; H ( t n + 1 ) - &Theta; M ( t n + 1 ) ) fix: &Theta; ( t no + 1 ) = &Theta; h ( t no + 1 ) - 9 121 ( &Theta; h ( t no + 1 ) - &Theta; m ( t no + 1 ) )

ΘH为校正项,算法开始时先由同阶单步法提供初值Θ(t1)Θ(t2)Θ(t3),具体算法见下一小节。当计算Θ(t4)时,取ΘH(t3)=ΘM(t3)。本发明的Θ(t0)=[000000]T。自此就计算出了Θ(t+Δt)。Θ H is the correction item. At the beginning of the algorithm, the initial value Θ(t 1 )Θ(t 2 )Θ(t 3 ) is provided by the same-order single-step method. See the next section for the specific algorithm. When calculating Θ(t 4 ), take Θ H (t 3 )=Θ M (t 3 ). Θ(t 0 )=[000000] T in the present invention. Θ(t+Δt) has since been calculated.

本发明与现有技术相比具有以下优点:1、通过较多地利用前面几步的已知关节信息,来确定下一个点的关节信息以提高每一步精度;2、完成构造计算量小精度高的空间机械臂广义雅克比矩阵算法,从而更精确地完成了空间机械臂任务空间内连续轨迹的跟踪。Compared with the prior art, the present invention has the following advantages: 1. By making more use of the known joint information of the previous steps, the joint information of the next point is determined to improve the accuracy of each step; 2. The calculation amount of the structure is completed with small precision High generalized Jacobian matrix algorithm of the space manipulator, thus completing the tracking of the continuous trajectory in the task space of the space manipulator more accurately.

附图说明Description of drawings

以下通过附图及具体实施例对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.

图1是本发明实施例提供的连续轨迹跟踪的预测校正方法的流程图;Fig. 1 is a flow chart of a prediction correction method for continuous trajectory tracking provided by an embodiment of the present invention;

图2是本发明中用到的6自由度机械臂结构示意图;Fig. 2 is a structural schematic diagram of a 6-DOF mechanical arm used in the present invention;

图3是本发明中用到的通过障碍的连续轨迹;Fig. 3 is the continuous trajectory of passing obstacles used in the present invention;

图4是本发明实施例提供的未使用Milne-Hamming方法的末端器轨迹跟踪图;Fig. 4 is a trajectory tracking diagram of an end device provided by an embodiment of the present invention without using the Milne-Hamming method;

图5是本发明实施例提供的使用Milne-Hamming方法的末端器轨迹跟踪图;Fig. 5 is a trajectory tracking diagram of an end device using the Milne-Hamming method provided by an embodiment of the present invention;

图6是本发明实施例提供的末端器轨迹与连续路径的三轴变化图;Fig. 6 is a three-axis change diagram of the trajectory of the end device and the continuous path provided by the embodiment of the present invention;

图7是本发明实施例提供的使用了改进的Milne-Hamming方法的末端器轨迹与连续路径的三轴变化图;Fig. 7 is a three-axis change diagram of the trajectory of the end device and the continuous path using the improved Milne-Hamming method provided by the embodiment of the present invention;

具体实施方式detailed description

本发明的技术方案是:首先,用伪逆广义雅克比法控制末端器跟踪一条已知的轨迹。但是由于该方法结果的精确度与数值积分步长成反比,所以需要更大的计算量来得到更精确的解。为固定步长提高计算精度,本发明将Milne-Hamming线性多步预测校正方法与上述方法相结合。然后,利用龙格-库塔法计算Milne-Hamming算法步骤五之前的前四个值。其具体包括以下环节:The technical scheme of the invention is: firstly, use the pseudo-inverse generalized Jacobian method to control the terminator to track a known track. However, since the accuracy of the result of this method is inversely proportional to the step size of the numerical integration, a larger amount of calculation is required to obtain a more accurate solution. In order to improve the calculation accuracy by fixing the step size, the present invention combines the Milne-Hamming linear multi-step prediction and correction method with the above method. Then, use the Runge-Kutta method to calculate the first four values before Step 5 of the Milne-Hamming algorithm. It specifically includes the following links:

1.建立空间机械臂运动学模型1. Establish the kinematics model of the space manipulator

6自由度机械臂结构示意图如附图2。该机械臂的D-H参数如表一所示:A schematic diagram of the structure of the 6-DOF manipulator is shown in Figure 2. The D-H parameters of the robotic arm are shown in Table 1:

表一:6自由度空间机械臂的D-H参数Table 1: D-H parameters of the 6-DOF space manipulator

符号表示:Symbol means:

pi∈R3(i=1,...,n)惯性坐标系中连杆i质心的位置矢量;p i ∈ R 3 (i=1,...,n) the position vector of the barycenter of link i in the inertial coordinate system;

惯性坐标系中末端器的位置矢量; The position vector of the end effector in the inertial coordinate system;

某一时刻末端器线速度; Linear speed of end finisher at a certain moment;

ω0∈R3某一时刻基座角速度;ω 0 ∈ R 3 Angular velocity of base at a certain moment;

θi关节角i;θi joint angle i ;

Θ∈Rn关节角速度;Θ∈R n joint angular velocity;

关节角加速度; joint angular acceleration;

mi连杆i的质量;m i the mass of connecting rod i;

M系统质量;M system quality;

ri连杆i的半径(注意:不要把ri和ri弄混了);r i the radius of connecting rod i (note: do not confuse r i with r i );

li连杆i的长度;l the length of connecting rod i ;

η=cos(ψ/2)四元数表示的标量部分;η=cos(ψ/2) The scalar part represented by the quaternion;

q=ksin(ψ/2)四元数表示的向量部分;The vector part represented by q=ksin(ψ/2) quaternion;

交叉算子(相当于“′”); Crossover operator (equivalent to "'");

如果 r = r x r y r z , 那么 r ~ = 0 - r z r y r z 0 - r x - r y r x 0 if r = r x r the y r z , So r ~ = 0 - r z r the y r z 0 - r x - r the y r x 0

Ii∈R3×3连杆i的惯性矩阵(所有的连杆均被看做圆柱):I i ∈ R 3×3 inertia matrix of connecting rod i (all connecting rods are regarded as cylinders):

II ii == 11 1212 (( ll ii 22 ++ 33 rr ii 22 )) mm ii 00 00 00 11 1212 (( ll ii 22 ++ 33 rr ii 22 )) mm ii 00 00 00 11 1212 rr ii 22 mm ii

Ψb∈R3用欧拉角表示的基座姿态;Ψ b ∈ R 3 The attitude of the base represented by Euler angles;

ε选定的用于判断机械臂是否奇异的阈值;ε selected threshold value for judging whether the manipulator is singular;

λm为用户设定的奇异区域的最大阻尼值;λ m is the maximum damping value of the singular region set by the user;

该机械臂的广义雅克比矩阵的逆解公式为:The inverse solution formula of the generalized Jacobian matrix of the manipulator is:

&Theta;&Theta; &CenterDot;&Center Dot; == &lsqb;&lsqb; JJ ** (( &Psi;&Psi; bb ,, &Theta;&Theta; ,, mm ii ,, II ii )) &rsqb;&rsqb; -- 11 &nu;&nu; ee &omega;&omega; ee

由于空间机器人在运动规划过程中存在因动力学奇异而导致的关节速度无限大或无法计算的问题,因此在运用逆广义雅克比矩阵求机械臂各关节角之前要先避奇异。本文采用的是阻尼最小方差法(DLS):Due to the problem that the joint velocity is infinite or cannot be calculated due to the dynamic singularity in the motion planning process of the space robot, it is necessary to avoid the singularity before using the inverse generalized Jacobian matrix to find the joint angles of the manipulator. In this paper, the damped least variance method (DLS) is used:

J*=(Jm TJm2IM)-1Jm T J * =(J m T J m2 I M ) -1 J m T

&lambda;&lambda; 22 == 00 ,, ii ff sthe s ^^ 66 &GreaterEqual;&Greater Equal; &epsiv;&epsiv; (( 11 -- (( sthe s ^^ 66 &epsiv;&epsiv; )) 22 )) &lambda;&lambda; mm 22 ,, oo tt hh ee rr ww ii sthe s ee

为最小奇异值的估计值,ε为选定的用于判断机械臂是否奇异的阈值, is the estimated value of the minimum singular value, ε is the selected threshold value for judging whether the manipulator is singular,

λm为用户设定的奇异区域的最大阻尼值。而是通过对广义雅克比矩阵进行SVD分解得到的λ m is the maximum damping value of the singular region set by the user. and is obtained by SVD decomposition of the generalized Jacobian matrix

JJ == Uu &OverBar;&OverBar; SVSV TT

该等式的意义为:对于任意矩阵J可分解为S、VT三个矩阵的点乘。其中:V均为正交阵(均为n×n矩阵),S为对角阵,对角线上的元素s1,s2,…..,s6是广义雅克比矩阵的奇异值,且满足s1≥s1≥…≥s6≥0The meaning of this equation is: for any matrix J can be decomposed into The dot product of the three matrices S, V T. in: V is an orthogonal matrix (n×n matrix), S is a diagonal matrix, and the elements s 1 , s 2 , ..., s 6 on the diagonal are the singular values of the generalized Jacobian matrix, and satisfy s 1 ≥s 1 ≥…≥s 6 ≥0

SS == sthe s 11 00 00 00 00 00 00 sthe s 22 00 00 00 00 00 00 sthe s 33 00 00 00 00 00 00 sthe s 44 00 00 00 00 00 00 sthe s 55 00 00 00 00 00 00 sthe s 66

2.一条已知的穿过障碍物的连续路径2. A known continuous path through obstacles

该已知连续路径如附图3。The known continuous path is shown in Figure 3.

3.基于改进的Milne—Hamming线性多步预测校正方法3. Based on the improved Milne-Hamming linear multi-step prediction and correction method

构造如下形式的线性多步方式,其中αk和βk为待定参数,通过Taylor展开,确定αk和βk可使其达到p阶精度:Construct a linear multi-step method in the following form, where α k and β k are undetermined parameters, through Taylor expansion, determining α k and β k can make it reach p-order accuracy:

&Theta;&Theta; (( tt nno ++ 11 )) == &Sigma;&Sigma; kk == 00 rr &alpha;&alpha; kk &Theta;&Theta; (( tt nno -- kk )) ++ &Sigma;&Sigma; kk == -- 11 rr &beta;&beta; kk &Theta;&Theta; &CenterDot;&CenterDot; (( tt nno -- kk ))

由式上式可构成Milne4步4阶显式公式:From the above formula, the Milne4-step 4-order explicit formula can be formed:

&Theta;&Theta; (( tt nno ++ 11 )) == &Theta;&Theta; (( tt nno -- 33 )) ++ 44 33 &Delta;&Delta; tt (( 22 &Theta;&Theta; &CenterDot;&CenterDot; (( tt nno )) -- &Theta;&Theta; &CenterDot;&Center Dot; (( tt nno -- 11 )) ++ 22 &Theta;&Theta; &CenterDot;&Center Dot; (( tt nno -- 22 )) ))

同时也有Hamming3步4阶隐式公式:There are also Hamming 3-step 4-order implicit formulas:

&Theta;&Theta; (( tt nno ++ 11 )) == 11 88 (( 99 &Theta;&Theta; (( tt nno )) -- &Theta;&Theta; (( tt nno -- 22 )) )) ++ 33 88 &Delta;&Delta; tt (( &Theta;&Theta; &CenterDot;&CenterDot; (( tt nno ++ 11 )) -- 22 &Theta;&Theta; &CenterDot;&CenterDot; (( tt nno )) -- &Theta;&Theta; &CenterDot;&CenterDot; (( tt nno -- 11 )) ))

将上两式联立有下列的Milne—Hamming预测校正算法:Combining the above two formulas, the following Milne-Hamming prediction and correction algorithm can be obtained:

预报: &Theta; ( t n + 1 ) = &Theta; ( t n - 3 ) + 4 3 &Delta; t ( 2 &Theta; &CenterDot; ( t n ) - &Theta; &CenterDot; ( t n - 1 ) + 2 &Theta; &CenterDot; ( t n - 2 ) ) forecast: &Theta; ( t no + 1 ) = &Theta; ( t no - 3 ) + 4 3 &Delta; t ( 2 &Theta; &Center Dot; ( t no ) - &Theta; &Center Dot; ( t no - 1 ) + 2 &Theta; &CenterDot; ( t no - 2 ) )

校正: &Theta; ( t n + 1 ) = 1 8 ( 9 &Theta; ( t n ) - &Theta; ( t n - 2 ) ) + 3 8 &Delta; t ( &Theta; &CenterDot; ( t n + 1 ) - 2 &Theta; &CenterDot; ( t n ) - &Theta; &CenterDot; ( t n - 1 ) ) Correction: &Theta; ( t no + 1 ) = 1 8 ( 9 &Theta; ( t no ) - &Theta; ( t no - 2 ) ) + 3 8 &Delta; t ( &Theta; &CenterDot; ( t no + 1 ) - 2 &Theta; &Center Dot; ( t no ) - &Theta; &Center Dot; ( t no - 1 ) )

下面将基本Milne—Hamming的进行改进,利用外推原理,即The following will improve the basic Milne-Hamming, using the extrapolation principle, that is

&Theta;&Theta; (( tt nno ++ 11 )) -- 11 4040 &Theta;&Theta; Mm (( tt nno ++ 11 )) ++ 1414 4545 &Theta;&Theta; Hh (( tt nno ++ 11 )) 11 4040 ++ 1414 4545 == Oo (( &Delta;t&Delta;t 66 ))

O(Δt6)为误差,其中ΘM(tn+1)为显式的Milne法,ΘH(tn+1)为隐式的Hamming法。从上式可以看出算法的精度提高了一阶,忽略误差项改写为:O(Δt 6 ) is the error, where Θ M (t n+1 ) is the explicit Milne method, and Θ H (t n+1 ) is the implicit Hamming method. It can be seen from the above formula that the accuracy of the algorithm has been improved by one order, ignoring the error term and rewriting as:

&Theta;&Theta; (( tt nno ++ 11 )) -- &Theta;&Theta; Mm (( tt nno ++ 11 )) &ap;&ap; 112112 121121 (( &Theta;&Theta; Hh (( tt nno ++ 11 )) -- &Theta;&Theta; Mm (( tt nno ++ 11 )) ))

&Theta;&Theta; (( tt nno ++ 11 )) -- &Theta;&Theta; Hh (( tt nno ++ 11 )) &ap;&ap; -- 99 121121 (( &Theta;&Theta; Hh (( tt nno ++ 11 )) -- &Theta;&Theta; Mm (( tt nno ++ 11 )) ))

由于是在计算过程中获得的数据,可以用式上两式来调整解算步长Δt,即选择一个合适的步长,使because and is the data obtained in the calculation process, and the above two formulas can be used to adjust the solution step size Δt, that is, to choose an appropriate step size so that

|| -- 99 121121 (( &Theta;&Theta; Hh (( tt nno ++ 11 )) -- &Theta;&Theta; Mm (( tt nno ++ 11 )) )) || << &epsiv;&epsiv;

其中ε是要求达到的计算精度。Where ε is the calculation accuracy required to be achieved.

则最后修正后的Milne公式为:Then the final revised Milne formula is:

&Theta;&Theta; Mm mm (( tt nno ++ 11 )) == &Theta;&Theta; Mm (( tt nno ++ 11 )) ++ 112112 121121 (( &Theta;&Theta; Hh (( tt nno ++ 11 )) -- &Theta;&Theta; Mm (( tt nno ++ 11 )) ))

&Theta;&Theta; Hh mm (( tt nno ++ 11 )) == &Theta;&Theta; Hh (( tt nno ++ 11 )) -- 99 121121 (( &Theta;&Theta; Hh (( tt nno ++ 11 )) -- &Theta;&Theta; Mm (( tt nno ++ 11 )) ))

结合Milne—Hamming预测校正算法,那么修正后的Milne—Hamming预测校正算法:Combined with the Milne-Hamming predictive correction algorithm, then the revised Milne-Hamming predictive correction algorithm:

预报: &Theta; M ( t n + 1 ) = &Theta; ( t n - 3 ) + 4 3 &Delta; t ( 2 &Theta; &CenterDot; ( t n ) - &Theta; &CenterDot; ( t n - 1 ) + 2 &Theta; &CenterDot; ( t n - 2 ) ) forecast: &Theta; m ( t no + 1 ) = &Theta; ( t no - 3 ) + 4 3 &Delta; t ( 2 &Theta; &Center Dot; ( t no ) - &Theta; &Center Dot; ( t no - 1 ) + 2 &Theta; &Center Dot; ( t no - 2 ) )

修正: &Theta; M m ( t n + 1 ) = &Theta; M ( t n + 1 ) + 112 121 ( &Theta; H ( t n ) - &Theta; M ( t n ) ) fix: &Theta; m m ( t no + 1 ) = &Theta; m ( t no + 1 ) + 112 121 ( &Theta; h ( t no ) - &Theta; m ( t no ) )

校正: &Theta; H ( t n + 1 ) = 1 8 ( 9 &Theta; ( t n ) - &Theta; ( t n - 2 ) ) + 3 8 &Delta; t ( &Theta; &CenterDot; ( t n + 1 , &Theta; M m ( t n + 1 ) ) - 2 &Theta; &CenterDot; ( t n ) - &Theta; &CenterDot; ( t n - 1 ) ) Correction: &Theta; h ( t no + 1 ) = 1 8 ( 9 &Theta; ( t no ) - &Theta; ( t no - 2 ) ) + 3 8 &Delta; t ( &Theta; &Center Dot; ( t no + 1 , &Theta; m m ( t no + 1 ) ) - 2 &Theta; &Center Dot; ( t no ) - &Theta; &Center Dot; ( t no - 1 ) )

修正: &Theta; ( t n + 1 ) = &Theta; H ( t n + 1 ) - 9 121 ( &Theta; H ( t n + 1 ) - &Theta; M ( t n + 1 ) ) fix: &Theta; ( t no + 1 ) = &Theta; h ( t no + 1 ) - 9 121 ( &Theta; h ( t no + 1 ) - &Theta; m ( t no + 1 ) )

ΘH为校正项,算法开始时先由同阶单步法提供初值Θ(t1)Θ(t2)Θ(t3),具体算法见下一小节。当计算Θ(t4)时,取ΘH(t3)=ΘM(t3)。本发明的Θ(t0)=[000000]TΘ H is the correction item. At the beginning of the algorithm, the initial value Θ(t 1 )Θ(t 2 )Θ(t 3 ) is provided by the same-order single-step method. See the next section for the specific algorithm. When calculating Θ(t 4 ), take Θ H (t 3 )=Θ M (t 3 ). Θ(t 0 )=[000000] T in the present invention.

自此就计算出了Θ(t+Δt),空间机械臂任务空间内预测校正连续轨迹控制算法基本流程图如附图1。Since then, Θ(t+Δt) has been calculated, and the basic flow chart of the predictive correction continuous trajectory control algorithm in the task space of the space manipulator is shown in Figure 1.

4.龙格-库塔单步法4. Runge-Kutta single step

采用四阶Milne—Hamming线性多步预测校正方法,前四个步长的值是已知的,初始时刻的关节角值为Θ(t0)=[000000]T,t1,t2,t3时刻的值用四阶古典龙格-库塔方法来求解。Using the fourth-order Milne-Hamming linear multi-step prediction and correction method, the values of the first four steps are known, and the joint angle value at the initial moment is Θ(t 0 )=[000000] T , t 1 , t 2 , t The value at time 3 is solved using the fourth-order classical Runge-Kutta method.

龙格-库塔法是常用的有效方法,它的优点是:方法简练,易编程序;只需知道起点值即可逐步以定步长外推;具有良好的数值稳定性,即随着计算步长的增大,因初始误差或舍入误差的影响导致数值解的误差不会增长或误差有界。The Runge-Kutta method is a commonly used and effective method. Its advantages are: the method is concise and easy to program; it only needs to know the starting point value and can be extrapolated step by step with a fixed step length; it has good numerical stability, that is, with the calculation As the step size increases, the error of the numerical solution will not increase or the error will be bounded due to the influence of the initial error or rounding error.

以下为四阶古典龙格-库塔公式:The following is the fourth-order classical Runge-Kutta formula:

&Theta;&Theta; (( tt nno ++ 11 )) == &Theta;&Theta; (( tt nno )) ++ 11 66 (( kk 11 ++ 22 kk 22 ++ 22 kk 33 ++ kk 44 ))

k1=Δt*Θ(tn,Θ(tn))k 1 =Δt*Θ(t n ,Θ(t n ))

kk 22 == &Delta;&Delta; tt ** &Theta;&Theta; (( tt nno ++ &Delta;&Delta; tt 22 ,, &Theta;&Theta; (( tt nno )) ++ kk 11 22 ))

kk 33 == &Delta;&Delta; tt ** &Theta;&Theta; (( tt nno ++ &Delta;&Delta; tt 22 ,, &Theta;&Theta; (( tt nno )) ++ kk 22 22 ))

k4=Δt*Θ(tn+Δt,Θ(tn)+k3)k 4 =Δt*Θ(t n +Δt,Θ(t n )+k 3 )

本发明的实施例是在以本发明技术方案为前提下进行实施的,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述实施例。各连杆的质量特性及仿真参数表如表二、三。The embodiments of the present invention are implemented on the premise of the technical solutions of the present invention, and detailed implementation methods and specific operation processes are given, but the protection scope of the present invention is not limited to the following embodiments. The mass characteristics and simulation parameters of each connecting rod are shown in Tables 2 and 3.

表二:空间机械臂各连杆的质量特性Table 2: Mass characteristics of each link of the space manipulator

表三:仿真参数表Table 3: Simulation parameter table

通过仿真可以计算出,没有采用Milne-Hamming方法时末端器实际到达的终点并不是设定的目标点,二者之间存在一定误差,末端器实际到达的点的位置如下:It can be calculated by simulation that when the Milne-Hamming method is not used, the end point actually reached by the end device is not the set target point, and there is a certain error between the two. The position of the point where the end device actually arrives is as follows:

pef=[0.19640.9996-0.3055]T p ef =[0.19640.9996-0.3055] T

与设定的机械臂末端器目标点的位置ped相比较,二者之间的误差为:F=0.0066。Compared with the set position p ed of the target point of the end device of the manipulator, the error between the two is: F=0.0066.

现在,分别在没有采用Milne-Hamming方法时步长为0.1,0.05,0.01和采用Milne-Hamming方法时步长为0.1的情况下,经过仿真得到以下结果:Now, when the step size is 0.1, 0.05, 0.01 when the Milne-Hamming method is not used and the step size is 0.1 when the Milne-Hamming method is used, the following results are obtained through simulation:

ΔtΔt 0.10.1 0.050.05 0.010.01 采用M-H时0.10.1 when using M-H Ff 0.00660.0066 0.00270.0027 0.00180.0018 0.00130.0013

具体实施步骤为:The specific implementation steps are:

步骤1:SVD分解Step 1: SVD decomposition

由于空间机器人在运动规划过程中存在因动力学奇异而导致的关节速度无限大或无法计算的问题,因此在运用逆广义雅克比矩阵求机械臂各关节角之前要先避奇异,本文采用的是阻尼最小方差法(DLS)。由于采用DLS避歧义,空间机械臂末端器到达期望位姿产生的误差会增大,本文加入SVD分解,只针对发生歧义的关节进行避歧义计算来降低误差。然而该方法的精度较低,论文又引入数值分析方法中的线性多步预测校正方法来进一步减小误差。Since the space robot has the problem that the joint speed is infinite or cannot be calculated due to the singularity of the dynamics in the motion planning process, it is necessary to avoid the singularity before using the inverse generalized Jacobian matrix to find the joint angles of the manipulator. This paper uses Damped least variance method (DLS). Due to the use of DLS to avoid ambiguity, the error caused by the end device of the space manipulator reaching the desired pose will increase. In this paper, SVD decomposition is added, and the ambiguity avoidance calculation is only performed on the joints where ambiguity occurs to reduce the error. However, the accuracy of this method is low, and the paper introduces the linear multi-step prediction and correction method in the numerical analysis method to further reduce the error.

步骤2:龙格-库塔单步法Step 2: Runge-Kutta single-step method

采用四阶Milne—Hamming线性多步预测校正方法,前四个步长的值是已知的,初始时刻的值为Θ(t0)=[000000]T,t=0.1,0.2,0.3时刻的值用四阶古典龙格-库塔方法来求解。Using the fourth-order Milne-Hamming linear multi-step prediction and correction method, the values of the first four steps are known, and the values at the initial moment are Θ(t 0 )=[000000] T , at t=0.1,0.2,0.3 The values are solved using the fourth-order classical Runge-Kutta method.

龙格-库塔法是常用的有效方法,它的优点是:方法简练,易编程序;只需知道起点值即可逐步以定步长外推;具有良好的数值稳定性,即随着计算步长的增大,因初始误差或舍入误差的影响导致数值解的误差不会增长或误差有界。The Runge-Kutta method is a commonly used and effective method. Its advantages are: the method is concise and easy to program; it can be extrapolated step by step with a fixed step length only by knowing the starting point; it has good numerical stability, that is, with the calculation With the increase of the step size, the error of the numerical solution will not increase or the error is bounded due to the influence of the initial error or rounding error.

步骤3:基于改进的Milne—Hamming线性多步预测校正方法Step 3: Based on the improved Milne-Hamming linear multi-step prediction and correction method

附图4是未使用Milne—Hamming线性多步预测校正方法的末端器轨迹跟踪路径图;附图5是使用了Milne—Hamming线性多步预测校正方法的末端器轨迹跟踪路径图。图中绿色虚线轨迹为已知连续轨迹,红色实线为6-DOF空间机械臂末端器的轨迹跟踪路径。从附图5中可以看出,两条轨迹基本重叠。表明,本发明的Milne—Hamming线性多步预测校正方法使末端器跟踪连续轨迹更精确。Accompanying drawing 4 is the trajectory tracking path diagram of the terminal device without using the Milne-Hamming linear multi-step prediction correction method; accompanying drawing 5 is the trajectory tracking path diagram of the end device using the Milne-Hamming linear multi-step prediction correction method. The green dotted line trajectory in the figure is a known continuous trajectory, and the red solid line is the trajectory tracking path of the 6-DOF space manipulator end device. It can be seen from Fig. 5 that the two traces basically overlap. It shows that the Milne-Hamming linear multi-step prediction and correction method of the present invention makes the end effector track the continuous trajectory more accurately.

附图6和7为使用Milne—Hamming线性多步预测校正方法前后的末端器跟踪轨迹与连续路径的三轴变化图。Accompanying drawings 6 and 7 are three-axis change diagrams of end-effector tracking trajectory and continuous path before and after using the Milne-Hamming linear multi-step prediction correction method.

Claims (2)

1. for the method for space manipulator continuous trajectory tracking, it is characterized in that, step is as follows:
1), with inverse broad sense Jacobi method solve that kinematics velocity stage is inverse separates, control space manipulator end device and follow the tracks of a known track;
2), by Milne-Hamming linear multi step predicted correction Methods and steps 1) described in inverse broad sense Jacobi method combine;
3), utilization Runge-Kutta methods solves front four initial values needed for Milne-Hamming linear multi step predicted correction method;
4), by step 1)-3) each joint angle of mechanical arm that obtains brings space manipulator kinematical equation into and obtains the continuous path after correcting.
2. as claimed in claim 1 for the method for space manipulator continuous trajectory tracking, it is characterized in that, the joint velocity infinity or imponderable problem that cause because of dynamic singularity is there is in space manipulator in motion planning process, therefore to first keep away unusual before the inverse broad sense Jacobian matrix of utilization asks each joint angle of mechanical arm, employing be damping least variance method DLS; Owing to adopting DLS to keep away unusual, the error that space manipulator end device arrives expected pose generation can increase, and adds SVD and decomposes, and only carries out keeping away unusual calculating to reduce error for the unusual joint of generation; SVD decomposition formula is:
J = U &OverBar; SV T
The meaning of this equation is: can be analyzed to for Arbitrary Matrix J s, V tthe dot product of three matrixes; Wherein: v is orthogonal matrix (being n × n matrix), and S is diagonal matrix, the element s on diagonal 1, s 2... .., s 6be the singular value of broad sense Jacobian matrix, and meet S 1>=S 2>=...>=S 6>=0
S = s 1 0 0 0 0 0 0 s 2 0 0 0 0 0 0 s 3 0 0 0 0 0 0 s 4 0 0 0 0 0 0 s 5 0 0 0 0 0 0 s 6 .
CN201410271442.XA 2014-06-18 2014-06-18 For the method for space manipulator continuous trajectory tracking Active CN104070525B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410271442.XA CN104070525B (en) 2014-06-18 2014-06-18 For the method for space manipulator continuous trajectory tracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410271442.XA CN104070525B (en) 2014-06-18 2014-06-18 For the method for space manipulator continuous trajectory tracking

Publications (2)

Publication Number Publication Date
CN104070525A CN104070525A (en) 2014-10-01
CN104070525B true CN104070525B (en) 2016-02-03

Family

ID=51592342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410271442.XA Active CN104070525B (en) 2014-06-18 2014-06-18 For the method for space manipulator continuous trajectory tracking

Country Status (1)

Country Link
CN (1) CN104070525B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772917B (en) * 2014-12-16 2018-08-21 苏州继企机电科技有限公司 A kind of three joint spot welding robot's Trajectory Tracking Control methods
CN106064377B (en) * 2016-06-02 2018-06-29 西北工业大学 A kind of excitation track optimizing method of robot for space dynamic parameters identification
CN108326854B (en) * 2018-01-17 2020-05-12 浙江大学 Inverse kinematics solving method for multi-joint mechanical arm space function trajectory motion
CN108356820B (en) * 2018-01-17 2020-05-12 浙江大学 An inverse kinematics solution method for manual manipulation of a multi-joint manipulator
CN109934161B (en) * 2019-03-12 2023-04-28 天津瑟威兰斯科技有限公司 Vehicle identification and detection method and system based on convolutional neural network
CN110253574B (en) * 2019-06-05 2020-11-17 浙江大学 Multi-task mechanical arm pose detection and error compensation method
CN110515299B (en) * 2019-08-01 2021-04-20 中国科学院力学研究所 Master satellite attitude decoupling forecasting method and system of satellite-arm coupling system
CN110608724B (en) * 2019-09-10 2021-12-24 上海航天控制技术研究所 Direct solving method for drift-free attitude in satellite maneuvering imaging process
CN110587611B (en) * 2019-09-30 2021-06-22 中电九天智能科技有限公司 Mechanical arm control method for television set assembly line
CN111872937B (en) * 2020-07-23 2022-04-19 西华大学 A Control Method for Uncertain Manipulators in Task Space
CN115922705B (en) * 2022-11-28 2023-09-15 广州数控设备有限公司 Robot joint speed calculation method, system and computer equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179514A (en) * 1990-08-08 1993-01-12 The Research Foundation Of State University Of New York Method and apparatus for trajectory control of robot manipulators or the like
CN101508113A (en) * 2009-03-11 2009-08-19 哈尔滨工业大学 Robot track programming method based cosine second-order
CN101733746A (en) * 2009-12-22 2010-06-16 哈尔滨工业大学 Autonomously identifying and capturing method of non-cooperative target of space robot
CN101890715A (en) * 2009-04-22 2010-11-24 库卡机器人有限公司 Method and device to regulate a manipulator
CN103009389A (en) * 2012-11-30 2013-04-03 北京控制工程研究所 Track planning method of redundant space mechanical arm for on-track catching

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179514A (en) * 1990-08-08 1993-01-12 The Research Foundation Of State University Of New York Method and apparatus for trajectory control of robot manipulators or the like
CN101508113A (en) * 2009-03-11 2009-08-19 哈尔滨工业大学 Robot track programming method based cosine second-order
CN101890715A (en) * 2009-04-22 2010-11-24 库卡机器人有限公司 Method and device to regulate a manipulator
CN101733746A (en) * 2009-12-22 2010-06-16 哈尔滨工业大学 Autonomously identifying and capturing method of non-cooperative target of space robot
CN103009389A (en) * 2012-11-30 2013-04-03 北京控制工程研究所 Track planning method of redundant space mechanical arm for on-track catching

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
空间机器人目标捕获过程中的载体姿态扰动优化;吴剑威,史士财,刘宏,蔡鹤皋;《机器人》;20110131;第33卷;第16-21页 *
自由漂浮空间机器人笛卡尔避奇异运动规划;吴剑威,史士财,刘宏;《华中科技大学学报》;20091130;第37卷;第5-8页 *

Also Published As

Publication number Publication date
CN104070525A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
CN104070525B (en) For the method for space manipulator continuous trajectory tracking
CN106945041B (en) A Redundant Manipulator Repeated Motion Planning Method
CN104760041B (en) A kind of Obstacle avoidance motion planning method based on impact degree
CN103909522B (en) A kind of Six-DOF industrial robot is by the method in unusual territory
CN107662211B (en) A Predictive Control Method of Space Robot Based on Quantum Particle Swarm Optimization
CN101804627B (en) Redundant manipulator motion planning method
CN107891424A (en) A kind of finite time Neural network optimization for solving redundant mechanical arm inverse kinematics
CN104331547B (en) Space mechanical arm structure parameter optimization method based on operability
CN103878770B (en) Robot for space vision time delay error compensating method based on velocity estimation
CN107966907B (en) An obstacle avoidance solution applied to redundant manipulators
CN106938462A (en) A kind of remote operating bilateral control method based on self adaptation PD and fuzzy logic
CN107150341A (en) A kind of welding robot path of welding planing method based on discrete particle cluster algorithm
CN102509025A (en) Method for quick solution of six-degree-of-freedom humanoid dexterous arm inverse kinematics
CN107160401B (en) A method for solving the joint angle offset problem of redundant manipulators
CN102207988A (en) Efficient dynamic modeling method for multi-degree of freedom (multi-DOF) mechanical arm
CN103481288B (en) A kind of 5 articulated robot end-of-arm tooling posture control methods
KR102030141B1 (en) Method and system for controlling elbow of robot
CN107962566A (en) A kind of mobile mechanical arm repetitive motion planning method
CN103955225B (en) Fuel optimal pose coordination method suitable for space tether robot in target approaching process
CN102514008A (en) Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
CN105598984B (en) A kind of initial method of redundancy mechanical arm acceleration layer motion planning
CN104199292A (en) Method for planning space manipulator tail end effector avoidance path based on ant colony algorithm
CN106406097A (en) Distributed adaptive coordinated control method for multi-manipulator systems
CN105234930B (en) Control method of motion of redundant mechanical arm based on configuration plane
CN104999463A (en) Configuration-plane-based motion control method for redundant robot manipulator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20141001

Assignee: Dalian Jiaji automation Electromechanical Technology Co.,Ltd.

Assignor: DALIAN University

Contract record no.: X2024980042536

Denomination of invention: Method for Continuous Trajectory Tracking of Space Robot Arm

Granted publication date: 20160203

License type: Common License

Record date: 20241227

EE01 Entry into force of recordation of patent licensing contract