CN104070178A - Preparation method for monodisperse bismuth nano-particles with controllable particle sizes - Google Patents
Preparation method for monodisperse bismuth nano-particles with controllable particle sizes Download PDFInfo
- Publication number
- CN104070178A CN104070178A CN201410308391.3A CN201410308391A CN104070178A CN 104070178 A CN104070178 A CN 104070178A CN 201410308391 A CN201410308391 A CN 201410308391A CN 104070178 A CN104070178 A CN 104070178A
- Authority
- CN
- China
- Prior art keywords
- trimethylsilyl
- bis
- solution
- bismuth
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052797 bismuth Inorganic materials 0.000 title claims abstract description 42
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000002245 particle Substances 0.000 title claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims abstract description 29
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229920001577 copolymer Polymers 0.000 claims abstract 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 78
- 239000000243 solution Substances 0.000 claims description 59
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 48
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 35
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 30
- -1 bis(trimethylsilyl)aminobismuth Chemical compound 0.000 claims description 26
- 239000011259 mixed solution Substances 0.000 claims description 15
- WRIKHQLVHPKCJU-UHFFFAOYSA-N sodium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([Na])[Si](C)(C)C WRIKHQLVHPKCJU-UHFFFAOYSA-N 0.000 claims description 13
- 229920001400 block copolymer Polymers 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 7
- 239000012296 anti-solvent Substances 0.000 claims description 5
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 5
- 239000000706 filtrate Substances 0.000 claims description 5
- 239000012046 mixed solvent Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- UOULCEYHQNCFFH-UHFFFAOYSA-M sodium;hydroxymethanesulfonate Chemical compound [Na+].OCS([O-])(=O)=O UOULCEYHQNCFFH-UHFFFAOYSA-M 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 238000002390 rotary evaporation Methods 0.000 claims description 4
- 238000003760 magnetic stirring Methods 0.000 claims description 2
- ARJQZFMBBVUJLW-UHFFFAOYSA-N [[bis[bis(trimethylsilyl)amino]bismuthanyl-trimethylsilylamino]-dimethylsilyl]methane Chemical compound [Bi+3].C[Si](C)(C)[N-][Si](C)(C)C.C[Si](C)(C)[N-][Si](C)(C)C.C[Si](C)(C)[N-][Si](C)(C)C ARJQZFMBBVUJLW-UHFFFAOYSA-N 0.000 claims 1
- HMRCZKQIOFZACX-UHFFFAOYSA-N lithium;trimethylsilylazanide Chemical compound [Li+].C[Si](C)(C)[NH-] HMRCZKQIOFZACX-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 6
- 238000003786 synthesis reaction Methods 0.000 abstract description 6
- 239000002086 nanomaterial Substances 0.000 abstract description 4
- 239000002904 solvent Substances 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 2
- 239000011943 nanocatalyst Substances 0.000 abstract description 2
- VCDPQHUKAZEAFK-UHFFFAOYSA-N C[Si](C)(C)[Bi](N)[Si](C)(C)C Chemical compound C[Si](C)(C)[Bi](N)[Si](C)(C)C VCDPQHUKAZEAFK-UHFFFAOYSA-N 0.000 abstract 1
- 230000001012 protector Effects 0.000 abstract 1
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000002082 metal nanoparticle Substances 0.000 description 5
- 239000002159 nanocrystal Substances 0.000 description 5
- 239000002070 nanowire Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000005457 ice water Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 2
- JZDQLZZQOAWSCG-UHFFFAOYSA-N aminobismuth Chemical compound [Bi]N JZDQLZZQOAWSCG-UHFFFAOYSA-N 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- DMHSCCFHYJAXNG-UHFFFAOYSA-N sodium;bis(trimethylsilyl)azanide;oxolane Chemical compound [Na+].C1CCOC1.C[Si](C)(C)[N-][Si](C)(C)C DMHSCCFHYJAXNG-UHFFFAOYSA-N 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Colloid Chemistry (AREA)
Abstract
Description
技术领域 technical field
本发明属于纳米材料合成技术领域,具体涉及粒径可控的单分散铋纳米粒子的制备方法。 The invention belongs to the technical field of nanomaterial synthesis, and in particular relates to a preparation method of monodisperse bismuth nanoparticles with controllable particle diameters.
背景技术 Background technique
单分散纳米晶指尺寸及形状均一、且在特定介质中具有良好分散能力的纳米材料,同时也是组装具有功能特性纳米结构材料的理想构建基元。因此,合成单分散纳米晶具有十分重要的意义。 自从1993年Bawendi研究组成功制备CdS/CdSe单分散半导体量子点以来,单分散纳米晶的合成已取得一系列重要进展。目前对于各类单分散纳米晶已基本都能通过一定的制备方法得到。然而,为实现单分散纳米晶的规模化工业生产,更为简易、经济、快速、宏量的制备方法仍有待进一步发展。 Monodisperse nanocrystals refer to nanomaterials with uniform size and shape and good dispersibility in specific media. They are also ideal building blocks for assembling nanostructured materials with functional properties. Therefore, the synthesis of monodisperse nanocrystals is of great significance. Since the Bawendi research group successfully prepared CdS/CdSe monodisperse semiconductor quantum dots in 1993, a series of important progress has been made in the synthesis of monodisperse nanocrystals. At present, all kinds of monodisperse nanocrystals can basically be obtained through certain preparation methods. However, in order to realize the large-scale industrial production of monodisperse nanocrystals, more simple, economical, rapid and macro-scale preparation methods still need to be further developed.
单分散的贵金属纳米粒子的合成已有大量的报道。相对于贵金属纳米粒子而言,铋金属纳米粒子是并不是一种常见的金属纳米粒子,但是其作为低熔点金属纳米粒子,其可以催化半导体纳米线的生长,在一维半导体纳米线的制备过程中,具有不可替代的作用。铋纳米粒子的直径大小,可以调节半导体纳米线的直径,铋纳米粒子的分散程度,也会影响半导体纳米线的质量。因此,粒径可控的单分散铋纳米粒子的合成是制备高质量半导体纳米线的前提保证。 The synthesis of monodisperse noble metal nanoparticles has been extensively reported. Compared with noble metal nanoparticles, bismuth metal nanoparticles are not a common metal nanoparticle, but as a low melting point metal nanoparticle, it can catalyze the growth of semiconductor nanowires, in the preparation process of one-dimensional semiconductor nanowires , has an irreplaceable role. The diameter of the bismuth nanoparticles can adjust the diameter of the semiconductor nanowires, and the degree of dispersion of the bismuth nanoparticles will also affect the quality of the semiconductor nanowires. Therefore, the synthesis of monodisperse bismuth nanoparticles with controllable particle size is a prerequisite for the preparation of high-quality semiconductor nanowires.
发明内容 Contents of the invention
本发明的目的在于提出一种粒径可控的单分散铋纳米粒子的制备方法。 The object of the present invention is to propose a method for preparing monodisperse bismuth nanoparticles with controllable particle size.
本发明包括以下步骤: The present invention comprises the following steps:
1)制备双(三甲基硅基)氨基铋的四氢呋喃溶液; 1) Preparation of tetrahydrofuran solution of bis(trimethylsilyl)aminobismuth;
2)取双(三甲基硅基)氨基铋的四氢呋喃溶液和双(三甲基硅基)氨基钠(Na[N(SiMe3)2])的四氢呋喃溶液混合形成含有铋前驱体的混合溶液;另取聚乙烯吡咯烷酮-十六烷嵌段共聚物(Ganex V-216)和二苯醚在氮气保护下,搅拌条件下加热到160~210℃后,再将含有铋前驱体的混合溶液注入反应体系中,经反应30分钟~5小时后,将反应体系冷却到室温,获得黑色胶体溶液; 2) Mix bis(trimethylsilyl)amide bismuth tetrahydrofuran solution with bis(trimethylsilyl)amide sodium (Na[N(SiMe 3 ) 2 ]) tetrahydrofuran solution to form a mixed solution containing bismuth precursor ; Another polyvinylpyrrolidone-hexadecane block copolymer (Ganex V-216) and diphenyl ether were heated to 160-210°C under nitrogen protection and stirring, and then the mixed solution containing bismuth precursor was injected into In the reaction system, after reacting for 30 minutes to 5 hours, the reaction system was cooled to room temperature to obtain a black colloidal solution;
3)清洗:将黑色胶体溶液与甲醇混合,反复震荡后离心后,再用甲苯和反溶剂的混合溶剂重新分散,离心,取得单分散铋纳米粒子。 3) Cleaning: Mix the black colloidal solution with methanol, shake repeatedly and centrifuge, then redisperse with a mixed solvent of toluene and anti-solvent, and centrifuge to obtain monodisperse bismuth nanoparticles.
本发明以双(三甲基硅基)氨基铋(Bi[N(SiMe3)2]3)作为铋源,以聚乙烯吡咯烷酮-十六烷嵌段共聚物(Ganex V-216)作为保护剂,以二苯醚为溶剂。将离心后的产品分散在甲苯中,保持其良好的分散性。本发明利用简单的溶剂热法制备出了粒径可控的单分散铋纳米粒子。本发明方法操作简便,反应条件可控,所得铋纳米粒子分散性,粒径均一,为后续的应用提供了很好的铋纳米催化剂晶种。 The present invention uses bis(trimethylsilyl)aminobismuth (Bi[N(SiMe 3 ) 2 ] 3 ) as a bismuth source, and polyvinylpyrrolidone-hexadecane block copolymer (Ganex V-216) as a protective agent , with diphenyl ether as the solvent. Disperse the centrifuged product in toluene to maintain its good dispersibility. The invention utilizes a simple solvothermal method to prepare monodisperse bismuth nanoparticles with controllable particle size. The method of the invention is easy to operate, the reaction conditions are controllable, the obtained bismuth nano particles have good dispersibility and uniform particle size, and good bismuth nano catalyst crystal seeds are provided for subsequent applications.
另外,本发明所述双(三甲基硅基)氨基铋的四氢呋喃溶液中双(三甲基硅基)氨基铋的浓度为1 moL/L,所述双(三甲基硅基)氨基钠(Na[N(SiMe3)2])的四氢呋喃溶液中双(三甲基硅基)氨基钠含量为1 moL/L,所述步骤2)中双(三甲基硅基)氨基铋的四氢呋喃溶液和双(三甲基硅基)氨基钠(Na[N(SiMe3)2])的四氢呋喃溶液的混合体积比为1︰3~6。此体积比主要是为了控制铋被还原的速率,获得粒径可控的纳米粒子。 In addition, the concentration of bis(trimethylsilyl)aminobismuth in the tetrahydrofuran solution of bis(trimethylsilyl)aminobismuth in the present invention is 1 moL/L, and the bis(trimethylsilyl)amide sodium (Na[N(SiMe 3 ) 2 ]) sodium bis(trimethylsilyl)amide content in tetrahydrofuran solution is 1 moL/L, the tetrahydrofuran of bis(trimethylsilyl)aminobismuth in step 2) The mixing volume ratio of the solution and the tetrahydrofuran solution of sodium bis(trimethylsilyl)amide (Na[N(SiMe 3 ) 2 ]) is 1:3-6. This volume ratio is mainly to control the reduction rate of bismuth to obtain nanoparticles with controllable particle size.
所述步骤2)中聚乙烯吡咯烷酮-十六烷嵌段共聚物和二苯醚的投料质量比为1︰1.5~6。此投料比可保证聚乙烯吡咯烷酮-十六烷嵌段共聚物可以完全溶解在二苯醚,且维持嵌段共聚物在反应体系中适宜的浓度。 The mass ratio of polyvinylpyrrolidone-hexadecane block copolymer and diphenyl ether in the step 2) is 1:1.5-6. This feeding ratio can ensure that the polyvinylpyrrolidone-hexadecane block copolymer can be completely dissolved in diphenyl ether, and maintain a suitable concentration of the block copolymer in the reaction system.
所述步骤2)中所述双(三甲基硅基)氨基铋的四氢呋喃溶液与所述聚乙烯吡咯烷酮-十六烷嵌段共聚物的混合比为0.2mL~1.5mL︰2 g~15g。此投料比可以获得适宜的反应物浓度,获得粒径可控的纳米粒子。 The mixing ratio of the tetrahydrofuran solution of bis(trimethylsilyl)aminobismuth in the step 2) to the polyvinylpyrrolidone-hexadecane block copolymer is 0.2mL-1.5mL: 2 g-15g. This feeding ratio can obtain suitable reactant concentration and obtain nanoparticles with controllable particle size.
所述反溶剂为甲醇或乙醇。在清洗样品过程中,用甲醇或乙醇作为反溶剂,使纳米粒子从溶液中分离出来。 The anti-solvent is methanol or ethanol. During sample washing, methanol or ethanol was used as an anti-solvent to separate the nanoparticles from solution.
另外,本发明制备双(三甲基硅基)氨基铋的四氢呋喃溶液的具体方法可以是:在0℃环境温度下,将三氯化铋溶解于二乙醚和四氢呋喃的混合溶液中,然后再缓慢滴加到双(三甲基硅基)氨基锂的二乙基醚溶液中,在磁力搅拌条件下反应至反应结束;再将反应液过滤后,将黄绿色滤液旋转蒸发,取旋转蒸发的浓缩液溶解于戊烷中,再经过滤后再次旋转蒸发,得到黄色粉末——双(三甲基硅基)氨基铋,将黄色粉末分散到四氢呋喃中,形成双(三甲基硅基)氨基铋的四氢呋喃溶液。 In addition, the specific method for preparing the tetrahydrofuran solution of bis(trimethylsilyl)aminobismuth in the present invention may be: at 0°C ambient temperature, bismuth trichloride is dissolved in a mixed solution of diethyl ether and tetrahydrofuran, and then slowly Add it dropwise to the diethyl ether solution of lithium bis(trimethylsilyl)amide, and react under magnetic stirring conditions until the reaction is complete; then filter the reaction solution, rotate the yellow-green filtrate to evaporate, and take the concentrated solution was dissolved in pentane, and then filtered and then rotatively evaporated again to obtain a yellow powder—bis(trimethylsilyl)aminobismuth, which was dispersed in tetrahydrofuran to form bis(trimethylsilyl)aminobismuth solution in tetrahydrofuran.
附图说明 Description of drawings
图1为实施1制备的铋纳米粒子的透射电镜图。 FIG. 1 is a transmission electron microscope image of bismuth nanoparticles prepared in Embodiment 1.
图2为实施2制备的铋纳米粒子的透射电镜图。 FIG. 2 is a transmission electron microscope image of bismuth nanoparticles prepared in Embodiment 2.
图3为实施3制备的铋纳米粒子的透射电镜图。 3 is a transmission electron microscope image of bismuth nanoparticles prepared in Embodiment 3.
具体实施方式 Detailed ways
实施例1Example 1
1.双(三甲基硅基)氨基铋的四氢呋喃溶液的制备: 1. Preparation of tetrahydrofuran solution of bis(trimethylsilyl)aminobismuth:
在0℃下(如冰水浴中),将2.15 g双(三甲基硅基)氨基锂(Li[N(SiMe3)2])溶解于20 mL二乙基醚溶液中,形成双(三甲基硅基)氨基锂的二乙基醚溶液。 Dissolve 2.15 g of lithium bis(trimethylsilyl)amide (Li[N(SiMe 3 ) 2 ]) in 20 mL of diethyl ether solution at 0 °C (e.g., in an ice-water bath) to form bis(trimethylsilyl)amide Lithium methylsilylamide in diethyl ether.
将1.35 g三氯化铋溶解于20 mL二乙醚和5 mL四氢呋喃混合溶液中,并将其缓慢滴加到双(三甲基硅基)氨基锂的二乙基醚溶液中,磁力搅拌反应1小时。 Dissolve 1.35 g of bismuth trichloride in a mixed solution of 20 mL of diethyl ether and 5 mL of tetrahydrofuran, and slowly add it dropwise to the diethyl ether solution of lithium bis(trimethylsilyl)amide, and magnetically stir for reaction 1 Hour.
反应结束后将反应液过滤后,将黄绿色滤液旋转蒸发,然后,加入10 mL戊烷溶解,过滤后再次旋转蒸发,得到黄色粉末,即双(三甲基硅基)氨基铋,将其分散到四氢呋喃中,形成双(三甲基硅基)氨基铋的浓度为1 moL/L的双(三甲基硅基)氨基铋的四氢呋喃溶液。 After the reaction was completed, the reaction solution was filtered, and the yellow-green filtrate was rotary evaporated. Then, 10 mL of pentane was added to dissolve, and after filtration, the rotary evaporation was performed again to obtain a yellow powder, bis(trimethylsilyl)aminobismuth, which was dispersed into tetrahydrofuran to form a tetrahydrofuran solution of bis(trimethylsilyl)aminobismuth with a concentration of 1 moL/L.
浓度为1 moL/L的双(三甲基硅基)氨基钠的四氢呋喃溶液可以购买得到。 A solution of sodium bis(trimethylsilyl)amide in THF at a concentration of 1 mol/L is commercially available.
2.取0.5 mL双(三甲基硅基)氨基铋的四氢呋喃溶液和2 mL双(三甲基硅基)氨基钠的四氢呋喃溶液混合,形成含有铋前驱体的混合溶液,并置于注射器中。 2. Mix 0.5 mL bis(trimethylsilyl)amide bismuth tetrahydrofuran solution with 2 mL bis(trimethylsilyl)amide sodium tetrahydrofuran solution to form a mixed solution containing bismuth precursor, and place it in a syringe .
另取10 g聚乙烯吡咯烷酮-十六烷嵌段共聚物(Ganex V-216)和20 g二苯醚在氮气保护下,磁力搅拌并加热到170℃,形成反应体系。 Another 10 g of polyvinylpyrrolidone-hexadecane block copolymer (Ganex V-216) and 20 g of diphenyl ether were magnetically stirred and heated to 170 °C under nitrogen protection to form a reaction system.
将含有铋前驱体的混合溶液,注射到反应体系中,溶液迅速变色,变为黑色。反应30分钟后,停止对反应体系的加热,冷却到室温,获得黑色胶体溶液。 The mixed solution containing the bismuth precursor is injected into the reaction system, and the solution changes color rapidly to black. After reacting for 30 minutes, the heating of the reaction system was stopped and cooled to room temperature to obtain a black colloidal solution.
3.产品清洗:在上述反应生成物中加入30 mL 甲醇,反复震荡后后离心,离心速度8000转/分钟,用5 mL甲苯和25 mL甲醇的混合溶剂重新分散,离心,重复3~4次后,将离心后的产品——铋纳米粒子分散在10mL甲苯中,浓度为10 mg/mL,可见其保持其良好的分散性。 3. Product cleaning: add 30 mL of methanol to the above reaction product, centrifuge after repeated shaking at a speed of 8000 rpm, redisperse with a mixed solvent of 5 mL of toluene and 25 mL of methanol, and centrifuge for 3 to 4 times Finally, the centrifuged product—bismuth nanoparticles was dispersed in 10 mL of toluene at a concentration of 10 mg/mL, which shows that it maintains its good dispersion.
4、图1 显示了所得铋纳米粒子的透射电镜图像,从图中可见:铋纳米粒子的直径控制在9.2 ±1.2 nm。 4. Figure 1 shows the transmission electron microscope image of the obtained bismuth nanoparticles. It can be seen from the figure that the diameter of the bismuth nanoparticles is controlled at 9.2 ± 1.2 nm.
实施例2Example 2
1.双(三甲基硅基)氨基铋的四氢呋喃溶液的制备: 1. Preparation of tetrahydrofuran solution of bis(trimethylsilyl)aminobismuth:
在0℃下(如冰水浴中),将2.15 g双(三甲基硅基)氨基锂(Li[N(SiMe3)2])溶解于20 mL二乙基醚溶液中,形成双(三甲基硅基)氨基锂的二乙基醚溶液。 Dissolve 2.15 g of lithium bis(trimethylsilyl)amide (Li[N(SiMe 3 ) 2 ]) in 20 mL of diethyl ether solution at 0 °C (e.g., in an ice-water bath) to form bis(trimethylsilyl)amide Lithium methylsilylamide in diethyl ether.
将1.35 g三氯化铋溶解于20 mL二乙醚和5 mL四氢呋喃混合溶液中,并将其缓慢滴加到双(三甲基硅基)氨基锂的二乙基醚溶液中,磁力搅拌反应1小时。 Dissolve 1.35 g of bismuth trichloride in a mixed solution of 20 mL of diethyl ether and 5 mL of tetrahydrofuran, and slowly add it dropwise to the diethyl ether solution of lithium bis(trimethylsilyl)amide, and magnetically stir for reaction 1 Hour.
反应结束后将反应液过滤后,将黄绿色滤液旋转蒸发,然后,加入10 mL戊烷溶解,过滤后再次旋转蒸发,得到黄色粉末,即双(三甲基硅基)氨基铋,将其分散到四氢呋喃中,形成双(三甲基硅基)氨基铋的浓度为1 moL/L的双(三甲基硅基)氨基铋的四氢呋喃溶液。 After the reaction was completed, the reaction solution was filtered, and the yellow-green filtrate was rotary evaporated. Then, 10 mL of pentane was added to dissolve, and after filtration, the rotary evaporation was performed again to obtain a yellow powder, bis(trimethylsilyl)aminobismuth, which was dispersed into tetrahydrofuran to form a tetrahydrofuran solution of bis(trimethylsilyl)aminobismuth with a concentration of 1 moL/L.
浓度为1 moL/L的双(三甲基硅基)氨基钠的四氢呋喃溶液可以购买得到。 A solution of sodium bis(trimethylsilyl)amide in THF at a concentration of 1 mol/L is commercially available.
2.取0.5 mL双(三甲基硅基)氨基铋的四氢呋喃溶液和2 mL(1 moL/L)双(三甲基硅基)氨基钠(Na[N(SiMe3)2])四氢呋喃溶液混合,形成含有铋前驱体的混合溶液,并置于注射器中。 2. Take 0.5 mL bis(trimethylsilyl)amide bismuth tetrahydrofuran solution and 2 mL (1 moL/L) bis(trimethylsilyl)amide sodium (Na[N(SiMe 3 ) 2 ]) tetrahydrofuran solution Mix to form a mixed solution containing bismuth precursors and place in a syringe.
另取5g聚乙烯吡咯烷酮-十六烷嵌段共聚物(Ganex V-216)和15 g二苯醚在氮气保护下,磁力搅拌并加热到180℃,形成反应体系。 Another 5 g of polyvinylpyrrolidone-hexadecane block copolymer (Ganex V-216) and 15 g of diphenyl ether were stirred magnetically and heated to 180 °C under nitrogen protection to form a reaction system.
将含有铋前驱体的混合溶液,注射到反应体系中,溶液迅速变色,变为黑色。反应60分钟后,停止对反应体系的加热,冷却到室温,获得黑色胶体溶液。 The mixed solution containing the bismuth precursor is injected into the reaction system, and the solution changes color rapidly to black. After reacting for 60 minutes, the heating of the reaction system was stopped, cooled to room temperature, and a black colloidal solution was obtained.
3.产品清洗:在上述反应生成物中加入30 mL 甲醇,反复震荡后离心,离心速度8000转/分钟,用5 mL甲苯和30 mL乙醇的混合溶剂重新分散,离心,重复3~4次后,将离心后的产品——铋纳米粒子分散在10mL甲苯中,浓度为10 mg/mL,可见其保持其良好的分散性。 3. Product cleaning: Add 30 mL methanol to the above reaction product, shake repeatedly and centrifuge at 8000 rpm, redisperse with a mixed solvent of 5 mL toluene and 30 mL ethanol, centrifuge, repeat 3 to 4 times , the product after centrifugation - bismuth nanoparticles were dispersed in 10mL toluene, the concentration was 10 mg/mL, it can be seen that it maintains its good dispersion.
4.图2 为所得铋纳米粒子的透射电镜图像,从图中可见:铋纳米粒子的直径控制在15.5±1.6 nm。 4. Figure 2 is the transmission electron microscope image of the obtained bismuth nanoparticles. It can be seen from the figure that the diameter of the bismuth nanoparticles is controlled at 15.5±1.6 nm.
实施例3Example 3
1.双(三甲基硅基)氨基铋的四氢呋喃溶液的制备: 1. Preparation of tetrahydrofuran solution of bis(trimethylsilyl)aminobismuth:
在0℃下(如冰水浴中),将2.15 g双(三甲基硅基)氨基锂(Li[N(SiMe3)2])溶解于20 mL二乙基醚溶液中,形成双(三甲基硅基)氨基锂的二乙基醚溶液。 Dissolve 2.15 g of lithium bis(trimethylsilyl)amide (Li[N(SiMe 3 ) 2 ]) in 20 mL of diethyl ether solution at 0 °C (e.g., in an ice-water bath) to form bis(trimethylsilyl)amide Lithium methylsilylamide in diethyl ether.
将1.35 g三氯化铋溶解于20 mL二乙醚和5 mL四氢呋喃混合溶液中,并将其缓慢滴加到双(三甲基硅基)氨基锂的二乙基醚溶液中,磁力搅拌反应1小时。 Dissolve 1.35 g of bismuth trichloride in a mixed solution of 20 mL of diethyl ether and 5 mL of tetrahydrofuran, and slowly add it dropwise to the diethyl ether solution of lithium bis(trimethylsilyl)amide, and magnetically stir for reaction 1 Hour.
反应结束后将反应液过滤后,将黄绿色滤液旋转蒸发,然后,加入10 mL戊烷溶解,过滤后再次旋转蒸发,得到黄色粉末,即双(三甲基硅基)氨基铋,将其分散到四氢呋喃中,形成双(三甲基硅基)氨基铋的浓度为1 moL/L的双(三甲基硅基)氨基铋的四氢呋喃溶液。 After the reaction was completed, the reaction solution was filtered, and the yellow-green filtrate was rotary evaporated. Then, 10 mL of pentane was added to dissolve, and after filtration, the rotary evaporation was performed again to obtain a yellow powder, bis(trimethylsilyl)aminobismuth, which was dispersed into tetrahydrofuran to form a tetrahydrofuran solution of bis(trimethylsilyl)aminobismuth with a concentration of 1 moL/L.
浓度为1 moL/L的双(三甲基硅基)氨基钠的四氢呋喃溶液可以购买得到。 A solution of sodium bis(trimethylsilyl)amide in THF at a concentration of 1 mol/L is commercially available.
2.取1.0 mL双(三甲基硅基)氨基铋的四氢呋喃溶液和5 mL(1 moL/L)双(三甲基硅基)氨基钠(Na[N(SiMe3)2])四氢呋喃溶液混合,形成含有铋前驱体的混合溶液,并置于注射器中。 2. Take 1.0 mL bis(trimethylsilyl)amide bismuth tetrahydrofuran solution and 5 mL (1 moL/L) bis(trimethylsilyl)amide sodium (Na[N(SiMe 3 ) 2 ]) tetrahydrofuran solution Mix to form a mixed solution containing bismuth precursors and place in a syringe.
另取5 g聚乙烯吡咯烷酮-十六烷嵌段共聚物(Ganex V-216)和25 g二苯醚在氮气保护下,磁力搅拌并加热到200℃,形成反应体系。 Another 5 g of polyvinylpyrrolidone-hexadecane block copolymer (Ganex V-216) and 25 g of diphenyl ether were stirred magnetically and heated to 200 °C under nitrogen protection to form a reaction system.
将含有铋前驱体的混合溶液,注射到反应体系中,溶液迅速变色,变为黑色。反应5小时后,停止对反应体系的加热,冷却到室温,获得黑色胶体溶液。 The mixed solution containing the bismuth precursor is injected into the reaction system, and the solution changes color rapidly to black. After reacting for 5 hours, the heating of the reaction system was stopped and cooled to room temperature to obtain a black colloidal solution.
3.产品清洗:在上述反应生成物中加入30 mL 甲醇,反复震荡后离心,离心速度8000转/分钟,用10 mL甲苯和40 mL甲醇或乙醇的混合溶剂重新分散,离心,重复3~4次后,将离心后的产品——铋纳米粒子分散在10mL甲苯中,浓度为20 mg/mL,可见其保持其良好的分散性。 3. Product cleaning: Add 30 mL methanol to the above reaction product, shake repeatedly and centrifuge at 8000 rpm, redisperse with a mixed solvent of 10 mL toluene and 40 mL methanol or ethanol, centrifuge, repeat 3-4 times After three times, the centrifuged product——bismuth nanoparticles was dispersed in 10 mL of toluene with a concentration of 20 mg/mL, which shows that it maintains its good dispersion.
4.图3 显示了所得铋纳米粒子的透射电镜图像,可见:铋纳米粒子的直径控制在21.3±1.8 nm。 4. Figure 3 shows the transmission electron microscope image of the obtained bismuth nanoparticles. It can be seen that the diameter of the bismuth nanoparticles is controlled at 21.3±1.8 nm.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410308391.3A CN104070178A (en) | 2014-07-01 | 2014-07-01 | Preparation method for monodisperse bismuth nano-particles with controllable particle sizes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410308391.3A CN104070178A (en) | 2014-07-01 | 2014-07-01 | Preparation method for monodisperse bismuth nano-particles with controllable particle sizes |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104070178A true CN104070178A (en) | 2014-10-01 |
Family
ID=51592009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410308391.3A Pending CN104070178A (en) | 2014-07-01 | 2014-07-01 | Preparation method for monodisperse bismuth nano-particles with controllable particle sizes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104070178A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104400004A (en) * | 2014-12-04 | 2015-03-11 | 孚派特环境科技(苏州)有限公司 | Bismuth metal nanosheet and preparation method thereof |
CN104525940A (en) * | 2014-12-31 | 2015-04-22 | 中国地质大学(武汉) | A kind of bismuth microparticle and preparation method thereof |
CN108145171A (en) * | 2017-12-26 | 2018-06-12 | 深圳大学 | A kind of bismuth alkene nanometer sheet and preparation method thereof |
CN108247069A (en) * | 2017-12-26 | 2018-07-06 | 深圳大学 | A kind of bismuth quantum dot and preparation method thereof |
CN108580908A (en) * | 2017-12-26 | 2018-09-28 | 深圳大学 | A kind of bismuth quantum dot and preparation method thereof |
CN116984623A (en) * | 2023-09-26 | 2023-11-03 | 之江实验室 | Two-dimensional bismuth nanocrystal synthesis method based on sectional hydrothermal method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101569934A (en) * | 2009-05-27 | 2009-11-04 | 河南大学 | Method for preparing metal bismuth nanoparticle |
CN102301479A (en) * | 2008-11-21 | 2011-12-28 | 马克思-普朗克科学促进协会 | Nanowires On Substrate Surfaces, Method For Producing Same And Use Thereof |
WO2012009212A2 (en) * | 2010-07-12 | 2012-01-19 | Board Of Regents Of The University Of Texas System | Nanowires and methods of making and using |
CN102717095A (en) * | 2012-06-20 | 2012-10-10 | 华东师范大学 | Method for preparing monodisperse bismuth nano-particles |
CN103121107A (en) * | 2011-11-21 | 2013-05-29 | 中国检验检疫科学研究院 | Bismuth (Bi) simple substance nanometer structure material and preparation method and application thereof |
-
2014
- 2014-07-01 CN CN201410308391.3A patent/CN104070178A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102301479A (en) * | 2008-11-21 | 2011-12-28 | 马克思-普朗克科学促进协会 | Nanowires On Substrate Surfaces, Method For Producing Same And Use Thereof |
CN101569934A (en) * | 2009-05-27 | 2009-11-04 | 河南大学 | Method for preparing metal bismuth nanoparticle |
WO2012009212A2 (en) * | 2010-07-12 | 2012-01-19 | Board Of Regents Of The University Of Texas System | Nanowires and methods of making and using |
CN103121107A (en) * | 2011-11-21 | 2013-05-29 | 中国检验检疫科学研究院 | Bismuth (Bi) simple substance nanometer structure material and preparation method and application thereof |
CN102717095A (en) * | 2012-06-20 | 2012-10-10 | 华东师范大学 | Method for preparing monodisperse bismuth nano-particles |
Non-Patent Citations (3)
Title |
---|
FUDONG WANG,ETAL: ""Size- and Shape-Controlled Synthesis of Bismuth Nanoparticles"", 《CHEM.MATER.》 * |
LORENZ MICHAEL REITH,ETAL: ""Synthesis and Characterization of a Stable Bismuth(III) A(3)-Corrole"", 《INORGANIC CHEMISTRY》 * |
MAKSYM YAREMA,ETAL: ""Highly Monodisperse Bismuth Nanoparticles and Their Three-Dimensional Superlattices"", 《AMERICAN CHEMICAL SOCIETY》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104400004A (en) * | 2014-12-04 | 2015-03-11 | 孚派特环境科技(苏州)有限公司 | Bismuth metal nanosheet and preparation method thereof |
CN104525940A (en) * | 2014-12-31 | 2015-04-22 | 中国地质大学(武汉) | A kind of bismuth microparticle and preparation method thereof |
CN108145171A (en) * | 2017-12-26 | 2018-06-12 | 深圳大学 | A kind of bismuth alkene nanometer sheet and preparation method thereof |
CN108247069A (en) * | 2017-12-26 | 2018-07-06 | 深圳大学 | A kind of bismuth quantum dot and preparation method thereof |
CN108580908A (en) * | 2017-12-26 | 2018-09-28 | 深圳大学 | A kind of bismuth quantum dot and preparation method thereof |
WO2019128246A1 (en) * | 2017-12-26 | 2019-07-04 | 深圳大学 | Bismuth quantum dot and preparation method therefor |
CN108145171B (en) * | 2017-12-26 | 2020-11-27 | 深圳大学 | A kind of bismuthene nanosheet and preparation method thereof |
CN116984623A (en) * | 2023-09-26 | 2023-11-03 | 之江实验室 | Two-dimensional bismuth nanocrystal synthesis method based on sectional hydrothermal method |
CN116984623B (en) * | 2023-09-26 | 2024-02-09 | 之江实验室 | A synthesis method of two-dimensional bismuth nanocrystals based on segmented hydrothermal method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104070178A (en) | Preparation method for monodisperse bismuth nano-particles with controllable particle sizes | |
CN104098145B (en) | The preparation method of cobaltosic oxide | |
Moloney et al. | Preparation of chiral quantum dots | |
Carenco et al. | 25th anniversary article: exploring nanoscaled matter from speciation to phase diagrams: metal phosphide nanoparticles as a case of study | |
Liu et al. | A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion | |
Barhoum et al. | Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials | |
Yang et al. | Facile dicyandiamide-mediated fabrication of well-defined CuO hollow microspheres and their catalytic application | |
KR100846839B1 (en) | Metal oxide hollow nanocapsules and preparation method thereof | |
Taleshi et al. | Synthesis of uniform MgO/CNT nanorods by precipitation method | |
CN104085858B (en) | The preparation method of metal oxide | |
CN102717095A (en) | Method for preparing monodisperse bismuth nano-particles | |
Wu et al. | Solvothermal synthesis of uniform bismuth nanospheres using poly (N-vinyl-2-pyrrolidone) as a reducing agent | |
CN101805011A (en) | Cu2O ultra-fine nano-particles and self-assembly nanospheres as well as preparation method thereof | |
Camargo et al. | Controlled synthesis: nucleation and growth in solution | |
Liu et al. | Controllable synthesis of monodisperse Mn3O4 and Mn2O3 nanostructures via a solvothermal route | |
CN109332681B (en) | Preparation method of carbon-coated iron-ferroferric carbide magnetic nanoparticles | |
CN106077699A (en) | A kind of preparation method of silver ferrite composite nanometer particle | |
Salavati-Niasari et al. | Synthesis, thermal stability and photoluminescence of new cadmium sulfide/organic composite hollow sphere nanostructures | |
CN110181074B (en) | Method for green preparation of high-length-diameter-ratio silver nanowires by composite soft template method | |
Muangban et al. | Effects of precursor concentration on crystalline morphologies and particle sizes of electrospun WO3 nanofibers | |
CN107866577B (en) | Method for preparing monodisperse silver powder by instant micro-flow reactor | |
CN103664723B (en) | The preparation method of metal dithiocarbamate solution and nano metal sulfide material | |
CN108946796B (en) | Doped titanate and preparation method thereof | |
Yang et al. | Controlled synthesis of cuprous oxide nanospheres and copper sulfide hollow nanospheres | |
CN105948135B (en) | A kind of monodisperse porous magnetic sub-micro ball and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141001 |