CN104064618A - A kind of p-i-n structure CdTe battery and its preparation method - Google Patents
A kind of p-i-n structure CdTe battery and its preparation method Download PDFInfo
- Publication number
- CN104064618A CN104064618A CN201410208823.3A CN201410208823A CN104064618A CN 104064618 A CN104064618 A CN 104064618A CN 201410208823 A CN201410208823 A CN 201410208823A CN 104064618 A CN104064618 A CN 104064618A
- Authority
- CN
- China
- Prior art keywords
- layer
- cdte
- substrate
- semiconductor layer
- cds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910004613 CdTe Inorganic materials 0.000 title claims abstract 33
- 238000002360 preparation method Methods 0.000 title claims description 42
- 239000004065 semiconductor Substances 0.000 claims abstract description 357
- 239000000758 substrate Substances 0.000 claims abstract description 250
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 93
- 229910052738 indium Inorganic materials 0.000 claims abstract description 48
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 claims abstract description 39
- 239000002184 metal Substances 0.000 claims abstract description 39
- 230000031700 light absorption Effects 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 97
- 238000004544 sputter deposition Methods 0.000 claims description 69
- 230000008569 process Effects 0.000 claims description 66
- 239000007789 gas Substances 0.000 claims description 65
- 229910052786 argon Inorganic materials 0.000 claims description 43
- 238000010438 heat treatment Methods 0.000 claims description 19
- 230000001965 increasing effect Effects 0.000 claims description 18
- 238000000137 annealing Methods 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 17
- 229910052698 phosphorus Inorganic materials 0.000 claims description 17
- 238000002207 thermal evaporation Methods 0.000 claims description 16
- 238000005566 electron beam evaporation Methods 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 238000009792 diffusion process Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 8
- 229910021389 graphene Inorganic materials 0.000 claims description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052797 bismuth Inorganic materials 0.000 claims description 7
- 239000011574 phosphorus Substances 0.000 claims description 7
- 229910052787 antimony Inorganic materials 0.000 claims description 6
- 229910052793 cadmium Inorganic materials 0.000 claims description 6
- 229910004609 CdSn Inorganic materials 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 claims description 5
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 2
- 239000005357 flat glass Substances 0.000 claims 3
- 230000008020 evaporation Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 270
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 78
- 239000010409 thin film Substances 0.000 description 49
- 239000011521 glass Substances 0.000 description 46
- 239000010408 film Substances 0.000 description 43
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 20
- 230000005641 tunneling Effects 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- 239000010445 mica Substances 0.000 description 14
- 229910052618 mica group Inorganic materials 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000004642 Polyimide Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 229910007709 ZnTe Inorganic materials 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000000859 sublimation Methods 0.000 description 5
- 230000008022 sublimation Effects 0.000 description 5
- 229910052714 tellurium Inorganic materials 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 238000013082 photovoltaic technology Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- -1 N and P Chemical compound 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003764 ultrasonic spray pyrolysis Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/125—The active layers comprising only Group II-VI materials, e.g. CdS, ZnS or CdTe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
- H10F77/1696—Thin semiconductor films on metallic or insulating substrates the films including Group II-VI materials, e.g. CdTe or CdS
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/543—Solar cells from Group II-VI materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
一种p-i-n结构CdTe太阳能电池,其结构从下至上依次为:衬底、透明导电电极层、CdS n型半导体层、CdTe本征光吸收层、宽带隙三元II-VI族半导体p+层、ZnO:Al或者In2O3:Sn n+层、金属电极层。本发明CdTe太阳能电池通过低温磁控溅射制备。
A pin structure CdTe solar cell, its structure from bottom to top is: substrate, transparent conductive electrode layer, CdS n-type semiconductor layer, CdTe intrinsic light absorption layer, wide bandgap ternary II-VI semiconductor p + layer, ZnO:Al or In 2 O 3 :Sn n + layer, metal electrode layer. The CdTe solar cell of the present invention is prepared by low-temperature magnetron sputtering.
Description
技术领域 technical field
本发明涉及一种CdTe太阳能电池及其制备方法。 The invention relates to a CdTe solar cell and a preparation method thereof.
背景技术 Background technique
作为一种清洁能源,太阳能具有丰富性、易获取性、可再生性和无污染性,太阳能的有效利用尤其是光伏太阳能电池的有效利用,有望解决全球性的能源短缺、环境污染、气候变暖等问题。太阳能电池如果要替代传统的能源必需降低成本。薄膜太阳能电池具有材料用量少、低成本、易于大面积生产的优势,已经成为太阳能光伏产业重点研发和生产的电池。在薄膜太阳能电池中,已经达到产业化规模生产的主要是非晶硅(a-Si)、铜铟稼硒(CIGS)和碲化镉(CdTe)太阳能电池。CdTe太阳能电池是目前薄膜太阳能电池发展前景最好的、高效、低成本光伏技术之一。CdTe组件生产成本为0.55美元/瓦,是目前已知大规模应用光伏技术中生产成本最低的。美国第一太阳能(First Solar)的CdTe商业模块最高效率为17.0%,实验室小面积CdTe电池的最高能量转换效率为20.4%,与单结CdTe理论效率(28-29%)还有一定的差距。可见,CdTe电池转化效率仍有一定的提升空间,技术发展潜力仍然很大。CdTe是IIB-VIA族二元化合物,是一种直接带隙半导体材料,具有与太阳能光谱非常匹配的室温直接带隙宽度Eg=1.5eV、高光学吸收系数(可见光范围>5×105cm-1,2μm厚的CdTe薄膜就能吸收大于99%的600nm的入射光)、高稳定性、低功率温度系数(~-0.21%/℃)、好的弱光特性、无本征光致衰减效应、环境友好性等优异性能。在整个生命周期,包括原材料提取、提纯、组件制备、组件使用、组件处理、和组件回收全寿命周期,CdTe太阳能电池的镉排放量仅为0.3646g/GWh,远低于煤电的4.900g/GWh。 As a clean energy, solar energy is rich, easy to obtain, renewable and non-polluting. The effective use of solar energy, especially the effective use of photovoltaic solar cells, is expected to solve global energy shortages, environmental pollution, and climate warming. And other issues. If solar cells are to replace traditional energy sources, costs must be reduced. Thin-film solar cells have the advantages of less material consumption, low cost, and easy large-scale production, and have become a key research and development and production cell for the solar photovoltaic industry. Among the thin-film solar cells, the ones that have reached industrial scale production are mainly amorphous silicon (a-Si), copper indium gallium selenide (CIGS) and cadmium telluride (CdTe) solar cells. CdTe solar cells are currently one of the most promising, high-efficiency, and low-cost photovoltaic technologies for thin-film solar cells. The production cost of CdTe modules is US$0.55/W, which is the lowest production cost among known large-scale application photovoltaic technologies. The highest efficiency of CdTe commercial modules of First Solar in the United States is 17.0%, and the highest energy conversion efficiency of laboratory small-area CdTe cells is 20.4%, which is still far behind the theoretical efficiency of single-junction CdTe (28-29%) . It can be seen that there is still room for improvement in the conversion efficiency of CdTe batteries, and the potential for technological development is still great. CdTe is a II B -VI A binary compound, a direct bandgap semiconductor material, with room temperature direct bandgap width Eg=1.5eV, high optical absorption coefficient (visible light range>5×10 5 cm -1 , 2μm thick CdTe film can absorb more than 99% of the incident light at 600nm), high stability, low power temperature coefficient (~-0.21%/℃), good weak light characteristics, no intrinsic photoinduced Excellent properties such as attenuation effect and environmental friendliness. In the entire life cycle, including raw material extraction, purification, component preparation, component use, component treatment, and component recycling, the cadmium emission of CdTe solar cells is only 0.3646g/GWh, which is far lower than the 4.900g/GWh of coal power. GWh.
依据目前的大面积组件转换效率的平均水平,每提高1%的转换效率,就相当于在现有基础上降低10%的生产成本,有望使CdTe电池帅先成为能与传统电力成本竞争的光伏技术,推动光伏清洁能源的大规模应用。因此,提高CdTe光伏器件的转换效率不仅具有重要的科学意义,也同样具有直接的经济效益,将为我国在化合物半导体薄膜光伏科技领域赢得领导地位。目前,我国中国科学院电工研究所等多所科研单位都已展了CdTe薄膜太阳能电池的研究。中科院电工所自2010年开展磁控溅射法制备CdTe薄膜电池以来,至今在2μm厚CdTe多晶薄膜电池上已经获得了14.26%的转化效率。 According to the current average level of conversion efficiency of large-area modules, every 1% increase in conversion efficiency is equivalent to a 10% reduction in production costs on the existing basis, and it is expected that CdTe cells will first become photovoltaics that can compete with traditional electricity costs. technology to promote the large-scale application of photovoltaic clean energy. Therefore, improving the conversion efficiency of CdTe photovoltaic devices not only has important scientific significance, but also has direct economic benefits, and will win my country's leading position in the field of compound semiconductor thin-film photovoltaic technology. At present, many scientific research units such as the Institute of Electrical Engineering, Chinese Academy of Sciences have launched research on CdTe thin-film solar cells. Since the Institute of Electrical Engineering of the Chinese Academy of Sciences launched the magnetron sputtering method to prepare CdTe thin film batteries in 2010, it has achieved a conversion efficiency of 14.26% on 2 μm thick CdTe polycrystalline thin film batteries.
目前,CdTe电池器件的主要研究目的是提高其转化效率,要提高其转化效率必须提高CdTe电池的开路电压(Voc),因为开路电压是决定转化效率的关键因素。CdTe的带隙为1.50eV,GaAs的带隙为1.47eV,两者相差不多,但是,CdTe多晶薄膜电池的开路电压却比GaAs多晶薄膜电池的开路电压低将近230mV。低的开路电压降低了CdTe多晶薄膜太阳能电池的转化效率。低开路电压主要是因为CdTe低的载流子寿命(接近1ns)、低的空穴浓度(接近1014cm-3)及其背接触势垒。 At present, the main research purpose of CdTe battery device is to improve its conversion efficiency. To improve its conversion efficiency, the open circuit voltage (Voc) of CdTe battery must be increased, because the open circuit voltage is a key factor determining the conversion efficiency. The band gap of CdTe is 1.50eV, and the band gap of GaAs is 1.47eV, which are almost the same. However, the open circuit voltage of CdTe polycrystalline thin film battery is nearly 230mV lower than that of GaAs polycrystalline thin film battery. Low open circuit voltage reduces the conversion efficiency of CdTe polycrystalline thin film solar cells. The low open circuit voltage is mainly due to the low carrier lifetime (close to 1ns), low hole concentration (close to 10 14 cm -3 ) and back contact barrier of CdTe.
由于CdTe存在自补偿效应,获得高掺杂的p型CdTe(通常掺铜的CdTe薄膜电池空穴浓度也只有~1014-1015cm-3,接近本征态)很难。CdTe的p型掺杂往往通过从背接触层向CdTe内部扩散Cu、Sb等杂质来实现,通常用的是金属Cu,但是金属Cu往往会导致电池稳定性问题。CdTe表面沉积金属作为电流收集极,由于CdTe功函数高达4.86eV,与其形成良好欧姆接触的金属非常少。因此,通常使用的背接触层往往会形成与CdS/CdTe结相反的肖特基势垒,降低电池的开路电压。CdTe太阳能电池的理论开路电压可以达到1.2V,而目前其最高开路电压仅超过900mV,与理论开路电压还有一定的差距。因此,需要提高CdTe多晶薄膜电池的开路电压。 Due to the self-compensation effect of CdTe, it is difficult to obtain highly doped p-type CdTe (usually the hole concentration of copper-doped CdTe thin film cells is only ~10 14 -10 15 cm -3 , close to the intrinsic state). The p-type doping of CdTe is often achieved by diffusing impurities such as Cu and Sb from the back contact layer to the inside of CdTe. Metal Cu is usually used, but metal Cu often causes battery stability problems. Metal is deposited on the surface of CdTe as a current collector. Since the work function of CdTe is as high as 4.86eV, there are very few metals that form a good ohmic contact with it. Therefore, the commonly used back contact layer tends to form a Schottky barrier opposite to the CdS/CdTe junction, reducing the open circuit voltage of the cell. The theoretical open-circuit voltage of CdTe solar cells can reach 1.2V, but currently its highest open-circuit voltage is only over 900mV, which is still far from the theoretical open-circuit voltage. Therefore, it is necessary to increase the open circuit voltage of CdTe polycrystalline thin film cells.
2006年James Sites,Jun Pan【Strategies to increase CdTe solar-cell voltage,Thin Solid Films2007,515,6099-6102】提出可以通过两种方法提高CdTe的开路电压:一种是增加CdTe的载流子浓度和寿命,另一种方法是在背接触增加一层电子反射层。增加CdTe的载流子浓度和寿命需要从材料入手,因此提高CdTe电池的Voc的技术路线往往是对吸收层材料进行深入研究,以获得高掺杂浓度的p型CdTe。可以通过对CdTe多晶材料入手,通过增加CdTe载流子浓度和寿命,增加电池器件的开路电压。增加载流子寿命能增加开路电压和填充因子,大载流子寿命的CdTe电池器件的填充因子与GaAs电池的接近,二极管质量因子相当,但是开路电压却受制于准费米能级的分离,增加载流子浓度提高开路电压具有局限性。因此,仅仅依靠载流子寿命的提高不能把开路电压提升到很高的值。另一方面,可以通过增加载流子密度提高开路电压,但是增加载流子浓度会降低空间电荷区的宽度,降低的空间电荷区宽度要求大的扩散长度和高的载流子寿命,以便能合理的收集光生载流子。同时增加载流子密度和载流子寿命,需要降低复合中心。但在CdTe电池器件中,由于CdS和CdTe界面存在缺陷,界面复合是不能避免的。可见,单从材料角度来提高CdTe电池的开路电压有一定的难度,而且不容易实现。 In 2006, James Sites, Jun Pan [Strategies to increase CdTe solar-cell voltage, Thin Solid Films2007, 515, 6099-6102] proposed that the open circuit voltage of CdTe can be increased by two methods: one is to increase the carrier concentration of CdTe and Another method is to add an electronic reflective layer to the back contact. To increase the carrier concentration and lifetime of CdTe needs to start with materials, so the technical route to improve the Voc of CdTe batteries is often to conduct in-depth research on the absorber layer materials to obtain p-type CdTe with high doping concentration. The open-circuit voltage of battery devices can be increased by starting with CdTe polycrystalline materials and increasing the CdTe carrier concentration and lifespan. Increasing the carrier life can increase the open circuit voltage and fill factor. The fill factor of CdTe battery devices with large carrier life is close to that of GaAs batteries, and the diode quality factor is equivalent, but the open circuit voltage is subject to the separation of quasi-Fermi levels. Increasing the carrier concentration has limitations in increasing the open circuit voltage. Therefore, the open-circuit voltage cannot be raised to a very high value only by the improvement of the carrier lifetime. On the other hand, the open circuit voltage can be increased by increasing the carrier density, but increasing the carrier concentration will reduce the width of the space charge region, and the reduced space charge region width requires a large diffusion length and a high carrier lifetime in order to be able to Reasonable collection of photogenerated carriers. Simultaneously increasing carrier density and carrier lifetime requires decreasing recombination centers. However, in CdTe battery devices, interfacial recombination is unavoidable due to defects at the interface between CdS and CdTe. It can be seen that it is difficult to improve the open circuit voltage of CdTe battery from the perspective of materials alone, and it is not easy to realize.
目前,传统的CdTe太阳能电池结构为p-n结结构,如图1所示,传统的CdTe太阳能电池具有衬底、透明导电电极层、CdS n型半导体层,CdTe光吸收层,同时也为p层,金属电极层。传统p-n结结构CdTe太阳能电池工作时,光从CdS半导体层一侧进入CdTe光吸 收层。CdS为n型半导体,CdTe为p型半导体。多晶CdTe薄膜中的少子寿命短(τ<10ns),使得传统p-n结结构的CdTe多晶薄膜电池的CdTe半导体层的厚度通常为2-10μm,是n型CdS半导体层厚度的几十倍,而且由于电池中CdTe半导体层的p型很弱,通常空间电荷区可以延伸至3-4μm,使得光生载流子产生的区域都在耗尽区内。也就是说CdTe中光生载流子的收集是依靠电场漂移而不是扩散来实现。 At present, the traditional CdTe solar cell structure is a p-n junction structure, as shown in Figure 1, the traditional CdTe solar cell has a substrate, a transparent conductive electrode layer, a CdS n-type semiconductor layer, a CdTe light absorbing layer, and is also a p layer. metal electrode layer. When the traditional p-n junction structure CdTe solar cell works, light enters the CdTe light absorbing layer from the side of the CdS semiconductor layer. CdS is an n-type semiconductor, and CdTe is a p-type semiconductor. The minority carrier lifetime in polycrystalline CdTe thin film is short (τ<10ns), so that the thickness of the CdTe semiconductor layer of the traditional p-n junction structure CdTe polycrystalline thin film battery is usually 2-10 μm, which is dozens of times the thickness of the n-type CdS semiconductor layer. And because the p-type of the CdTe semiconductor layer in the battery is very weak, usually the space charge region can extend to 3-4 μm, so that the region where the photogenerated carriers are generated is in the depletion region. That is to say, the collection of photogenerated carriers in CdTe is achieved by electric field drift rather than diffusion.
另一方面,碲Te是地壳中含量最少的元素之一,这是制约CdTe太阳能电池快速发展的另一个瓶颈。目前碲的供应几乎完全从铜矿和铅矿精炼过程产生的副产品中提炼获得,2008年全球的Te总产量只有480吨,即使采用提取效率更高的技术,这个产量一般认为也只能达到1500吨/年左右。各种分析对于CdTe光伏技术的生产规模极限估计得出的结论有所出入,Martin Green最保守的估计约在10GWp/年左右,而比较乐观的估计是在20-100GWp/年,并且按目前的增长速度将在2020年之后开始停止增长。 On the other hand, tellurium Te is one of the least abundant elements in the earth's crust, which is another bottleneck restricting the rapid development of CdTe solar cells. At present, the supply of tellurium is almost entirely extracted from the by-products of the copper ore and lead ore refining process. In 2008, the total global Te production was only 480 tons. tons/year or so. Various analyzes have come to different conclusions on the estimation of the production scale limit of CdTe photovoltaic technology. Martin Green's most conservative estimate is about 10GWp/year, while the more optimistic estimate is 20-100GWp/year, and according to the current The growth rate will start to stop increasing after 2020.
可以通过降低CdTe的厚度,降低CdTe的使用。CdTe是一种理想的光吸收半导体,可见光吸收率达到104–105cm-1,只需要0.1μm就可以吸收至少63%的可见光(波长<826nm)。美国Univ.of Toledo采用磁控溅射的方法制备厚度仅为0.5μm和0.75μm的CdTe电池,转换效率分别达到了11%和12.5%。 The use of CdTe can be reduced by reducing the thickness of CdTe. CdTe is an ideal light-absorbing semiconductor, with a visible light absorption rate of 10 4 -10 5 cm -1 , and only needs 0.1 μm to absorb at least 63% of visible light (wavelength <826nm). Univ.of Toledo in the United States used magnetron sputtering to prepare CdTe batteries with a thickness of only 0.5 μm and 0.75 μm, and the conversion efficiency reached 11% and 12.5% respectively.
然而,超薄CdTe太阳能电池存在一个基本的物理问题,既由于CdTe半导体层厚度或成分的空间非均匀性引起的弱二极管效应。这是由于电池中形成结场的p型CdTe半导体层和n型CdS半导体层都是多晶薄膜,整个器件等效于众多并排排列、并联链接的微型光电二极管。多晶薄膜厚度存在一定的微观非均匀性,会随机的在电池某处造成前后电极层与结界面的距离比其它地方更近,在局部区域形成微型弱二极管。由于微型弱二极管的开压比正常二极管小,当周边存在的与之并联的正常光电二极管的电压处于最大功率点时,同样电压状态的弱二极管正好处于正向导通状态计算表面,一个弱二极管在传统2–10μm厚的CdTe电池中可以吞噬周围1mm至1m范围内的光生电流。影响范围超过自身尺寸的103-106倍。也是造成CdTe太阳能电池开路开压下降的一个重要微观机理。 However, there is a fundamental physical problem in ultrathin CdTe solar cells, which is the weak diode effect due to the spatial non-uniformity of CdTe semiconductor layer thickness or composition. This is because the p-type CdTe semiconductor layer and the n-type CdS semiconductor layer forming the junction field in the battery are both polycrystalline thin films, and the entire device is equivalent to many miniature photodiodes arranged side by side and connected in parallel. There is a certain microscopic non-uniformity in the thickness of the polycrystalline film, which will randomly cause the distance between the front and rear electrode layers and the junction interface to be closer than other places in a certain part of the battery, and form a miniature weak diode in a local area. Since the opening voltage of the miniature weak diode is smaller than that of the normal diode, when the voltage of the surrounding normal photodiode in parallel with it is at the maximum power point, the weak diode in the same voltage state is just in the forward conduction state. In conventional 2–10 μm thick CdTe cells, photocurrents within the surrounding 1mm to 1m range can be swallowed. The range of influence exceeds 10 3 -10 6 times its own size. It is also an important microcosmic mechanism that causes the open circuit voltage drop of CdTe solar cells.
可见,如果单纯降低CdTe半导体层的厚度,虽然能降低CdTe半导体的使用,但是往往会降低CdTe太阳能电池的开路电压。美国Colorado State Univ.的James Sites教授【Kuo-Jui Hsiao,James R.Sites,“ELECTRON REFLECTOR STRATEGY FOR CdTe SOLAR CELLS”,Proceedings of34th IEEE Photovoltaic Specialist Conference,001846-001850,2009;K.-J.Hsiao,J.R.Sites,“Electron reflector to enhance photovoltaic efficiency:application to thin-film CdTe solar cells”,Prog.Photovolt:Res.Appl.,20,486–489,2012.】最近提出在CdTe光吸收层与金属电极层之间使用可形成电子背反射势垒的结构,同时减小CdTe半导体层的厚度的结构来提 高电池效率。他们通过大量的器件仿真研究发现,如果在CdTe太阳能电池CdTe半导体层与金属电极层接触界面形成高度为0.2eV的电子背反射势垒,可以将厚度为10μm的CdTe太阳能电池的开路电压从目前的~860mV提高到900mV;进一步减小CdTe光吸收半导体层的厚度至2μm,可以将开路电压提高到940mV以上。如果进一步减小CdTe光吸收半导体层的厚度至1μm左右,并使用反射率100%的光学背反结构,即使CdTe光吸收半导体层的空穴浓度小于1014cm-3,开路电压也可能提高到1V,转化效率达到20%。 It can be seen that if the thickness of the CdTe semiconductor layer is simply reduced, although the use of the CdTe semiconductor can be reduced, the open circuit voltage of the CdTe solar cell will often be reduced. Professor James Sites of Colorado State Univ., USA [Kuo-Jui Hsiao, James R. Sites, "ELECTRON REFLECTOR STRATEGY FOR CdTe SOLAR CELLS", Proceedings of 34th IEEE Photovoltaic Specialist Conference, 001846-001850, 2009; K.-J.Hsiao, JRSites, "Electron reflector to enhance photovoltaic efficiency: application to thin-film CdTe solar cells", Prog. Photovolt: Res. Appl., 20, 486–489, 2012.] recently proposed to use between the CdTe light absorbing layer and the metal electrode layer The structure of electron back reflection potential barrier can be formed, and the structure of reducing the thickness of CdTe semiconductor layer can improve battery efficiency. Through a large number of device simulation studies, they found that if an electronic back reflection barrier with a height of 0.2eV is formed at the contact interface between the CdTe semiconductor layer and the metal electrode layer of the CdTe solar cell, the open circuit voltage of the CdTe solar cell with a thickness of 10 μm can be reduced from the current ~860mV is increased to 900mV; further reducing the thickness of the CdTe light-absorbing semiconductor layer to 2μm can increase the open circuit voltage to above 940mV. If the thickness of the CdTe light-absorbing semiconductor layer is further reduced to about 1 μm, and an optical back-reverse structure with 100% reflectance is used, the open-circuit voltage may be increased to 1V even if the hole concentration of the CdTe light-absorbing semiconductor layer is less than 10 14 cm -3 , the conversion efficiency reaches 20%.
虽然James Site提出了使用Cd1-xZnxTe、Cd1-xMgxTe宽带隙三元II-VI族半导体来获得合适的电子背反射势垒和减小CdTe光吸收层厚度的技术路线来获得更高的开路电压,但是在实际工艺技术路线和将面临的物理问题上没有提出实质性的建议。 Although James Site proposed the use of Cd 1-x Zn x Te, Cd 1-x Mg x Te wide-bandgap ternary II-VI semiconductors to obtain a suitable electronic back reflection barrier and reduce the thickness of the CdTe light-absorbing layer. To obtain a higher open-circuit voltage, but no substantive suggestions were made on the actual process technology route and the physical problems to be faced.
随着CdTe光吸收层厚度的降低,CdTe光吸收层中形成针孔的几率变大;而且CdTe光吸收层厚度的非均匀性造成的弱二极管效应会变得更加突出。因此制备厚度低于1.0μm的CdTe光吸收层,需要获得尺寸远小于平均厚度的多晶颗粒。传统p-n结CdS/CdTe太阳能电池目前生产和科研上最常采用的是物理气相沉积和近空间升华技术,这两种沉积技术衬底的温度达600℃左右,是高温沉积技术,通常获得的CdTe光吸收层薄膜晶粒都在5-10μm之间。而另一种常采用的方法是磁控溅射技术,衬底温度低于600℃,却可以获得与物理气相沉积和近空间升华技术接近的转化效率和开路电压。低温磁控溅射沉积技术过程中,存在等离子体对半导体层表面的轰击,可以使低温原子获得足够动能移动到低能量位置。磁控溅射的半导体层多晶薄膜晶粒尺寸只有0.5μm,磁控溅射薄膜制备的晶粒可以实现厚度小于1μmCdTe光吸收层多晶薄膜表面的微观平整度,因而大大降低了弱二极管效应出现的几率,相对物理气相沉积和近空间升华沉积方法具有明显的优势。 As the thickness of the CdTe light-absorbing layer decreases, the probability of forming pinholes in the CdTe light-absorbing layer becomes larger; and the weak diode effect caused by the non-uniformity of the CdTe light-absorbing layer thickness becomes more prominent. Therefore, to prepare a CdTe light-absorbing layer with a thickness below 1.0 μm, it is necessary to obtain polycrystalline particles whose size is much smaller than the average thickness. Traditional p-n junction CdS/CdTe solar cells are currently used in the production and scientific research of physical vapor deposition and near-space sublimation technology. The substrate temperature of these two deposition technologies is about 600 ° C. It is a high-temperature deposition technology. CdTe usually obtained The crystal grains of the light-absorbing layer film are all between 5-10 μm. Another commonly used method is magnetron sputtering technology. The substrate temperature is lower than 600°C, but the conversion efficiency and open circuit voltage close to those of physical vapor deposition and near-space sublimation technology can be obtained. In the process of low-temperature magnetron sputtering deposition technology, there is plasma bombardment on the surface of the semiconductor layer, which can make low-temperature atoms gain enough kinetic energy to move to low-energy positions. The grain size of the polycrystalline film of the semiconductor layer sputtered by magnetron is only 0.5 μm, and the grains prepared by magnetron sputtering film can achieve the microscopic flatness of the surface of the polycrystalline film of the CdTe light-absorbing layer with a thickness of less than 1 μm, thus greatly reducing the weak diode effect The probability of occurrence has obvious advantages over physical vapor deposition and near-space sublimation deposition methods.
专利CN102891204A提出一种n-i-p结构的CdTe薄膜太阳能电池,但其为下衬底结构,而且本征光吸收层和p型半导体层都为CdTe,而且,CdTe的厚度较厚。 Patent CN102891204A proposes a CdTe thin-film solar cell with n-i-p structure, but it is a lower substrate structure, and both the intrinsic light absorption layer and the p-type semiconductor layer are CdTe, and the thickness of CdTe is relatively thick.
发明内容 Contents of the invention
本发明的目的是为了克服现有p-n结CdTe结构的太阳能电池开路电压和转化效率低,以及所使用CdTe半导体层厚度厚的缺点,提出一种p-i-n结构的CdTe太阳能电池及其制备方法。 The purpose of the present invention is to propose a p-i-n structure CdTe solar cell and its preparation method in order to overcome the shortcomings of the existing p-n junction CdTe structure solar cell with low open circuit voltage and conversion efficiency and the thickness of the used CdTe semiconductor layer.
本发明p-i-n结构的CdTe太阳能电池可以使CdTe本征光吸收层的厚度降低到1μm以下,但是仍然能达到1V以上的开路电压和20%以上转化效率。本发明通过磁控溅射制备方法,实现p-i-n电池结构中n型半导体层、本征半导体层和p型半导体层的制备,能在CdTe本征光吸收层厚度降低的同时,提高CdTe太阳能电池的开路电压和转化效率。而且,本发明磁控溅射制备方法还能进一步降低CdTe太阳能电池的成本。 The CdTe solar cell with the p-i-n structure of the present invention can reduce the thickness of the CdTe intrinsic light absorbing layer to less than 1 μm, but can still achieve an open circuit voltage of more than 1V and a conversion efficiency of more than 20%. The invention realizes the preparation of the n-type semiconductor layer, the intrinsic semiconductor layer and the p-type semiconductor layer in the p-i-n battery structure through the magnetron sputtering preparation method, and can improve the performance of the CdTe solar cell while reducing the thickness of the CdTe intrinsic light-absorbing layer. Open circuit voltage and conversion efficiency. Moreover, the magnetron sputtering preparation method of the present invention can further reduce the cost of the CdTe solar cell.
本发明p-i-n结构的CdTe太阳能电池结构如下: The CdTe solar cell structure of the p-i-n structure of the present invention is as follows:
所述的CdTe电池包括透明导电电极层、CdS n型半导体层、CdTe本征光吸收层、宽带隙三元II-VI族半导体p+层、ZnO:Al或者In2O3:Sn n+增反隧穿层,以及金属电极层。所述的衬底之上为透明导电电极层、透明导电电极层上为CdS n型半导体层,CdS n型半导体层上为CdTe本征光吸收层,CdTe本征光吸收层上为宽带隙三元II-VI族半导体p+层,宽带隙三元II-VI族半导体p+层上为ZnO:Al或者In2O3:Sn n+增反隧穿层层、ZnO:Al或者In2O3:Sn n+增反隧穿层上为金属电极层。 The CdTe battery includes a transparent conductive electrode layer, a CdS n-type semiconductor layer, a CdTe intrinsic light absorption layer, a wide bandgap ternary II-VI group semiconductor p + layer, ZnO:Al or In 2 O 3 :Sn n + Anti-tunneling layer, and metal electrode layer. Above the substrate is a transparent conductive electrode layer, on the transparent conductive electrode layer is a CdS n-type semiconductor layer, on the CdS n-type semiconductor layer is a CdTe intrinsic light absorption layer, and on the CdTe intrinsic light absorption layer is a wide bandgap three Elementary II-VI group semiconductor p + layer, wide-gap ternary II-VI group semiconductor p + layer is ZnO:Al or In 2 O 3 :Sn n+ anti-increasing tunneling layer, ZnO:Al or In 2 O 3 : On the Sn n+ anti-increasing tunneling layer is a metal electrode layer.
所述的宽带隙三元II-VI族半导体比如:Cd1-xZnxTe或Cd1-xMgxTe。 The wide bandgap ternary II-VI semiconductor is, for example: Cd 1-x Zn x Te or Cd 1-x Mg x Te.
所述的CdTe电池的CdTe本征光吸收层的厚度为0.1-1.0μm,光照下在其内部产生光生载流子。 The CdTe intrinsic light absorbing layer of the CdTe cell has a thickness of 0.1-1.0 μm, and photogenerated carriers are generated inside it under light.
所述的CdTe电池中的CdS为n型半导体层,宽带隙三元II-VI族半导体为p型半导体层,比如:Cd1-xZnxTe、Cd1-xMgxTe。CdS n型半导体层和宽带隙II-VI半导体p型层提供p-n结,提供CdTe本征光吸收层中产生的光生载流子的分离、传输等作用。 The CdS in the CdTe battery is an n-type semiconductor layer, and the wide bandgap ternary II-VI group semiconductor is a p-type semiconductor layer, such as: Cd 1-x Zn x Te, Cd 1-x Mg x Te. The CdS n-type semiconductor layer and the wide-bandgap II-VI semiconductor p-type layer provide a pn junction and provide functions such as separation and transport of photo-generated carriers generated in the CdTe intrinsic light-absorbing layer.
本发明p-i-n结构CdTe太阳能电池可以从两个方面获得较好的陷光结构。CdTe本征光吸收层厚度小于1.0μm的传统p-n结构CdTe器件,其效率损失主要来源于背金属电极层附近的复合和对近红外波段的不完全吸收。p-i-n太阳能电池器件中除了需要选择合适的电子(少子)背反射场结构、减小背金属电极处的复合,还需要采用适当的陷光结构减少深层吸收损失。这是提高超薄CdTe电池开路电压和尽量减少超薄电池短路电流损失的关键。首先,本发明p-i-n结构CdTe太阳能电池采用磁控溅射的方法制备CdS n型半导体层、CdTe本征光吸收层、宽带隙三元II-VI族半导体p+层、ZnO:Al或者In2O3:Sn n+增反遂穿层。通过磁控溅射可以获得多孔的CdS/CdTe界面.进入CdTe本征光吸收层之前被散射,增加在吸收层中的光程。其次,本发明的p-i-n结构CdTe太阳能电池在宽带隙三元II-VI族半导体p+层和同时为电极层和反射层的金属电极层之间插入n型的ZnO:Al或者In2O3:Sn n+增反遂穿层,进一步实现了很好的陷光作用。 The pin structure CdTe solar cell of the present invention can obtain a better light trapping structure from two aspects. The efficiency loss of traditional pn structure CdTe devices with CdTe intrinsic light absorbing layer thickness less than 1.0 μm mainly comes from the recombination near the back metal electrode layer and the incomplete absorption of the near-infrared band. In pin solar cell devices, in addition to selecting a suitable electron (minority carrier) back reflection field structure and reducing the recombination at the back metal electrode, it is also necessary to use an appropriate light trapping structure to reduce deep absorption loss. This is the key to improving the open-circuit voltage of ultra-thin CdTe batteries and minimizing the short-circuit current loss of ultra-thin batteries. First, the pin structure CdTe solar cell of the present invention adopts the method of magnetron sputtering to prepare CdS n-type semiconductor layer, CdTe intrinsic light absorption layer, wide bandgap ternary II-VI semiconductor p + layer, ZnO:Al or In 2 O 3 : Sn n + increased anti-tunneling layer. A porous CdS/CdTe interface can be obtained by magnetron sputtering. Before entering the CdTe intrinsic light absorbing layer, it is scattered, increasing the optical path in the absorbing layer. Secondly, in the pin structure CdTe solar cell of the present invention, n-type ZnO:Al or In 2 O 3 is inserted between the wide bandgap ternary II-VI semiconductor p + layer and the metal electrode layer that is both an electrode layer and a reflective layer: Sn n + increases the anti-tunneling layer, which further realizes a good light trapping effect.
本发明p-i-n结构的CdTe太阳能电池,在CdTe本征光吸收层的金属电极层中间使用宽带隙三元II-VI族半导体配合ZnO:Al或者In2O3:Sn n+增反遂穿层的复合结构,比如:Cd1-xZnxTe或者Cd1-xMgxTe/ZnO:Al或者In2O3:Sn,能同时获得电子背反射场和背反射陷光结构的功能。宽带隙II-VI族半导体,比如:ZnTe是宽带隙II-VI族半导体,带隙宽度为2.26eV,对于可见光是透明的,与CdTe形成宽带隙II-VI族半导体,比如:Cd1-xZnxTe半导体,可以获得带隙介于1.5-2.26eV之间的半导体。这种三元半导体层作为CdTe本征光吸收层的背接触过渡层,可以起到增反遂穿层的作用。更重要的是,ZnTe的功函数与CdTe非常接近, 分别为5.79eV和5.72eV,几乎一致。因此,对宽带隙II-VI族半导体,比如:ZnTe层的p型掺杂会直接导致其价带顶相对CdTe的升高,并在导带形成相对CdTe的背反射势垒,用于反射光生电子。这样可以有效避免背金属电极附近的载流子复合,提高开路电压和填充因子。ZnTe是容易进行p型掺杂的II-VI半导体,CdTe半导体中加入Zn可以改善CdTe半导体的掺杂能力,更容易获得p型半导体。可供选择的p型掺杂元素包括N、P这些CdTe和ZnTe中的浅能级受主杂质,以及Cu、Sb、Bi、P等CdTe电池常用p型杂质。氮N和磷P掺杂可以通过在射频磁控溅射工作气体Ar中混入适当比例的氮气N2或磷烷PH3来实现,而其他元素则可以通过溅射含有这些杂质的靶材来获得相应的掺杂,比如掺入Cu、P、Sb、Bi等元素。CdTe与宽带隙三元II-VI族半导体,比如:Cd1-xZnxTe、Cd1-xMgxTe接触能有效减少界面处的晶格失配,减少背电极附近的复合中心浓度。 In the CdTe solar cell with a pin structure of the present invention, a wide-bandgap ternary II-VI group semiconductor is used in the middle of the metal electrode layer of the CdTe intrinsic light-absorbing layer to cooperate with ZnO:Al or In 2 O 3 :Sn n + anti-increasing tunneling layer Composite structures, such as: Cd 1-x Zn x Te or Cd 1-x Mg x Te/ZnO:Al or In 2 O 3 :Sn, can simultaneously obtain the functions of electronic back reflection field and back reflection light trapping structure. Wide-bandgap II-VI semiconductors, such as: ZnTe is a wide-bandgap II-VI semiconductor with a bandgap width of 2.26eV, which is transparent to visible light, and forms a wide-bandgap II-VI semiconductor with CdTe, such as: Cd 1-x Zn x Te semiconductor, a semiconductor with a band gap between 1.5-2.26eV can be obtained. This ternary semiconductor layer is used as the back contact transition layer of the CdTe intrinsic light absorbing layer, and can play the role of increasing and reverse tunneling layer. More importantly, the work function of ZnTe is very close to that of CdTe, which are 5.79eV and 5.72eV, which are almost the same. Therefore, for wide-bandgap II-VI semiconductors, such as: the p-type doping of the ZnTe layer will directly lead to the rise of the top of its valence band relative to CdTe, and form a back reflection barrier relative to CdTe in the conduction band, which is used for reflective light generation. electronic. This can effectively avoid carrier recombination near the back metal electrode, and improve the open circuit voltage and fill factor. ZnTe is a II-VI semiconductor that is easy to do p-type doping. Adding Zn to CdTe semiconductor can improve the doping ability of CdTe semiconductor, and it is easier to obtain p-type semiconductor. Alternative p-type doping elements include shallow-level acceptor impurities in CdTe and ZnTe such as N and P, and p-type impurities commonly used in CdTe batteries such as Cu, Sb, Bi, and P. Nitrogen N and phosphorus P doping can be achieved by mixing an appropriate proportion of nitrogen N2 or phosphine PH3 in the RF magnetron sputtering working gas Ar, while other elements can be obtained by sputtering targets containing these impurities Corresponding doping, such as doping Cu, P, Sb, Bi and other elements. The contact between CdTe and wide-bandgap ternary II-VI semiconductors, such as: Cd 1-x Zn x Te, Cd 1-x Mg x Te can effectively reduce the lattice mismatch at the interface and reduce the concentration of recombination centers near the back electrode.
本发明p-i-n结构的CdTe太阳能电池中,在p型的宽带隙三元II-VI半导体层和同时是电极的金属反射层之间插入n型的ZnO:Al或者In2O3:Sn增反遂穿层。在光学性能方面,可以通过调节ZnO:Al或者In2O3:Sn增反遂穿层的厚度在背金属电极界面获得最高的近红外光反射率。n型ZnO:Al或者In2O3:Sn增反遂穿层与p型宽带隙三元II-VI族材料层之间形成p+/n+型的双层隧穿结构,帮助空穴从CdTe穿过背电极界面向金属电极层的传输。 In the CdTe solar cell with pin structure of the present invention, n-type ZnO:Al or In 2 O 3 :Sn is inserted between the p-type wide bandgap ternary II-VI semiconductor layer and the metal reflective layer that is also an electrode. wear layers. In terms of optical performance, the highest near-infrared light reflectance can be obtained at the back metal electrode interface by adjusting the thickness of the ZnO:Al or In 2 O 3 :Sn antireflective tunneling layer. A p + /n + type double-layer tunneling structure is formed between the n-type ZnO:Al or In 2 O 3 :Sn anti-increasing tunneling layer and the p - type wide bandgap ternary II-VI group material layer, which helps holes from Transport of CdTe across the back electrode interface to the metal electrode layer.
本发明的电池虽然CdTe的厚度仅为0.1-1.0μm,但是开路电压仍能达到1V以上,转化效率能达到20%以上。能大大降低CdTe电池的成本、提高CdTe多晶薄膜电池的转化效率。 Although the thickness of the CdTe battery of the invention is only 0.1-1.0 μm, the open circuit voltage can still reach more than 1V, and the conversion efficiency can reach more than 20%. The cost of the CdTe battery can be greatly reduced, and the conversion efficiency of the CdTe polycrystalline thin film battery can be improved.
本发明磁控溅射过程中,在通入的Ar气中混入含N和P的气体,制备CdTe电池。磁控溅射方法可以实现低温生长,能很好的控制生长速度,有效的控制多晶薄膜晶粒的大小,以及控制多晶薄膜的表面粗糙度。磁控溅射多晶薄膜的晶粒可以保证厚度≤1μm的超薄CdTe本征吸光层薄膜表面的微观平整度,因而大大降低了弱二极管效应出现的几率,相对气相输运沉积和近空间升华沉积方法具有明显的优势。 During the magnetron sputtering process of the present invention, a gas containing N and P is mixed into the incoming Ar gas to prepare a CdTe battery. The magnetron sputtering method can realize low-temperature growth, can well control the growth rate, effectively control the grain size of the polycrystalline film, and control the surface roughness of the polycrystalline film. The crystal grains of magnetron sputtering polycrystalline film can ensure the microscopic flatness of the surface of ultra-thin CdTe intrinsic light-absorbing layer film with a thickness of ≤1 μm, thus greatly reducing the probability of weak diode effect, compared with vapor transport deposition and near-space sublimation The deposition method has clear advantages.
本发明太阳能电池制备方法具体描述如下: The solar cell preparation method of the present invention is specifically described as follows:
1、清洗衬底; 1. Clean the substrate;
2、在衬底上生长透明导电电极层; 2. Growing a transparent conductive electrode layer on the substrate;
3、在衬底上的透明导电电极层上依次生长CdS n型半导体层和CdTe本征光吸收半导体层; 3. Growing a CdS n-type semiconductor layer and a CdTe intrinsic light-absorbing semiconductor layer sequentially on the transparent conductive electrode layer on the substrate;
4、在有CdCl2蒸气的气氛中对制备的CdS n型半导体层和CdTe本征光吸收半导体层进行退火处理; 4. Carry out annealing treatment to the prepared CdS n-type semiconductor layer and CdTe intrinsic light-absorbing semiconductor layer in an atmosphere of CdCl2 vapor;
5、在经CdCl2退火处理后的CdTe本征光吸收半导体层上通过磁控溅射方法依次沉积宽带隙II-VI半导体p+层和ZnO:Al或In2O3:Sn n+增反遂穿层。磁控溅射过程中,在通入的Ar 中混入含N和P的气体,在宽带隙II-VI族半导体p+宽带隙层中掺入氮(N)或磷(P),或采用后扩散的方式在宽带隙II-VI族半导体宽带隙层中掺入铜(Cu)或磷(P)或镝(Sb)或铋(Bi)等p型杂质。 5. On the CdTe intrinsic light-absorbing semiconductor layer after CdCl 2 annealing, deposit a wide bandgap II-VI semiconductor p + layer and ZnO:Al or In 2 O 3 :Sn n + antireflection in sequence by magnetron sputtering method Then through the layer. During the magnetron sputtering process, the gas containing N and P is mixed in the incoming Ar, and nitrogen (N) or phosphorus (P) is doped in the wide bandgap II-VI semiconductor p + wide bandgap layer, or after using The way of diffusion is to dope p-type impurities such as copper (Cu) or phosphorus (P) or dysprosium (Sb) or bismuth (Bi) in the wide bandgap II-VI semiconductor wide bandgap layer.
6、在ZnO:Al或In2O3:Sn n+增反遂穿层表面沉积金属导电电极层。 6. Depositing a metal conductive electrode layer on the surface of the ZnO:Al or In 2 O 3 :Sn n + enhancement tunneling layer.
至此制得所述的p-i-n结构的CdTe太阳能电池。 So far, the p-i-n structure CdTe solar cell is produced.
所述步骤1中,所述的衬底可以是刚性衬底,或者柔性衬底。 In the step 1, the substrate may be a rigid substrate or a flexible substrate.
所述步骤2是生长透明导电电极层,其作用为导出电子。透明导电薄膜可以为In2O3:Sn或ZnO:Al或ZnO:B或In2O3:Mo或In:ZnO或石墨烯或SnO2:F或Cd2SnO4等。生长透明导电薄膜的工艺可以采用磁控溅射法、脉冲激光沉积技术、超声喷雾热分解法、分子束外延法、胶法凝胶法、化学气相沉积法。导电电极层的厚度为0.3-1500nm。 The step 2 is to grow a transparent conductive electrode layer, which is used to export electrons. The transparent conductive film can be In 2 O 3 :Sn or ZnO:Al or ZnO:B or In 2 O 3 :Mo or In:ZnO or graphene or SnO 2 :F or Cd 2 SnO 4 and so on. The process of growing transparent conductive thin film can adopt magnetron sputtering method, pulsed laser deposition technology, ultrasonic spray pyrolysis method, molecular beam epitaxy method, colloidal gel method, chemical vapor deposition method. The thickness of the conductive electrode layer is 0.3-1500nm.
所述步骤3的操作方法是:在磁控溅射炉放置衬底的位置上放上制备了透明导电电极层的衬底,盖上磁控溅射炉的炉盖,对磁控溅射炉腔室抽真空,并升温使衬底温度保持在25-600℃。当背底真空到达10-3Pa以下,开始溅射CdS半导体层。CdS半导体层的溅射条件为:衬底温度25-600℃,向磁控溅射炉腔室内通入高纯Ar气,气体流速10-100sccm,磁控溅射炉腔室压强0.1-10Pa。当衬底上所溅射的CdS半导体层的厚度为10-100nm时,停止CdS半导体层的制备。把衬底转向正对CdTe靶的位置,开始溅射CdTe半导体层。CdTe半导体层的溅射条件为:衬底温度25-600℃,向磁控溅射炉腔室内通入高纯Ar气,气体流速10-100sccm,磁控溅射炉腔室压强0.1-10Pa。当衬底上所溅射的CdTe半导体层厚度达到设定的厚度0.1-1μm时,CdTe层的厚度通过在线膜厚测量设备测的。停止CdTe半导体层的制备,同时停止对衬底加热,待衬底温度降低到室温时,取出沉积了CdS和CdTe半导体层的衬底。 The operation method of described step 3 is: put the substrate that has prepared transparent conductive electrode layer on the position that magnetron sputtering furnace places substrate, cover the lid of magnetron sputtering furnace, to magnetron sputtering furnace The chamber is evacuated and heated to maintain the substrate temperature at 25-600°C. When the background vacuum reaches below 10 -3 Pa, start to sputter the CdS semiconductor layer. The sputtering conditions of the CdS semiconductor layer are as follows: the substrate temperature is 25-600°C, high-purity Ar gas is introduced into the magnetron sputtering furnace chamber, the gas flow rate is 10-100 sccm, and the magnetron sputtering furnace chamber pressure is 0.1-10Pa. When the thickness of the sputtered CdS semiconductor layer on the substrate is 10-100 nm, the preparation of the CdS semiconductor layer is stopped. Turn the substrate to the position facing the CdTe target, and start sputtering the CdTe semiconductor layer. The sputtering conditions of the CdTe semiconductor layer are as follows: the substrate temperature is 25-600°C, high-purity Ar gas is introduced into the magnetron sputtering furnace chamber, the gas flow rate is 10-100 sccm, and the magnetron sputtering furnace chamber pressure is 0.1-10Pa. When the thickness of the sputtered CdTe semiconductor layer on the substrate reaches a set thickness of 0.1-1 μm, the thickness of the CdTe layer is measured by an online film thickness measuring device. The preparation of the CdTe semiconductor layer is stopped, and the heating of the substrate is stopped at the same time. When the temperature of the substrate is lowered to room temperature, the substrate deposited with the CdS and CdTe semiconductor layers is taken out.
所述步骤4中,在CdCl2气氛中对制备的CdS和CdTe半导体层进行退火处理,在300-500℃对CdS n型半导体层和CdTe本征光吸收半导体层退火处理5-120min。退火可以采用湿法或者干法。湿法退火的工艺过程如下:把CdCl2的饱和甲醇溶液均匀滴在CdTe本征光吸收半导体层上,对CdTe本征光吸收半导体层进行退火处理。干法退火的工艺过程如下:把CdCl2均匀放置在玻璃片上,然后在距离此玻璃片1-5mm处放置具有CdTe本征光吸收半导体层、CdSn型半导体层和透明导电电极层的衬底,CdTe半本征光吸收导体层正对有CdCl2的玻璃片,然后对CdSn型半导体层和CdTe本征光吸收半导体层进行退火处理。 In step 4, the prepared CdS and CdTe semiconductor layers are annealed in a CdCl 2 atmosphere, and the CdS n-type semiconductor layer and the CdTe intrinsic light-absorbing semiconductor layer are annealed at 300-500° C. for 5-120 minutes. Annealing can be done by wet or dry methods. The process of wet annealing is as follows: the saturated methanol solution of CdCl 2 is evenly dropped on the CdTe intrinsic light-absorbing semiconductor layer, and the CdTe intrinsic light-absorbing semiconductor layer is annealed. The process of dry annealing is as follows: place CdCl evenly on the glass sheet, and then place a substrate with a CdTe intrinsic light-absorbing semiconductor layer, a CdSn type semiconductor layer and a transparent conductive electrode layer at a distance of 1-5 mm from the glass sheet. The CdTe semi-intrinsic light-absorbing conductor layer is facing the glass sheet with CdCl 2 , and then the CdSn type semiconductor layer and the CdTe intrinsic light-absorbing semiconductor layer are annealed.
所述步骤5的操作方法是:在磁控溅射炉放置衬底的位置上放上覆盖有透明导电电极层、CdS n型半导体层、CdTe本征光吸收层的衬底,盖上磁控溅射炉的炉盖,对磁控溅射炉腔室抽真空,并升温使具有透明导电电极层、CdS n型半导体层、CdTe本征光吸收层的衬底温度保持在25-600℃的范围。当背底真空到达10-3Pa以下,开始溅射宽带隙三元II-VI族半导体 p+层。宽带隙三元II-VI族半导体p+层的溅射条件为:衬底温度25-600℃,向磁控溅射腔室内通入高纯Ar、或者Ar和N2、或者Ar和PH3,气体流速10-100sccm,腔室压强0.1-10Pa。当宽带隙三元II-VI族半导体p+层的厚度为1-100nm时,停止宽带隙三元II-VI族半导体p+层的制备。或者溅射完宽带隙三元II-VI族半导体p+层后,把覆盖有透明导电电极层、CdS n型半导体层、CdTe本征光吸收层、宽带隙三元II-VI族半导体p+层的衬底取出,然后通过电子束或者热蒸发在宽带隙三元II-VI族半导体p+层上生长1-20nm的Cu或P或Sb2Te3或Bi2Te3,然后在快速退火炉中在50-600℃温度范围进行扩散,扩散的时间为0.1-120min。把衬底转向正对ZnO:Al或者In2O3:Sn靶的位置,开始溅射ZnO:Al或者In2O3:Snn+层。ZnO:Al或者In2O3:Sn n+层的溅射条件为:衬底温度25-600℃,向磁控溅射腔室内通入高纯Ar气,气体流速10-100sccm,磁控溅射腔室压强0.1-10Pa。当衬底上所溅射的ZnO:Al或者In2O3:Sn n+层的厚度达到设定的厚度1-100nm时,停止ZnO:Al或者In2O3:Sn n+层的制备,同时停止对衬底加热,待衬底温度降低到室温时,取出衬底。 The operation method of the step 5 is: put the substrate covered with the transparent conductive electrode layer, the CdS n-type semiconductor layer, the CdTe intrinsic light absorbing layer on the position where the substrate is placed in the magnetron sputtering furnace, cover the magnetron The furnace cover of the sputtering furnace, vacuumize the magnetron sputtering furnace chamber, and raise the temperature to keep the substrate temperature at 25-600°C with a transparent conductive electrode layer, CdS n-type semiconductor layer, and CdTe intrinsic light absorption layer scope. When the background vacuum reaches below 10 -3 Pa, start sputtering the p + layer of the wide bandgap ternary II-VI semiconductor. The sputtering conditions for the wide bandgap ternary II-VI semiconductor p + layer are: the substrate temperature is 25-600°C, and high-purity Ar, or Ar and N 2 , or Ar and PH 3 are introduced into the magnetron sputtering chamber , gas flow rate 10-100sccm, chamber pressure 0.1-10Pa. When the thickness of the p + layer of the wide bandgap ternary II-VI group semiconductor is 1-100 nm, the preparation of the wide bandgap ternary II-VI group semiconductor p + layer is stopped. Or after sputtering the wide-bandgap ternary II-VI semiconductor p + layer, cover with transparent conductive electrode layer, CdS n-type semiconductor layer, CdTe intrinsic light absorption layer, wide-bandgap ternary II-VI semiconductor p + layer substrate, and then grow 1-20nm Cu or P or Sb 2 Te 3 or Bi 2 Te 3 on the wide bandgap ternary II-VI semiconductor p + layer by electron beam or thermal evaporation, and then rapidly Diffusion is carried out in a furnace at a temperature range of 50-600°C, and the diffusion time is 0.1-120min. Turn the substrate to the position facing the ZnO:Al or In 2 O 3 :Sn target, and start sputtering the ZnO:Al or In 2 O 3 :Snn + layer. The sputtering conditions of ZnO:Al or In 2 O 3 :Sn n + layer are: the substrate temperature is 25-600°C, high-purity Ar gas is introduced into the magnetron sputtering chamber, the gas flow rate is 10-100sccm, and the magnetron sputtering The injection chamber pressure is 0.1-10Pa. When the thickness of the sputtered ZnO:Al or In 2 O 3 :Sn n + layer on the substrate reaches the set thickness of 1-100nm, stop the preparation of the ZnO:Al or In 2 O 3 :Sn n + layer, At the same time, stop heating the substrate, and take out the substrate when the temperature of the substrate drops to room temperature.
或者在磁控溅射炉放置衬底的位置上放上覆盖有透明导电电极层、CdS n型半导体层、CdTe本征光吸收层的衬底,盖上磁控溅射炉的炉盖,对磁控溅射炉腔室抽真空,并升温使具有透明导电电极层、CdS n型半导体层、CdTe本征光吸收层的衬底的温度保持在25-600℃。当背底真空到达10-3Pa以下,开始溅射宽带隙三元II-VI族半导体p+层。宽带隙三元II-VI族半导体p+层的溅射条件为:靶材为掺入Cu或P或Sb或Bi等物质的宽带隙三元II-VI族半导体层,比如:Cd1-xZnxTe或Cd1-xMgxTe,衬底温度25-600℃,向磁控溅射腔室内通入高纯Ar气体流速10-100sccm,腔室压强0.1-10Pa,。当宽带隙三元II-VI族半导体p+层的厚度为1-100nm时,停止宽带隙三元II-VI族半导体p+层的制备。把衬底转向正对ZnO:Al或者In2O3:Sn靶的位置,开始溅射ZnO:Al或者In2O3:Sn n+层。ZnO:Al或者In2O3:Sn n+层的溅射条件为:衬底温度25-600℃,向磁控溅射腔室内通入高纯Ar气,气体流速10-100sccm,磁控溅射腔室压强0.1-10Pa。当衬底上所溅射的ZnO:Al或者In2O3:Sn n+层的厚度达到设定的厚度1-100nm时,停止ZnO:Al或者In2O3:Sn n+层的制备,同时停止对衬底加热,待衬底温度降低到室温时,取出衬底。 Or put the substrate covered with transparent conductive electrode layer, CdS n-type semiconductor layer, CdTe intrinsic light absorbing layer on the position where the substrate is placed in the magnetron sputtering furnace, cover the furnace cover of the magnetron sputtering furnace, to The chamber of the magnetron sputtering furnace is evacuated, and the temperature is raised to keep the temperature of the substrate with the transparent conductive electrode layer, the CdS n-type semiconductor layer, and the CdTe intrinsic light absorption layer at 25-600°C. When the background vacuum reaches below 10 -3 Pa, start sputtering the p + layer of the wide bandgap ternary II-VI semiconductor. The sputtering condition of the wide bandgap ternary II-VI semiconductor p + layer is: the target material is a wide bandgap ternary II-VI semiconductor layer doped with Cu or P or Sb or Bi, such as: Cd 1-x Zn x Te or Cd 1-x Mg x Te, the substrate temperature is 25-600°C, the flow rate of high-purity Ar gas is 10-100sccm, and the chamber pressure is 0.1-10Pa, into the magnetron sputtering chamber. When the thickness of the p + layer of the wide bandgap ternary II-VI group semiconductor is 1-100 nm, the preparation of the wide bandgap ternary II-VI group semiconductor p + layer is stopped. Turn the substrate to the position facing the ZnO:Al or In 2 O 3 :Sn target, and start sputtering the ZnO:Al or In 2 O 3 :Sn n + layer. The sputtering conditions of ZnO:Al or In 2 O 3 :Sn n + layer are: the substrate temperature is 25-600°C, high-purity Ar gas is introduced into the magnetron sputtering chamber, the gas flow rate is 10-100sccm, and the magnetron sputtering The injection chamber pressure is 0.1-10Pa. When the thickness of the sputtered ZnO:Al or In 2 O 3 :Sn n + layer on the substrate reaches the set thickness of 1-100nm, stop the preparation of the ZnO:Al or In 2 O 3 :Sn n + layer, At the same time, stop heating the substrate, and take out the substrate when the temperature of the substrate drops to room temperature.
所述步骤6的操作方法是:通过热蒸发或者电子束在ZnO:Al或者In2O3:Sn n+层增反遂穿层上蒸镀厚度大于5nm的金属电极层,金属电极层的厚度通过石英晶振片测得。 The operation method of the step 6 is: by thermal evaporation or electron beam on the ZnO:Al or In 2 O 3 :Sn n + layer enhancement and reflection tunneling layer, a metal electrode layer with a thickness greater than 5nm is evaporated, and the thickness of the metal electrode layer is Measured with a quartz crystal oscillator.
至此,得到本发明所述的p-i-n结构的CdTe太阳能电池。 So far, the p-i-n structure CdTe solar cell described in the present invention is obtained.
本发明的p-i-n结构的CdTe太阳能电池与传统p-n结构CdTe多晶薄膜太阳能电池相比具有如下优点: The CdTe solar cell of the p-i-n structure of the present invention has the following advantages compared with the traditional p-n structure CdTe polycrystalline thin film solar cell:
本发明所采用的电池结构的本征层为CdTe,CdTe光吸收本征厚度仅为0.1-1.0μm,厚 度通过在线膜厚测量设备获得,大大减少了CdTe材料的使用。 The intrinsic layer of the battery structure used in the present invention is CdTe, and the intrinsic thickness of CdTe light absorption is only 0.1-1.0 μm, and the thickness is obtained by online film thickness measurement equipment, which greatly reduces the use of CdTe materials.
本发明所采用的电池结构为p-i-n结构,制备方法为磁控溅射方法,可以获得足够小的半导体层薄膜晶粒,可以通过SEM表征半导体层薄膜晶粒的结构,保证本征i层薄膜的品质,可以保证超薄CdTe(≤1μm)光吸收层表面的微观平整度,因而大大降低了弱二极管效应出现的几率,相对物理气相沉积和近空间升华技术具有明显的优势。 The battery structure adopted in the present invention is a p-i-n structure, and the preparation method is a magnetron sputtering method, which can obtain sufficiently small semiconductor layer thin film grains, and can characterize the structure of the semiconductor layer thin film grains by SEM to ensure the intrinsic i-layer thin film. The quality can guarantee the microscopic flatness of the surface of the ultra-thin CdTe (≤1μm) light-absorbing layer, thus greatly reducing the probability of the weak diode effect, which has obvious advantages over physical vapor deposition and near-space sublimation technology.
本发明所采用低温磁控溅射制备p-i-n结构,能获得很好的陷光结构。采用磁控溅射的方法制备p-i-n各层半导体层,可以获得多孔的CdS/CdTe界面,通过FIB加工断面,通过SEM观测,在光进入CdTe光吸收本征层之前被散射,增加在吸收层中的光程。其次,在宽带隙三元II-VI族半导体p+层和同时为电极和反射层的金属层之间插入ZnO:Al或者In2O3:Snn+型增反遂穿层,增反遂穿层能起到良好的陷光作用,进一步达到有效的陷光作用。 The invention adopts low-temperature magnetron sputtering to prepare the pin structure, which can obtain a good light-trapping structure. The semiconductor layers of pin are prepared by magnetron sputtering, and a porous CdS/CdTe interface can be obtained. The cross-section is processed by FIB and observed by SEM. Before the light enters the CdTe light-absorbing intrinsic layer, it is scattered and added in the absorbing layer. light path. Secondly, insert a ZnO:Al or In 2 O 3 :Snn+ type anti-increasing tunneling layer between the wide-bandgap ternary II-VI semiconductor p + layer and the metal layer that is both an electrode and a reflective layer, and the anti-increasing tunneling layer It can play a good light trapping effect, and further achieve an effective light trapping effect.
本发明p-i-n结构的CdTe太阳能电池采用反应溅射的方式在宽带隙三元II-VI族半导体p+层中掺入氮(N)或磷(P),或采用后扩散的方式掺入铜(Cu)或磷(P)或镝(Sb)或铋(Bi)等p型杂质。 The CdTe solar cell with the pin structure of the present invention uses reactive sputtering to dope nitrogen (N) or phosphorus (P) into the wide bandgap ternary II-VI group semiconductor p + layer, or uses post-diffusion to dope copper ( Cu) or phosphorus (P) or dysprosium (Sb) or bismuth (Bi) and other p-type impurities.
本发明所采用p-i-n结构的CdTe太阳能电池,其开路电压有望达到1V以上,转化效率有望达到20%以上。 The open-circuit voltage of the CdTe solar cell with p-i-n structure used in the present invention is expected to reach more than 1V, and the conversion efficiency is expected to reach more than 20%.
附图说明 Description of drawings
图1为传统p-n结结构的CdTe薄膜太阳能电池的结构示意图,图中:1-1衬底、1-2透明导电电极层、1-3CdS n型半导体层、1-4CdTe本征光吸收层、1-5金属电极层。 Figure 1 is a schematic diagram of the structure of a CdTe thin film solar cell with a traditional p-n junction structure. In the figure: 1-1 substrate, 1-2 transparent conductive electrode layer, 1-3CdS n-type semiconductor layer, 1-4CdTe intrinsic light absorption layer, 1-5 metal electrode layers.
图2为本发明p-i-n结构的CdTe太阳能电池的结构示意图,图中:2-1衬底、2-2透明导电电极层、2-3CdS n型半导体层、2-4CdTe本征光吸收层、2-5宽带隙三元II-VI族半导体p+层、2-6ZnO:Al或者In2O3:Sn n+层、2-7金属电极层。 Fig. 2 is the structural representation of the CdTe solar cell of pin structure of the present invention, among the figure: 2-1 substrate, 2-2 transparent conductive electrode layer, 2-3CdS n-type semiconductor layer, 2-4CdTe intrinsic light absorption layer, 2 -5 wide bandgap ternary II-VI semiconductor p + layers, 2-6 ZnO:Al or In 2 O 3 :Sn n + layers, 2-7 metal electrode layers.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明做进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
所述的CdTe电池包括透明导电电极层2-2、CdS n型半导体层2-3、CdTe本征光吸收层2-4、宽带隙三元II-VI族半导体p+层2-5、ZnO:Al或者In2O3:Sn n+增反隧穿层2-6,以及金属电极层2-7。所述的衬底2-1之上为透明导电电极层2-2、透明导电电极层2-2上为CdS n型半导体层2-3,CdS n型半导体层2-3上为CdTe本征光吸收层2-4,CdTe本征光吸收层2-4上为宽带隙三元II-VI族半导体p+层2-5,宽带隙三元II-VI族半导体p+层2-5上为ZnO:Al或者In2O3:Sn n+增反隧穿层层2-6、ZnO:Al或者In2O3:Sn n+增反隧穿层2-6上为金属电极层2-7。 The CdTe battery includes a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, a CdTe intrinsic light absorption layer 2-4, a wide bandgap ternary II-VI group semiconductor p + layer 2-5, ZnO : Al or In 2 O 3 : Sn n + anti-increasing tunneling layer 2-6, and metal electrode layer 2-7. On the substrate 2-1 is a transparent conductive electrode layer 2-2, on the transparent conductive electrode layer 2-2 is a CdS n-type semiconductor layer 2-3, on the CdS n-type semiconductor layer 2-3 is a CdTe intrinsic Light absorbing layer 2-4, CdTe intrinsic light absorbing layer 2-4 is a wide bandgap ternary II-VI group semiconductor p + layer 2-5, wide bandgap ternary II-VI group semiconductor p + layer 2-5 The anti-reflection tunneling layer 2-6 is ZnO:Al or In 2 O 3 :Sn n+, and the metal electrode layer 2-7 is on the ZnO:Al or In 2 O 3 :Sn n+ anti-reflection tunneling layer 2-6.
实施例1 Example 1
首先将99.999%的高纯ZnO:Al靶材安装到磁控溅射设备的靶位上,然后将按步骤1用micro-90清洗干净的玻璃衬底2-1送入磁控溅射设备的真空腔室,并加热到200℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为180W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积1.0μm厚的ZnO:Al透明导电电极层(TCO)2-2。然后将沉积有透明导电电极层2-2的玻璃衬底2-1放入磁控溅射设备的真空腔室里,并加热到250℃。对真空室抽真空至低于10-4Pa,真空室充入氩气至3Pa,打开射频电源,调节该电源输出功率为40W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积10nm厚的CdS n型半导体层2-3。然后在把衬底转向正对CdTe靶的位置,开始溅射CdTe半导体层2-4,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积100nm厚的CdTe半导体层2-4。制成由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。 First, the 99.999% high-purity ZnO: Al target is installed on the target position of the magnetron sputtering equipment, and then the glass substrate 2-1 cleaned with micro-90 according to step 1 is sent to the magnetron sputtering equipment. The vacuum chamber is heated to 200°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon gas to 2 Pa, the radio frequency power supply is turned on, and the output power of the power supply is adjusted to 180W, the distance between the target and the glass substrate The distance between them is 11 cm, and a 1.0 μm thick ZnO:Al transparent conductive electrode layer (TCO) 2-2 is deposited by sputtering under this process. Then put the glass substrate 2-1 deposited with the transparent conductive electrode layer 2-2 into the vacuum chamber of the magnetron sputtering equipment, and heat it to 250°C. Evacuate the vacuum chamber to below 10 -4 Pa, fill the vacuum chamber with argon gas to 3 Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 40W, and the distance between the target and the glass substrate is 11cm, under this process A 10 nm thick CdS n-type semiconductor layer 2-3 was sputter deposited. Then turn the substrate to the position facing the CdTe target, start sputtering the CdTe semiconductor layer 2-4, fill the vacuum chamber with argon gas to 2Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and the distance between the target and the glass substrate The distance between them is 11 cm, and a 100 nm thick CdTe semiconductor layer 2-4 is deposited by sputtering under this process. A solar cell multilayer film structure composed of a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, and a CdTe semiconductor layer 2-4 is made.
停止对衬底2-1加热,待衬底2-1温度降低到室温时,取出由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。按步骤4对电池多层薄膜结构进行Cl处理,Cl处理温度为300℃,处理时间为5min。完成Cl处理过程,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜冷却到室温。 Stop heating the substrate 2-1, and when the temperature of the substrate 2-1 drops to room temperature, take out the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2. -4 solar cell multilayer thin film structure. Perform Cl treatment on the battery multilayer film structure according to step 4, the Cl treatment temperature is 300° C., and the treatment time is 5 minutes. After the Cl treatment process is completed, the solar cell multilayer film composed of the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2-4 is cooled to room temperature.
然后把经过Cl处理后的具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜放入磁控溅射的真空腔室,并加热到250℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积1nm厚的Cd1-xZnxTe半导体层2-5,然后把衬底的位置转向ZnO:Al,真空室压强保持2Pa,射频电源的输出功率为60W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积1nm厚的ZnO:Al n+层2-6。至此得到具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、ZnO:Al n+层2-6。待其冷却至室温,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、ZnO:Aln+层取出腔室。放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始在ZnO:Al n+层2-6表面沉积厚度为200nm的Mg金属电极层2-7。至此完成所述p-i-n结构的CdTe太阳能电池多晶薄膜电池的制备。 Then put the solar cell multilayer film made of substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4 into magnetron sputtering after Cl treatment The vacuum chamber is heated to 250°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon gas to 2Pa, the radio frequency power is turned on, and the output power of the power supply is adjusted to 60W, the target and the glass substrate The distance between 2-1 is 11cm. Under this process, a 1nm-thick Cd 1-x Zn x Te semiconductor layer 2-5 is deposited by sputtering, and then the position of the substrate is turned to ZnO:Al, and the vacuum chamber pressure is maintained at 2Pa. The output power of the RF power supply is 60W, and the distance between the target and the glass substrate is 11cm. Under this process, a 1nm-thick ZnO:Al n + layer 2-6 is deposited by sputtering. So far, the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5, ZnO:Al n + Layers 2-6. After it is cooled to room temperature, put the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 , ZnO:Aln + layer taken out of the chamber. Put it into the vacuum chamber of electron beam and thermal evaporation, wait for the vacuum of the chamber to be below 10 -4 Pa, start to deposit Mg metal electrode layer 2-7 with a thickness of 200nm on the surface of ZnO:Al n + layer 2-6. So far, the preparation of the pin structure CdTe solar cell polycrystalline thin film cell is completed.
实施例2 Example 2
首先将99.999%的高纯ZnO:B靶材安装到磁控溅射设备的靶位上,然后将用micro-90 清洗干净的玻璃衬底2-1送入磁控溅射设备的真空腔室,并保持在25℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,Ar流速为10sccm,,打开射频电源,调节该电源输出功率为140W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积1.0μm厚的ZnO:B透明导电电极层(TCO)2-2。然后将沉积有透明导电电极层2-2的玻璃衬底2-1放入磁控溅射设备的真空腔室里,并保持在25℃。对真空室抽真空至低于10-4Pa,真空室充入氩气至3Pa,Ar流速为10sccm,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积10nm厚的CdS n型半导体层2-3。然后在把衬底转向正对CdTe靶的位置,开始溅射CdTe半导体层2-4,真空室充入氩气至2Pa,Ar流速为10sccm,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积500nm厚的CdTe半导体层2-4。制成由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。停止对衬底2-1加热,待衬底2-1温度降低到室温时,取出由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。按步骤4对电池多层薄膜结构进行Cl处理,Cl处理温度为500℃,处理时间为5min。完成Cl处理过程,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜冷却到室温。 First install the 99.999% high-purity ZnO:B target on the target position of the magnetron sputtering equipment, and then send the glass substrate 2-1 cleaned with micro-90 into the vacuum chamber of the magnetron sputtering equipment , and keep it at 25°C; evacuate the vacuum chamber to below 10 -4 Pa, fill the vacuum chamber with argon gas to 2 Pa, and the flow rate of Ar is 10 sccm, turn on the radio frequency power supply, adjust the output power of the power supply to 140W, the target and the glass The distance between the substrates 2-1 is 11 cm, and a 1.0 μm thick ZnO:B transparent conductive electrode layer (TCO) 2-2 is deposited by sputtering under this process. Then put the glass substrate 2-1 deposited with the transparent conductive electrode layer 2-2 into the vacuum chamber of the magnetron sputtering equipment, and keep it at 25°C. Evacuate the vacuum chamber to be lower than 10 -4 Pa, fill the vacuum chamber with argon gas to 3 Pa, and the Ar flow rate is 10 sccm, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and the distance between the target and the glass substrate 2-1 The distance is 11 cm, and a 10 nm thick CdS n-type semiconductor layer 2-3 is deposited by sputtering under this process. Then turn the substrate to the position facing the CdTe target, start sputtering the CdTe semiconductor layer 2-4, fill the vacuum chamber with argon gas to 2Pa, and the Ar flow rate is 10 sccm, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and the target The distance from the glass substrate 2-1 is 11 cm, and a 500 nm thick CdTe semiconductor layer 2-4 is deposited by sputtering under this process. A solar cell multilayer film structure composed of a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, and a CdTe semiconductor layer 2-4 is made. Stop heating the substrate 2-1, and when the temperature of the substrate 2-1 drops to room temperature, take out the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2. -4 solar cell multilayer thin film structure. According to step 4, perform Cl treatment on the battery multilayer thin film structure, the Cl treatment temperature is 500° C., and the treatment time is 5 minutes. After completing the Cl treatment process, cool the solar cell multilayer film composed of the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2-4 to room temperature.
然后把经过Cl处理后的具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜放入磁控溅射的真空腔室,衬底温度保持在25℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,Ar气体流速10sccm,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积1nm厚的Cd1-xZnxTe半导体层2-5,然后把衬底2-1的位置转向In2O3:Sn靶,真空室压强保持2Pa,射频电源的输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积1nm厚的In2O3:Snn+层2-6。至此得到具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、In2O3:Sn n+层2-6。待其冷却至室温,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、In2O3:Sn n+层2-6取出腔室。放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始在In2O3:Sn n+层2-6表面沉积厚度为200nm的Ni金属导电电极层2-7。至此完成所述p-i-n结构CdTe多晶薄膜电池的制备。 Then put the solar cell multilayer film made of substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4 into magnetron sputtering after Cl treatment The substrate temperature is kept at 25°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon gas to 2 Pa, the flow rate of Ar gas is 10 sccm, the radio frequency power supply is turned on, and the output power of the power supply is adjusted to 60W, the distance between the target and the glass substrate 2-1 is 11cm. Under this process, a 1nm thick Cd 1-x Zn x Te semiconductor layer 2-5 is deposited by sputtering, and then the position of the substrate 2-1 is turned to In 2 O 3 : Sn target, the pressure of the vacuum chamber is maintained at 2Pa, the output power of the RF power supply is 60W, the distance between the target and the glass substrate 2-1 is 11cm, and 1nm thick In 2 O is deposited by sputtering under this process 3 : Snn + layers 2-6. So far, a substrate with a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, a CdTe semiconductor layer 2-4, a Cd 1-x Zn x Te semiconductor layer 2-5, and an In 2 O 3 :Sn n + layers 2-6. After it is cooled to room temperature, put the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 , In 2 O 3 :Sn n + layers 2-6 are taken out of the chamber. Put it into the vacuum chamber of electron beam and thermal evaporation, wait for the vacuum of the chamber to be below 10 -4 Pa, start to deposit a Ni metal conductive electrode layer with a thickness of 200nm on the surface of In 2 O 3 : Sn n + layer 2-6 2-7. So far, the preparation of the pin structure CdTe polycrystalline thin film battery is completed.
实施例3 Example 3
用micro-90清洗干净的云母衬底2-1表面通过化学气相沉积法方法制备石墨烯透明导电电极层2-2。石墨烯生长方法如下:通过化学气相沉积法在管式炉中制备石墨烯,把0.5mm 厚的Cu箔放入管式炉中,然后把管式炉加热到1000℃,通入甲烷和氢气,在1000℃保持15min,得到所需要的石墨烯。然后通过三氯化铁和盐酸的溶液把石墨烯转移到聚甲基丙烯酸甲酯(PMMA)上,在把石墨烯放到云母衬底2-1上,通过丙酮把聚甲基丙烯酸甲酯溶解掉,得到在云母衬底2-1上得到0.3nm厚的透明导电电极层2-2。然后将沉积有透明导电电极层2-2的云母衬底2-1放入磁控溅射设备的真空腔室里,并加热到600℃。对真空室抽真空至低于10-4Pa,真空室充入氩气至10Pa,Ar流速为100sccm,打开射频电源,调节该电源输出功率为100W,靶与云母衬底2-1之间的距离为11cm,在此工艺下溅射沉积100nm厚的CdS n型半导体层2-3。然后在把衬底2-1转向正对CdTe靶的位置,开始溅射CdTe本征光吸收半导体层2-4,真空室充入氩气至2Pa,Ar流速为100sccm,打开射频电源,调节该电源输出功率为120W,靶与衬底2-1之间的距离为11cm,在此工艺下溅射沉积1000nm厚的CdTe本征光吸收半导体层2-4。制成由由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。 The surface of mica substrate 2-1 cleaned with micro-90 was prepared by chemical vapor deposition method to prepare graphene transparent conductive electrode layer 2-2. The graphene growth method is as follows: prepare graphene in a tube furnace by chemical vapor deposition, put a 0.5mm thick Cu foil into the tube furnace, then heat the tube furnace to 1000°C, and feed methane and hydrogen, Keep at 1000°C for 15 minutes to obtain the desired graphene. Then graphene is transferred to polymethyl methacrylate (PMMA) by a solution of ferric chloride and hydrochloric acid, and graphene is put on the mica substrate 2-1, and polymethyl methacrylate is dissolved by acetone Then, a transparent conductive electrode layer 2-2 with a thickness of 0.3 nm was obtained on the mica substrate 2-1. Then put the mica substrate 2-1 deposited with the transparent conductive electrode layer 2-2 into the vacuum chamber of the magnetron sputtering equipment, and heat it to 600°C. Evacuate the vacuum chamber to be lower than 10 -4 Pa, fill the vacuum chamber with argon gas to 10 Pa, and the Ar flow rate is 100 sccm, turn on the radio frequency power supply, adjust the output power of the power supply to 100W, and the distance between the target and the mica substrate 2-1 The distance is 11 cm, and a 100 nm thick CdS n-type semiconductor layer 2-3 is deposited by sputtering under this process. Then turn the substrate 2-1 to the position facing the CdTe target, start sputtering the CdTe intrinsic light-absorbing semiconductor layer 2-4, fill the vacuum chamber with argon gas to 2Pa, and the Ar flow rate is 100 sccm, turn on the radio frequency power supply, adjust the The output power of the power supply is 120W, and the distance between the target and the substrate 2-1 is 11cm. Under this process, a 1000nm thick CdTe intrinsic light-absorbing semiconductor layer 2-4 is deposited by sputtering. A solar cell multilayer film structure composed of a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, and a CdTe semiconductor layer 2-4 is made.
停止对衬底2-1加热,待衬底2-1温度降低到室温时,取出由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。按步骤4对电池多层薄膜结构进行Cl处理,Cl处理温度为400℃,处理时间为30min。完成Cl处理过程,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜冷却到室温。 Stop heating the substrate 2-1, and when the temperature of the substrate 2-1 drops to room temperature, take out the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2. -4 solar cell multilayer thin film structure. According to step 4, perform Cl treatment on the battery multilayer thin film structure, the Cl treatment temperature is 400° C., and the treatment time is 30 minutes. After the Cl treatment process is completed, the solar cell multilayer film composed of the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2-4 is cooled to room temperature.
然后把经过Cl处理后的具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜放入磁控溅射的真空腔室,并加热到600℃;对真空室抽真空至低于10-4Pa,真空室充入氩气和N2至10Pa,气体流速为100sccm,打开射频电源,调节该电源输出功率为160W,靶与玻璃2-1衬底之间的距离为11cm,在此工艺下溅射沉积100nm厚的Cd1-xMgxTe半导体p+层2-5,然后把衬底2-1的位置转向In2O3:Sn靶,真空室压强保持10Pa,射频电源的输出功率为160W,靶与云母衬底2-1之间的距离为11cm,在此工艺下溅射沉积100nm厚的In2O3:Sn n+增反遂穿层2-6。至此得到具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xMgxTe半导体p+层2-5、In2O3:Sn n+增反遂穿层2-6。待其冷却至室温,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xMgxTe半导体p+层2-5、In2O3:Sn n+增反遂穿层2-6取出腔室。放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始在In2O3:Sn n+增反遂穿层2-6表面沉积厚度为500nm的Al金属导电电极层2-7。至此完成所述p-i-n结构CdTe多晶薄膜电池的制备。 Then put the solar cell multilayer film made of substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4 into magnetron sputtering after Cl treatment The vacuum chamber is heated to 600°C; the vacuum chamber is evacuated to below 10 -4 Pa, the vacuum chamber is filled with argon and N 2 to 10Pa, the gas flow rate is 100 sccm, turn on the radio frequency power supply, and adjust the output power of the power supply For 160W, the distance between the target and the glass 2-1 substrate is 11cm. Under this process, a 100nm thick Cd 1-x Mg x Te semiconductor p + layer 2-5 is deposited by sputtering, and then the substrate 2-1 The position is turned to the In 2 O 3 :Sn target, the pressure of the vacuum chamber is kept at 10Pa, the output power of the RF power supply is 160W, and the distance between the target and the mica substrate 2-1 is 11cm. Under this process, a 100nm thick In 2 O 3 :Sn n + augmentation and reverse tunneling layers 2-6. So far, the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Mg x Te semiconductor p + layer 2-5, In 2 O 3 :Sn n + augments and reverses tunneling layers 2-6. After it is cooled to room temperature, the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Mg x Te semiconductor p + layer 2 -5. In 2 O 3 : Sn n + augmentation-reverse tunneling layer 2-6 is taken out of the chamber. Put it into the vacuum chamber of electron beam and thermal evaporation, wait for the vacuum of the chamber to be below 10 -4 Pa, start to deposit Al with a thickness of 500nm on the surface of In 2 O 3 : Sn n + augmentation and reflection tunneling layer 2-6 Metal conductive electrode layers 2-7. So far, the preparation of the pin structure CdTe polycrystalline thin film battery is completed.
实施例4 Example 4
首先将99.999%的高纯In2O3:Mo靶材安装到磁控溅射设备的靶位上,然后将用micro-90清洗干净的玻璃衬底2-1送入磁控溅射设备的真空腔室,并保持在270℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,Ar流速为40sccm,打开射频电源,调节该电源输出功率为80W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积1.5μm厚的In2O3:Mo透明导电电极层(TCO)2-2。然后将沉积有透明导电电极层2-2的玻璃衬底2-1放入磁控溅射设备的真空腔室里,并保持在270℃。对真空室抽真空至低于10-4Pa,真空室充入氩气至0.1Pa,Ar流速为10sccm,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积40nm厚的CdS n型半导体层2-3。然后在把衬底转向正对CdTe靶的位置,开始溅射CdTe半导体层2-4,真空室充入氩气至0.1Pa,Ar流速为10sccm,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积900nm厚的CdTe半导体层2-4。制成由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。 First install the 99.999% high-purity In 2 O 3 :Mo target on the target position of the magnetron sputtering equipment, and then send the glass substrate 2-1 cleaned with micro-90 into the magnetron sputtering equipment Vacuum chamber, and keep it at 270°C; evacuate the vacuum chamber to below 10 -4 Pa, fill the vacuum chamber with argon gas to 2Pa, the Ar flow rate is 40sccm, turn on the radio frequency power supply, adjust the output power of the power supply to 80W, the target The distance from the glass substrate 2-1 is 11 cm, and a 1.5 μm thick In 2 O 3 : Mo transparent conductive electrode layer (TCO) 2-2 is deposited by sputtering under this process. Then put the glass substrate 2-1 deposited with the transparent conductive electrode layer 2-2 into the vacuum chamber of the magnetron sputtering equipment, and keep it at 270°C. Evacuate the vacuum chamber to be lower than 10 -4 Pa, fill the vacuum chamber with argon gas to 0.1Pa, the Ar flow rate is 10sccm, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and place a gap between the target and the glass substrate 2-1 The distance is 11 cm, and a 40 nm thick CdS n-type semiconductor layer 2-3 is deposited by sputtering under this process. Then turn the substrate to the position facing the CdTe target, start sputtering the CdTe semiconductor layer 2-4, fill the vacuum chamber with argon gas to 0.1Pa, and the Ar flow rate is 10 sccm, turn on the radio frequency power supply, and adjust the output power of the power supply to 60W. The distance between the target and the glass substrate 2-1 is 11 cm, and a 900 nm thick CdTe semiconductor layer 2-4 is deposited by sputtering under this process. A solar cell multilayer film structure composed of a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, and a CdTe semiconductor layer 2-4 is made.
停止对衬底2-1加热,待衬底2-1温度降低到室温时,取出由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。按步骤4对电池多层薄膜结构进行Cl处理,Cl处理温度为390℃,处理时间为10min。完成Cl处理过程,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜冷却到室温。 Stop heating the substrate 2-1, and when the temperature of the substrate 2-1 drops to room temperature, take out the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2. -4 solar cell multilayer thin film structure. Perform Cl treatment on the battery multilayer film structure according to step 4, the Cl treatment temperature is 390° C., and the treatment time is 10 minutes. After the Cl treatment process is completed, the solar cell multilayer film composed of the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2-4 is cooled to room temperature.
然后把经过Cl处理后的具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜放入磁控溅射的真空腔室,衬底温度加热到250℃;对真空室抽真空至低于10-4Pa,真空室充入氩气和PH3至2Pa至2Pa,气体流速40sccm,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积10nm厚的Cd1-xZnxTe半导体层2-5,然后把衬底2-1的位置转向Al2O3:Zn靶,真空室压强保持2Pa,射频电源的输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积100nm厚的Al2O3:Znn+层2-6。至此得到具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、Al2O3:Znn+层2-6。待其冷却至室温,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、Al2O3:Znn+层2-6取出腔室。放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始在Al2O3:Zn n+层2-6表面沉积厚度为100nm的Au金属导电电极层2-7。至此完成所述p-i-n结构CdTe多晶薄膜电池的制备。 Then put the solar cell multilayer film made of substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4 into magnetron sputtering after Cl treatment In a vacuum chamber, the substrate temperature is heated to 250°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon and pH 3 to 2Pa to 2Pa, the gas flow rate is 40 sccm, turn on the radio frequency power supply, and adjust the The output power of the power supply is 60W, and the distance between the target and the glass substrate 2-1 is 11cm. Under this process, a 10nm thick Cd 1-x Zn x Te semiconductor layer 2-5 is deposited by sputtering, and then the substrate 2- The position of 1 turns to the Al 2 O 3 :Zn target, the pressure of the vacuum chamber is maintained at 2Pa, the output power of the RF power supply is 60W, and the distance between the target and the glass substrate 2-1 is 11cm, and the thickness of 100nm is deposited by sputtering under this process Al 2 O 3 :Znn + layers 2-6. So far, a substrate with substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5, Al 2 O 3 :Znn + layers 2-6. After it is cooled to room temperature, put the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 , Al 2 O 3 :Znn + layers 2-6 were taken out of the chamber. Put it into the vacuum chamber of electron beam and thermal evaporation, wait for the vacuum of the chamber to be below 10 -4 Pa, start to deposit Au metal conductive electrode layer with a thickness of 100nm on the surface of Al 2 O 3 :Zn n + layer 2-6 2-7. So far, the preparation of the pin structure CdTe polycrystalline thin film battery is completed.
实施例5 Example 5
首先将99.999%的高纯In2O3:Sn靶材安装到磁控溅射设备的靶位上,然后将按步骤1用 micro-90清洗干净的玻璃衬底2-1送入磁控溅射设备的真空腔室,并加热到300℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为120W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积1.0μm厚的In2O3:Sn透明导电电极层(TCO)2-2。然后将沉积有透明导电电极层2-2的玻璃衬底2-1放入磁控溅射设备的真空腔室里,并加热到250℃。对真空室抽真空至低于10-4Pa,真空室充入氩气至3Pa,打开射频电源,调节该电源输出功率为40W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积50nm厚的CdS n型半导体层2-3。然后在把衬底转向正对CdTe靶的位置,开始溅射CdTe半导体层2-4,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积600nm厚的CdTe半导体层2-4。制成由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。 First install the 99.999% high-purity In 2 O 3 :Sn target on the target position of the magnetron sputtering equipment, and then send the glass substrate 2-1 cleaned with micro-90 according to step 1 into the magnetron sputtering The vacuum chamber of the injection equipment is heated to 300°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon gas to 2 Pa, the radio frequency power is turned on, and the output power of the power supply is adjusted to 120W, the target and the glass The distance between the substrates was 11 cm, and a 1.0 μm thick In 2 O 3 : Sn transparent conductive electrode layer (TCO) 2-2 was deposited by sputtering under this process. Then put the glass substrate 2-1 deposited with the transparent conductive electrode layer 2-2 into the vacuum chamber of the magnetron sputtering equipment, and heat it to 250°C. Evacuate the vacuum chamber to below 10 -4 Pa, fill the vacuum chamber with argon gas to 3 Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 40W, and the distance between the target and the glass substrate is 11cm, under this process A 50 nm thick CdS n-type semiconductor layer 2-3 was deposited by sputtering. Then turn the substrate to the position facing the CdTe target, start sputtering the CdTe semiconductor layer 2-4, fill the vacuum chamber with argon gas to 2Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and the distance between the target and the glass substrate The distance between them is 11 cm, and a CdTe semiconductor layer 2-4 with a thickness of 600 nm is deposited by sputtering under this process. A solar cell multilayer film structure composed of a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, and a CdTe semiconductor layer 2-4 is made.
停止对衬底2-1加热,待衬底2-1温度降低到室温时,取出由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。按步骤4对电池多层薄膜结构进行Cl处理,Cl处理温度为380℃,处理时间为30min。完成Cl处理过程,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜冷却到室温。 Stop heating the substrate 2-1, and when the temperature of the substrate 2-1 drops to room temperature, take out the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2. -4 solar cell multilayer thin film structure. According to step 4, perform Cl treatment on the battery multilayer thin film structure, the Cl treatment temperature is 380° C., and the treatment time is 30 minutes. After the Cl treatment process is completed, the solar cell multilayer film composed of the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2-4 is cooled to room temperature.
然后把经过Cl处理后的具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜放入磁控溅射的真空腔室,并加热到250℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,其它流量100sccm,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积50nm厚的Cd1-xZnxTe半导体层2-5。停止加热,然后等覆盖有透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5的衬底冷却到室温,从腔室中取出,放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始用电子束沉积20nm厚的Cu,然后在快速退火炉中在600℃扩散0.1min。 Then put the solar cell multilayer film made of substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4 into magnetron sputtering after Cl treatment The vacuum chamber is heated to 250°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon gas to 2 Pa, and the other flow rate is 100 sccm, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and target The distance to the glass substrate 2-1 is 11 cm, and a 50 nm thick Cd 1-x Zn x Te semiconductor layer 2-5 is deposited by sputtering under this process. Stop heating, then wait for the substrate covered with transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 to cool to room temperature, Take it out of the chamber and put it into the vacuum chamber of electron beam and thermal evaporation. After the chamber is vacuumed below 10 -4 Pa, start to deposit Cu with a thickness of 20nm by electron beam, and then heat it in a rapid annealing furnace at 600°C. Diffuse for 0.1 min.
然后把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、Cd1-xZnxTe半导体层2-5上具有Cu的衬底放入溅射的真空腔室,并加热到320℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,把衬底的位置转向Al2O3:Zn靶,真空室压强保持2Pa,射频电源的输出功率为60W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积50nm厚的Al2O3:Zn n+层2-6。至此得到具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、Al2O3:Zn n+层2-6的结构。待其冷却至室温,把具有衬底2-1、透明导电电极层2-2、CdS n 型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、Al2O3:Zn n+层取出腔室。放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始在Al2O3:Zn n+层2-6表面沉积厚度为50nm的Au金属电极层2-7。至此完成所述p-i-n结构的CdTe太阳能电池多晶薄膜电池的制备。 Then have substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5, Cd 1-x The substrate with Cu on the Zn x Te semiconductor layer 2-5 is placed in a sputtering vacuum chamber and heated to 320°C; the vacuum chamber is evacuated to less than 10 -4 Pa, and the vacuum chamber is filled with argon to 2Pa , turn the position of the substrate to the Al 2 O 3 :Zn target, keep the pressure of the vacuum chamber at 2Pa, the output power of the RF power supply is 60W, and the distance between the target and the glass substrate is 11cm. Al 2 O 3 :Zn n + layers 2-6. So far, a substrate with substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5, Al 2 O 3 : Structure of Zn n + layers 2-6. After it is cooled to room temperature, the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 , Al 2 O 3 :Zn n + layers are taken out of the chamber. Put it into the vacuum chamber of electron beam and thermal evaporation, wait until the chamber is vacuumed below 10 -4 Pa, start to deposit Au metal electrode layer 2 with a thickness of 50nm on the surface of Al 2 O 3 : Zn n + layer 2-6 -7. So far, the preparation of the pin structure CdTe solar cell polycrystalline thin film cell is completed.
实施例6 Example 6
首先将99.999%的高纯ZnO:Al靶材安装到磁控溅射设备的靶位上,然后将按步骤1用micro-90清洗干净的玻璃衬底2-1送入磁控溅射设备的真空腔室,并加热到200℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为150W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积1.0μm厚的ZnO:Al透明导电电极层(TCO)2-2。然后将沉积有透明导电电极层2-2的玻璃衬底2-1放入磁控溅射设备的真空腔室里,并加热到250℃。对真空室抽真空至低于10-4Pa,真空室充入氩气至3Pa,打开射频电源,调节该电源输出功率为40W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积50nm厚的CdS n型半导体层2-3。然后在把衬底转向正对CdTe靶的位置,开始溅射CdTe半导体层2-4,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积600nm厚的CdTe半导体层2-4。制成由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。 First, the 99.999% high-purity ZnO: Al target is installed on the target position of the magnetron sputtering equipment, and then the glass substrate 2-1 cleaned with micro-90 according to step 1 is sent to the magnetron sputtering equipment. The vacuum chamber is heated to 200°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon gas to 2 Pa, the radio frequency power supply is turned on, and the output power of the power supply is adjusted to 150W. The distance between the target and the glass substrate The distance between them is 11 cm, and a 1.0 μm thick ZnO:Al transparent conductive electrode layer (TCO) 2-2 is deposited by sputtering under this process. Then put the glass substrate 2-1 deposited with the transparent conductive electrode layer 2-2 into the vacuum chamber of the magnetron sputtering equipment, and heat it to 250°C. Evacuate the vacuum chamber to below 10 -4 Pa, fill the vacuum chamber with argon gas to 3 Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 40W, and the distance between the target and the glass substrate is 11cm, under this process A 50 nm thick CdS n-type semiconductor layer 2-3 was deposited by sputtering. Then turn the substrate to the position facing the CdTe target, start sputtering the CdTe semiconductor layer 2-4, fill the vacuum chamber with argon gas to 2Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and the distance between the target and the glass substrate The distance between them is 11 cm, and a CdTe semiconductor layer 2-4 with a thickness of 600 nm is deposited by sputtering under this process. A solar cell multilayer film structure composed of a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, and a CdTe semiconductor layer 2-4 is made.
停止对衬底2-1加热,待衬底2-1温度降低到室温时,取出由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。按步骤4对电池多层薄膜结构进行Cl处理,Cl处理温度为380℃,处理时间为30min。完成Cl处理过程,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜冷却到室温。 Stop heating the substrate 2-1, and when the temperature of the substrate 2-1 drops to room temperature, take out the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2. -4 solar cell multilayer thin film structure. According to step 4, perform Cl treatment on the battery multilayer thin film structure, the Cl treatment temperature is 380° C., and the treatment time is 30 minutes. After the Cl treatment process is completed, the solar cell multilayer film composed of the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2-4 is cooled to room temperature.
然后把经过Cl处理后的具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜放入磁控溅射的真空腔室,并加热到250℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,其它流量100sccm,打开射频电源,调节该电源输出功率为60W,掺杂Sb元素的Cd1-xMgxTe靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积20nm厚的Sb掺杂Cd1-xMgxTe半导体层2-5。停止加热,然后等覆盖有透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xMgxTe半导体层2-5的衬底冷却到室温,从腔室中取出。然后把具有透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xMgxTe半导体层2-5的衬底2-1放入溅射腔室中,并加热到200℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,把衬底的位置转向Al2O3:Zn靶, 真空室压强保持2Pa,射频电源的输出功率为60W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积50nm厚的Al2O3:Zn n+层2-6。至此得到具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xMgxTe半导体层2-5、Al2O3:Zn n+层2-6的结构。待其冷却至室温,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xMgxTe半导体层2-5、Al2O3:Zn n+层取出腔室。放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始在Al2O3:Zn n+层2-6表面沉积厚度为150nm的Au金属电极层2-7。至此完成所述p-i-n结构的CdTe太阳能电池多晶薄膜电池的制备。 Then put the solar cell multilayer film made of substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4 into magnetron sputtering after Cl treatment The vacuum chamber was heated to 250°C; the vacuum chamber was evacuated to less than 10 -4 Pa, the vacuum chamber was filled with argon gas to 2 Pa, the other flow rate was 100 sccm, the radio frequency power was turned on, and the output power of the power supply was adjusted to 60W. The distance between the Cd 1-x Mg x Te target doped with Sb elements and the glass substrate 2-1 is 11 cm, and a 20 nm thick Sb-doped Cd 1-x Mg x Te semiconductor layer 2- 5. Stop heating, then wait for the substrate covered with transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Mg x Te semiconductor layer 2-5 to cool to room temperature, Remove from chamber. Then put the substrate 2-1 with transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd1 - xMgxTe semiconductor layer 2-5 into the sputtering chamber chamber, and heated to 200°C; evacuate the vacuum chamber to less than 10 -4 Pa, fill the vacuum chamber with argon gas to 2Pa, turn the position of the substrate to the Al 2 O 3 : Zn target, and keep the pressure of the vacuum chamber at 2Pa , the output power of the RF power supply is 60W, and the distance between the target and the glass substrate is 11cm. Under this process, a 50nm thick Al 2 O 3 :Zn n + layer 2-6 is deposited by sputtering. So far, a substrate with a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, a CdTe semiconductor layer 2-4, a Cd 1-x Mg x Te semiconductor layer 2-5, and an Al 2 O 3 : Structure of Zn n + layers 2-6. After it is cooled to room temperature, put the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Mg x Te semiconductor layer 2-5 , Al 2 O 3 :Zn n + layers are taken out of the chamber. Put it into the vacuum chamber of electron beam and thermal evaporation, wait for the vacuum of the chamber to be below 10 -4 Pa, start to deposit Au metal electrode layer 2 with a thickness of 150nm on the surface of Al 2 O 3 :Zn n + layer 2-6 -7. So far, the preparation of the pin structure CdTe solar cell polycrystalline thin film cell is completed.
实施例7 Example 7
首先将99.999%的高纯SnO2:F靶材安装到磁控溅射设备的靶位上,然后将按步骤1用micro-90清洗干净的玻璃衬底2-1送入磁控溅射设备的真空腔室,并加热到300℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为120W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积1.0μm厚的SnO2:F透明导电电极层(TCO)2-2。然后将沉积有透明导电电极层2-2的玻璃衬底2-1放入磁控溅射设备的真空腔室里,并加热到250℃。对真空室抽真空至低于10-4Pa,真空室充入氩气至3Pa,打开射频电源,调节该电源输出功率为40W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积50nm厚的CdS n型半导体层2-3。然后在把衬底转向正对CdTe靶的位置,开始溅射CdTe半导体层2-4,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积600nm厚的CdTe半导体层2-4。制成由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。 First install the 99.999% high-purity SnO 2 :F target on the target position of the magnetron sputtering equipment, and then send the glass substrate 2-1 cleaned with micro-90 according to step 1 into the magnetron sputtering equipment The vacuum chamber is heated to 300°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon gas to 2Pa, the radio frequency power is turned on, and the output power of the power supply is adjusted to 120W, the target and the glass substrate The distance between them is 11 cm. Under this process, a 1.0 μm thick SnO 2 :F transparent conductive electrode layer (TCO) 2-2 is deposited by sputtering. Then put the glass substrate 2-1 deposited with the transparent conductive electrode layer 2-2 into the vacuum chamber of the magnetron sputtering equipment, and heat it to 250°C. Evacuate the vacuum chamber to below 10 -4 Pa, fill the vacuum chamber with argon gas to 3 Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 40W, and the distance between the target and the glass substrate is 11cm, under this process A 50 nm thick CdS n-type semiconductor layer 2-3 was deposited by sputtering. Then turn the substrate to the position facing the CdTe target, start sputtering the CdTe semiconductor layer 2-4, fill the vacuum chamber with argon gas to 2Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and the distance between the target and the glass substrate The distance between them is 11 cm, and a CdTe semiconductor layer 2-4 with a thickness of 600 nm is deposited by sputtering under this process. A solar cell multilayer film structure composed of a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, and a CdTe semiconductor layer 2-4 is made.
停止对衬底2-1加热,待衬底2-1温度降低到室温时,取出由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。按步骤4对电池多层薄膜结构进行Cl处理,Cl处理温度为380℃,处理时间为30min。完成Cl处理过程,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜冷却到室温。 Stop heating the substrate 2-1, and when the temperature of the substrate 2-1 drops to room temperature, take out the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2. -4 solar cell multilayer thin film structure. According to step 4, perform Cl treatment on the battery multilayer thin film structure, the Cl treatment temperature is 380° C., and the treatment time is 30 minutes. After the Cl treatment process is completed, the solar cell multilayer film composed of the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2-4 is cooled to room temperature.
然后把经过Cl处理后的具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜放入磁控溅射的真空腔室,并加热到250℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,其它流量100sccm,打开射频电源,调节该电源输出功率为60W,靶与玻璃衬底2-1之间的距离为11cm,在此工艺下溅射沉积50nm厚的Cd1-xZnxTe半导体层2-5。停止加热,然后等覆盖有透明导电电极层2-2、CdS n型 半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5的衬底冷却到室温,从腔室中取出,放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始用电子束沉积20nm厚的Cu,然后在快速退火炉中在450℃扩散1min。 Then put the solar cell multilayer film made of substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4 into magnetron sputtering after Cl treatment The vacuum chamber is heated to 250°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon gas to 2 Pa, and the other flow rate is 100 sccm, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and target The distance to the glass substrate 2-1 is 11 cm, and a 50 nm thick Cd 1-x Zn x Te semiconductor layer 2-5 is deposited by sputtering under this process. Stop heating, then wait for the substrate covered with transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 to cool to room temperature, Take it out of the chamber and put it into the vacuum chamber of electron beam and thermal evaporation. After the chamber is vacuumed below 10 -4 Pa, start to deposit Cu with a thickness of 20nm by electron beam, and then heat it in a rapid annealing furnace at 450℃. Diffusion for 1 min.
然后把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、Cd1-xZnxTe半导体层2-5上具有Cu的衬底放入溅射的真空腔室,并加热到320℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,把衬底的位置转向Al2O3:Zn靶,真空室压强保持2Pa,射频电源的输出功率为60W,靶与玻璃衬底之间的距离为11cm,在此工艺下溅射沉积50nm厚的Al2O3:Zn n+层2-6。至此得到具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、Al2O3:Zn n+层2-6的结构。待其冷却至室温,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、Al2O3:Zn n+层取出腔室。放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始在Al2O3:Zn n+层2-6表面沉积厚度为200nm的Au金属电极层2-7。至此完成所述p-i-n结构的CdTe太阳能电池多晶薄膜电池的制备。 Then have substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5, Cd 1-x The substrate with Cu on the Zn x Te semiconductor layer 2-5 is placed in a sputtering vacuum chamber and heated to 320°C; the vacuum chamber is evacuated to less than 10 -4 Pa, and the vacuum chamber is filled with argon to 2Pa , turn the position of the substrate to the Al 2 O 3 :Zn target, keep the pressure of the vacuum chamber at 2Pa, the output power of the RF power supply is 60W, and the distance between the target and the glass substrate is 11cm. Al 2 O 3 :Zn n + layers 2-6. So far, a substrate with substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5, Al 2 O 3 : Structure of Zn n + layers 2-6. After it is cooled to room temperature, put the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 , Al 2 O 3 :Zn n + layers are taken out of the chamber. Put it into the vacuum chamber of electron beam and thermal evaporation, wait for the vacuum of the chamber to be below 10 -4 Pa, start to deposit Au metal electrode layer 2 with a thickness of 200nm on the surface of Al 2 O 3 :Zn n + layer 2-6 -7. So far, the preparation of the pin structure CdTe solar cell polycrystalline thin film cell is completed.
实施例8 Example 8
首先将99.999%的高纯Zn2SnO4靶材安装到磁控溅射设备的靶位上,然后将按步骤1用micro-90清洗干净的聚酰亚胺衬底2-1送入磁控溅射设备的真空腔室,并加热到200℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至5Pa,打开射频电源,调节该电源输出功率为80W,靶与聚酰亚胺衬底之间的距离为11cm,在此工艺下溅射沉积1.0μm厚的Zn2SnO4透明导电电极层(TCO)2-2。然后将沉积有透明导电电极层2-2的云母衬底2-1放入磁控溅射设备的真空腔室里,并加热到250℃。对真空室抽真空至低于10-4Pa,真空室充入氩气至3Pa,打开射频电源,调节该电源输出功率为40W,靶与聚酰亚胺衬底之间的距离为11cm,在此工艺下溅射沉积70nm厚的CdS n型半导体层2-3。然后在把衬底转向正对CdTe靶的位置,开始溅射CdTe半导体层2-4,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为60W,靶与聚酰亚胺衬底之间的距离为11cm,在此工艺下溅射沉积800nm厚的CdTe半导体层2-4。制成由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。 First install the 99.999% high-purity Zn 2 SnO 4 target on the target position of the magnetron sputtering equipment, and then send the polyimide substrate 2-1 cleaned with micro-90 according to step 1 into the magnetron The vacuum chamber of the sputtering equipment is heated to 200°C; the vacuum chamber is evacuated to below 10 -4 Pa, the vacuum chamber is filled with argon gas to 5 Pa, the radio frequency power is turned on, and the output power of the power supply is adjusted to 80W. The distance between the polyimide substrates was 11 cm, and a 1.0 μm thick Zn 2 SnO 4 transparent conductive electrode layer (TCO) 2-2 was deposited by sputtering under this process. Then put the mica substrate 2-1 deposited with the transparent conductive electrode layer 2-2 into the vacuum chamber of the magnetron sputtering equipment, and heat it to 250°C. Evacuate the vacuum chamber to below 10 -4 Pa, fill the vacuum chamber with argon gas to 3Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 40W, and the distance between the target and the polyimide substrate is 11cm. In this process, a 70 nm thick CdS n-type semiconductor layer 2-3 is deposited by sputtering. Then turn the substrate to the position facing the CdTe target, start sputtering the CdTe semiconductor layer 2-4, fill the vacuum chamber with argon gas to 2Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, the target and polyimide The distance between the substrates is 11 cm, and an 800 nm thick CdTe semiconductor layer 2-4 is sputter-deposited under this process. A solar cell multilayer film structure composed of a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, and a CdTe semiconductor layer 2-4 is made.
停止对衬底2-1加热,待衬底2-1温度降低到室温时,取出由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。按步骤4对电池多层薄膜结构进行Cl处理,Cl处理温度为300℃,处理时间为120min。完成Cl处理过程,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4 构成的太阳能电池多层薄膜冷却到室温。 Stop heating the substrate 2-1, and when the temperature of the substrate 2-1 drops to room temperature, take out the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2. -4 solar cell multilayer thin film structure. Perform Cl treatment on the battery multilayer film structure according to step 4, the Cl treatment temperature is 300° C., and the treatment time is 120 minutes. After the Cl treatment process is completed, the solar cell multilayer film composed of the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2-4 is cooled to room temperature.
然后把经过Cl处理后的具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜放入磁控溅射的真空腔室,并加热到250℃;对真空室抽真空至低于10-4Pa,真空室充入氩气和NH3至2Pa,气体流量60sccm,打开射频电源,调节该电源输出功率为60W,靶与聚酰亚胺衬底2-1之间的距离为11cm,在此工艺下溅射沉积20nm厚的Cd1-xZnxTe半导体层2-5。然后把衬底2-1的位置转向In2O3:Sn靶,真空室压强保持2Pa,射频电源的输出功率为60W,靶与聚酰亚胺2-1衬底之间的距离为11cm,在此工艺下溅射沉积50nm厚的In2O3:Snn+増反层2-6。至此得到衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、In2O3:Sn增反遂穿层2-6的结构。待其冷却至室温,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、In2O3:Sn增反遂穿层2-6的多晶薄膜取出腔室。放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始在In2O3:Snn+増反层2-6表面沉积厚度为50nm的Au金属电极层2-7。至此完成所述p-i-n结构的CdTe太阳能电池多晶薄膜电池的制备。 Then put the solar cell multilayer film made of substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4 into magnetron sputtering after Cl treatment The vacuum chamber is heated to 250°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon and NH 3 to 2Pa, the gas flow rate is 60 sccm, the radio frequency power is turned on, and the output power of the power supply is adjusted to 60W, the distance between the target and the polyimide substrate 2-1 is 11cm, under this process, a 20nm thick Cd 1-x Zn x Te semiconductor layer 2-5 is deposited by sputtering. Then the position of the substrate 2-1 was turned to the In 2 O 3 :Sn target, the vacuum chamber pressure was maintained at 2Pa, the output power of the RF power supply was 60W, and the distance between the target and the polyimide 2-1 substrate was 11cm. In this process, a 50nm thick In 2 O 3 :Snn + reflection enhancing layer 2-6 was sputter deposited. So far, the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, the CdTe semiconductor layer 2-4, the Cd 1-x Zn x Te semiconductor layer 2-5, and In 2 O 3 are obtained: Sn augments the structure of tunneling layers 2-6. After it is cooled to room temperature, put the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 , In 2 O 3 : Sn anti-increasing tunneling layer 2-6 polycrystalline thin film take out chamber. Put it into the vacuum chamber of electron beam and thermal evaporation, wait until the chamber is vacuumed below 10 -4 Pa, start to deposit Au metal electrode layer with a thickness of 50nm on the surface of In 2 O 3 : Snn + reflection enhancing layer 2-6 2-7. So far, the preparation of the pin structure CdTe solar cell polycrystalline thin film cell is completed.
实施例9 Example 9
首先将99.999%的高纯Cd2SnO4靶材安装到磁控溅射设备的靶位上,然后将按步骤1用micro-90清洗干净的云母衬底2-1送入磁控溅射设备的真空腔室,并加热到200℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至5Pa,打开射频电源,调节该电源输出功率为180W,靶与云母衬底之间的距离为11cm,在此工艺下溅射沉积500nm厚的Cd2SnO4透明导电电极层(TCO)2-2。然后将沉积有透明导电电极层2-2的云母衬底2-1放入磁控溅射设备的真空腔室里,并加热到250℃。对真空室抽真空至低于10-4Pa,真空室充入氩气至3Pa,打开射频电源,调节该电源输出功率为40W,靶与云母衬底之间的距离为11cm,在此工艺下溅射沉积20nm厚的CdS n型半导体层2-3。然后在把衬底转向正对CdTe靶的位置,开始溅射CdTe半导体层2-4,真空室充入氩气至2Pa,打开射频电源,调节该电源输出功率为60W,靶与云母衬底之间的距离为11cm,在此工艺下溅射沉积100nm厚的CdTe半导体层2-4。制成由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。 First install the 99.999% high-purity Cd 2 SnO 4 target on the target position of the magnetron sputtering equipment, and then send the mica substrate 2-1 cleaned with micro-90 according to step 1 into the magnetron sputtering equipment The vacuum chamber is heated to 200°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon gas to 5Pa, the RF power is turned on, and the output power of the power supply is adjusted to 180W, the target and the mica substrate The distance between them is 11 cm. Under this process, a 500 nm thick Cd 2 SnO 4 transparent conductive electrode layer (TCO) 2-2 is deposited by sputtering. Then put the mica substrate 2-1 deposited with the transparent conductive electrode layer 2-2 into the vacuum chamber of the magnetron sputtering equipment, and heat it to 250°C. Evacuate the vacuum chamber to below 10 -4 Pa, fill the vacuum chamber with argon gas to 3Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 40W, and the distance between the target and the mica substrate is 11cm, under this process A 20 nm thick CdS n-type semiconductor layer 2-3 was sputter deposited. Then turn the substrate to the position facing the CdTe target, start sputtering the CdTe semiconductor layer 2-4, fill the vacuum chamber with argon gas to 2Pa, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and the distance between the target and the mica substrate The distance between them is 11 cm, and a 100 nm thick CdTe semiconductor layer 2-4 is deposited by sputtering under this process. A solar cell multilayer film structure composed of a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, and a CdTe semiconductor layer 2-4 is made.
停止对衬底2-1加热,待衬底2-1温度降低到室温时,取出由衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜结构。按步骤4对电池多层薄膜结构进行Cl处理,Cl处理温度为500℃,处理时间为5min。完成Cl处理过程,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构 成的太阳能电池多层薄膜冷却到室温。然后把经过Cl处理后的具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4构成的太阳能电池多层薄膜放入磁控溅射的真空腔室,并加热到250℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,其它流量100sccm,打开射频电源,调节该电源输出功率为60W,靶与云母衬底2-1之间的距离为11cm,在此工艺下溅射沉积20nm厚的Cd1-xZnxTe半导体层2-5。停止加热,然后等覆盖有透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5的衬底冷却到室温,从腔室取出,放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始用电子束沉积1nm厚的Bi2Se3。 Stop heating the substrate 2-1, and when the temperature of the substrate 2-1 drops to room temperature, take out the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2. -4 solar cell multilayer thin film structure. According to step 4, perform Cl treatment on the battery multilayer thin film structure, the Cl treatment temperature is 500° C., and the treatment time is 5 minutes. After the Cl treatment process is completed, the solar cell multilayer film composed of the substrate 2-1, the transparent conductive electrode layer 2-2, the CdS n-type semiconductor layer 2-3, and the CdTe semiconductor layer 2-4 is cooled to room temperature. Then put the solar cell multilayer film made of substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4 into magnetron sputtering after Cl treatment The vacuum chamber is heated to 250°C; the vacuum chamber is evacuated to less than 10 -4 Pa, the vacuum chamber is filled with argon gas to 2 Pa, and the other flow rate is 100 sccm, turn on the radio frequency power supply, adjust the output power of the power supply to 60W, and target The distance from the mica substrate 2-1 is 11 cm, and a Cd 1-x Zn x Te semiconductor layer 2-5 with a thickness of 20 nm is deposited by sputtering under this process. Stop heating, then wait for the substrate covered with transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 to cool to room temperature, Take it out from the chamber, put it into the vacuum chamber of electron beam and thermal evaporation, wait until the chamber is vacuumed below 10 -4 Pa, start to deposit 1nm thick Bi 2 Se 3 with electron beam.
然后在快速退火炉中在50℃扩散120min。然后把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5的衬底放入溅射的真空腔室,并加热到100℃;对真空室抽真空至低于10-4Pa,真空室充入氩气至2Pa,把衬底的位置转向In2O3:Sn,真空室压强保持2Pa,射频电源的输出功率为60W,靶与云母衬底之间的距离为11cm,在此工艺下溅射沉积50nm厚的In2O3:Sn n+层2-6。至此得到具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、In2O3:Sn n+层2-6的结构。待其冷却至室温,把具有衬底2-1、透明导电电极层2-2、CdS n型半导体层2-3、CdTe半导体层2-4、Cd1-xZnxTe半导体层2-5、In2O3:Sn n+层取出腔室。放入电子束和热蒸发的真空腔室里面,待腔室真空抽至10-4Pa以下,开始在In2O3:Sn n+层2-6表面沉积厚度为5nm的Au金属电极层2-7。至此完成所述p-i-n结构的CdTe太阳能电池多晶薄膜电池的制备。 Then diffuse in a rapid annealing furnace at 50 °C for 120 min. Then put the substrate with substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 into The sputtering vacuum chamber is heated to 100°C; the vacuum chamber is evacuated to below 10 -4 Pa, the vacuum chamber is filled with argon gas to 2Pa, and the position of the substrate is turned to In 2 O 3 : Sn, the vacuum chamber The pressure was maintained at 2Pa, the output power of the RF power supply was 60W, and the distance between the target and the mica substrate was 11cm. In this process, a 50nm-thick In 2 O 3 :Sn n + layer 2-6 was deposited by sputtering. So far, a substrate with a substrate 2-1, a transparent conductive electrode layer 2-2, a CdS n-type semiconductor layer 2-3, a CdTe semiconductor layer 2-4, a Cd 1-x Zn x Te semiconductor layer 2-5, and an In 2 O 3 : Structure of Sn n + layers 2-6. After it is cooled to room temperature, put the substrate 2-1, transparent conductive electrode layer 2-2, CdS n-type semiconductor layer 2-3, CdTe semiconductor layer 2-4, Cd 1-x Zn x Te semiconductor layer 2-5 , In 2 O 3 :Sn n + layers are taken out of the chamber. Put it into the vacuum chamber of electron beam and thermal evaporation, wait until the chamber is vacuumed below 10 -4 Pa, start to deposit Au metal electrode layer 2 with a thickness of 5nm on the surface of In 2 O 3 :Sn n + layer 2-6 -7. So far, the preparation of the pin structure CdTe solar cell polycrystalline thin film cell is completed.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410208823.3A CN104064618A (en) | 2014-05-16 | 2014-05-16 | A kind of p-i-n structure CdTe battery and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410208823.3A CN104064618A (en) | 2014-05-16 | 2014-05-16 | A kind of p-i-n structure CdTe battery and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104064618A true CN104064618A (en) | 2014-09-24 |
Family
ID=51552244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410208823.3A Pending CN104064618A (en) | 2014-05-16 | 2014-05-16 | A kind of p-i-n structure CdTe battery and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104064618A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784111A (en) * | 2016-12-27 | 2017-05-31 | 成都中建材光电材料有限公司 | A kind of low temperature preparation method of cadmium telluride diaphragm solar battery |
CN107039541A (en) * | 2016-12-28 | 2017-08-11 | 成都中建材光电材料有限公司 | A kind of flexible cadmium telluride thin-film battery and preparation method thereof |
CN107039554A (en) * | 2016-12-28 | 2017-08-11 | 成都中建材光电材料有限公司 | A kind of cadmium telluride diaphragm solar battery and preparation method |
CN107267929A (en) * | 2017-07-21 | 2017-10-20 | 张治国 | A kind of ZnO high transmittance high conductivity method for manufacturing thin film based on electron beam evaporation technique |
CN109473503A (en) * | 2018-09-29 | 2019-03-15 | 四川大学 | A Broad Spectrum CdTe/Si Compound Heterojunction Solar Cell |
CN109716538A (en) * | 2016-07-14 | 2019-05-03 | 第一阳光公司 | Solar battery and its manufacturing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110139247A1 (en) * | 2009-12-16 | 2011-06-16 | Primestar Solar, Inc. | Graded alloy telluride layer in cadmium telluride thin film photovoltaic devices and methods of manufacturing the same |
WO2011072269A2 (en) * | 2009-12-10 | 2011-06-16 | Uriel Solar Inc. | HIGH POWER EFFICIENCY POLYCRYSTALLINE CdTe THIN FILM SEMICONDUCTOR PHOTOVOLTAIC CELL STRUCTURES FOR USE IN SOLAR ELECTRICITY GENERATION |
US20110265865A1 (en) * | 2010-04-28 | 2011-11-03 | General Electric Company | Photovoltaic cells with cadmium telluride intrinsic layer |
CN102629631A (en) * | 2011-02-01 | 2012-08-08 | 通用电气公司 | Photovoltaic device |
CN102800719A (en) * | 2012-07-27 | 2012-11-28 | 中国科学院电工研究所 | Flexible CdTe thin-film solar cell and preparation method thereof |
CN102891204A (en) * | 2012-10-17 | 2013-01-23 | 上海太阳能电池研究与发展中心 | Sublayer configurated CdTe film solar battery with n-i-p structure |
-
2014
- 2014-05-16 CN CN201410208823.3A patent/CN104064618A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011072269A2 (en) * | 2009-12-10 | 2011-06-16 | Uriel Solar Inc. | HIGH POWER EFFICIENCY POLYCRYSTALLINE CdTe THIN FILM SEMICONDUCTOR PHOTOVOLTAIC CELL STRUCTURES FOR USE IN SOLAR ELECTRICITY GENERATION |
US20110139247A1 (en) * | 2009-12-16 | 2011-06-16 | Primestar Solar, Inc. | Graded alloy telluride layer in cadmium telluride thin film photovoltaic devices and methods of manufacturing the same |
US20110265865A1 (en) * | 2010-04-28 | 2011-11-03 | General Electric Company | Photovoltaic cells with cadmium telluride intrinsic layer |
CN102237419A (en) * | 2010-04-28 | 2011-11-09 | 通用电气公司 | Photovoltaic cells with cadmium telluride intrinsic layer |
CN102629631A (en) * | 2011-02-01 | 2012-08-08 | 通用电气公司 | Photovoltaic device |
CN102800719A (en) * | 2012-07-27 | 2012-11-28 | 中国科学院电工研究所 | Flexible CdTe thin-film solar cell and preparation method thereof |
CN102891204A (en) * | 2012-10-17 | 2013-01-23 | 上海太阳能电池研究与发展中心 | Sublayer configurated CdTe film solar battery with n-i-p structure |
Non-Patent Citations (1)
Title |
---|
RECH B ET AL: "Texture etched ZnO:Al films as front contact and back reflector in amorphous silicon p-i-n and n-i-p solar cells", 《TWENTY-SIXTH PHOTOVOLTAIC SPECIALISTS CONFERENCE》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109716538A (en) * | 2016-07-14 | 2019-05-03 | 第一阳光公司 | Solar battery and its manufacturing method |
CN109716538B (en) * | 2016-07-14 | 2023-01-03 | 第一阳光公司 | Solar cell and method for manufacturing same |
CN106784111A (en) * | 2016-12-27 | 2017-05-31 | 成都中建材光电材料有限公司 | A kind of low temperature preparation method of cadmium telluride diaphragm solar battery |
CN107039541A (en) * | 2016-12-28 | 2017-08-11 | 成都中建材光电材料有限公司 | A kind of flexible cadmium telluride thin-film battery and preparation method thereof |
CN107039554A (en) * | 2016-12-28 | 2017-08-11 | 成都中建材光电材料有限公司 | A kind of cadmium telluride diaphragm solar battery and preparation method |
CN107267929A (en) * | 2017-07-21 | 2017-10-20 | 张治国 | A kind of ZnO high transmittance high conductivity method for manufacturing thin film based on electron beam evaporation technique |
CN109473503A (en) * | 2018-09-29 | 2019-03-15 | 四川大学 | A Broad Spectrum CdTe/Si Compound Heterojunction Solar Cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105140319B (en) | A kind of thin-film solar cells and preparation method thereof | |
EP3712967A1 (en) | Method for manufacturing solar cell | |
CN103077980B (en) | A kind of copper-indium-galliun-selenium film solar cell and preparation method thereof | |
CN100541824C (en) | A Mechanically Laminated AlSb/CIS Thin Film Solar Cell | |
JP2011003877A (en) | Solar cell, and method of fabricating the same | |
CN104064618A (en) | A kind of p-i-n structure CdTe battery and its preparation method | |
WO2021159728A1 (en) | Tandem photovoltaic device and production method | |
CN106531826A (en) | Preparation method of copper indium gallium selenium thin-film solar cell | |
CN102610673A (en) | Copper zinc tin sulfur compound thin-film solar cell and preparation method thereof | |
KR102350885B1 (en) | Solar cell | |
CN101789469A (en) | Method for preparing light absorption layer of Cu-In-Ga-Se-S thin film solar cell | |
CN104851931A (en) | Cadmium telluride thin-film solar cell with gradient structure and manufacture method thereof | |
CN106653946B (en) | A kind of deposition method of cadmium telluride thin film solar cell absorption layer | |
CN102694077A (en) | A kind of preparation method of copper indium gallium selenide thin film solar cell | |
CN104766896A (en) | A kind of copper indium gallium selenium thin film solar cell with gradient structure and its preparation method | |
CN202405277U (en) | Thin film solar device employing strained AZO layer on anode - absorbent interface | |
JP5881717B2 (en) | Solar cell and manufacturing method thereof | |
CN112563117B (en) | Preparation method of copper zinc tin sulfur selenium film with sulfur component gradient | |
CN105355674B (en) | Flexible cadmium telluride solar cells with graphene intercalation layer | |
CN108389934A (en) | A method of preparing CIGS solar cell with a step sputtering method | |
CN114122169A (en) | Method for preparing copper-zinc-tin-selenium absorption layer film by selenide target sputtering and application | |
US10446703B1 (en) | Method for manufacturing CIGS thin film for solar cell | |
KR101793640B1 (en) | CZTS―based absorber layer thin film for solar cell with indium, preparing method of the same and solar cell using the same | |
JP2016518032A (en) | Manufacturing method of light absorption layer | |
KR102212042B1 (en) | Solar cell comprising buffer layer formed by atomic layer deposition and method of fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140924 |