[go: up one dir, main page]

CN104064474B - Fin structure manufacturing method of double patterned fin transistor - Google Patents

Fin structure manufacturing method of double patterned fin transistor Download PDF

Info

Publication number
CN104064474B
CN104064474B CN201410339109.8A CN201410339109A CN104064474B CN 104064474 B CN104064474 B CN 104064474B CN 201410339109 A CN201410339109 A CN 201410339109A CN 104064474 B CN104064474 B CN 104064474B
Authority
CN
China
Prior art keywords
layer
silicon nitride
core
amorphous carbon
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410339109.8A
Other languages
Chinese (zh)
Other versions
CN104064474A (en
Inventor
易春艳
李铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC R&D Center Co Ltd
Original Assignee
Shanghai Integrated Circuit Research and Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Integrated Circuit Research and Development Center Co Ltd filed Critical Shanghai Integrated Circuit Research and Development Center Co Ltd
Priority to CN201410339109.8A priority Critical patent/CN104064474B/en
Publication of CN104064474A publication Critical patent/CN104064474A/en
Application granted granted Critical
Publication of CN104064474B publication Critical patent/CN104064474B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/213Channel regions of field-effect devices
    • H10D62/221Channel regions of field-effect devices of FETs
    • H10D62/235Channel regions of field-effect devices of FETs of IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

The invention discloses a kind of fin structure manufacture method of Dual graphing fin transistor; the second silicon nitride layer is protected using silica is deposited; the thickness loss of the second silicon nitride layer will not be caused when then removing nitrogen-free anti-reflecting layer at the top of the second amorphous carbon layer; avoid pattern caused by existing method and critical size control problem; so as to expand subsequent patterning process window; the control of the critical size and pattern of fin structure is more beneficial for, realizes the raising of device electric property index.

Description

双重图形化鳍式晶体管的鳍结构制造方法Fin structure manufacturing method of double patterned fin transistor

技术领域technical field

本发明涉及半导体集成电路制造工艺技术领域,尤其涉及一种利用侧墙自对准双重图形化鳍式晶体管的鳍结构的制造方法。The invention relates to the technical field of manufacturing technology of semiconductor integrated circuits, in particular to a method for manufacturing a fin structure of a double patterned fin transistor using sidewall self-alignment.

背景技术Background technique

根据国际半导体技术路线发展蓝图所预测,为了遵循摩尔定律并获得所需的短沟道效应,改善栅极的对沟道的控制,提出了新的晶体管结构,即鳍式场效应晶体管FinFET(Fin Field Effect Transistor,简称鳍式晶体管)。其有源区鱼鳍的形成是一个极具挑战性的工艺,因为在22nm及以下的鳍式场效应晶体管,鳍的宽度约在10~15nm左右,这么小的图形尺寸已经超出目前浸没式光刻机的分辨率极限,为此,需要采用侧墙自对准式双重图形化技术来实现。即首先在已经沉积了各种掩模材料的硅片上,利用浸没式光刻及刻蚀技术产生一个牺牲的核心图形(sacrificial core pattern),然后在此核心图形上利用原子层沉积技术,沉积一层侧墙材料,然后利用各向异性干法刻蚀形成侧墙,之后将牺牲的核心图形去除,这样就形成了所需要的节距(pitch)减半的鱼鳍(FIN)掩模图形,这里FIN硬掩模的宽度是由原子沉积层的厚度决定的,之后利用此硬掩模图形为保护层继续刻蚀形成鳍式场效应晶体管的鳍(FIN)。According to the prediction of the international semiconductor technology roadmap development blueprint, in order to follow Moore's law and obtain the required short channel effect, improve the control of the gate to the channel, a new transistor structure is proposed, that is, the fin field effect transistor FinFET (Fin Field Effect Transistor, referred to as fin transistor). The formation of the fins in the active area is a very challenging process, because the fin field effect transistors at 22nm and below have a fin width of about 10-15nm, and such a small pattern size has exceeded the current immersion photonics. The resolution limit of the engraving machine, for this reason, it is necessary to use side wall self-alignment double patterning technology to achieve. That is, firstly, a sacrificial core pattern (sacrificial core pattern) is generated by immersion lithography and etching technology on the silicon wafer on which various mask materials have been deposited, and then deposited on the core pattern by atomic layer deposition technology. A layer of spacer material, and then anisotropic dry etching is used to form sidewalls, and then the sacrificial core pattern is removed, thus forming a fin (FIN) mask pattern with half the required pitch (pitch) , where the width of the FIN hard mask is determined by the thickness of the atomic deposition layer, and then the hard mask pattern is used as the protective layer to continue etching to form the fin (FIN) of the fin field effect transistor.

图1A至图1H是现有的采用侧墙自对准双重图形鱼鳍的形成方法。具体地:1A to FIG. 1H show the existing method of forming fins with sidewall self-alignment double pattern. specifically:

首先,如图1A所示,在一个半导体有源器件的硅衬底101上,自下而上依次淀积二氧化硅绝缘层102、氮化硅层103、第一层非晶碳层104、氮化硅刻蚀停止层105、第二层非晶碳层106以及无氮抗反射层107。其中,氮化硅层103是最终鱼鳍结构形成的刻蚀硬掩模。First, as shown in FIG. 1A, on a silicon substrate 101 of a semiconductor active device, a silicon dioxide insulating layer 102, a silicon nitride layer 103, a first layer of amorphous carbon layer 104, A silicon nitride etch stop layer 105 , a second layer of amorphous carbon layer 106 and a nitrogen-free anti-reflection layer 107 . Wherein, the silicon nitride layer 103 is an etching hard mask for the formation of the final fin structure.

然后,如图1B所示,在107层顶部旋涂有机抗反射层108以及光刻胶109,然后进行进行核心层(core layer)光刻。Then, as shown in FIG. 1B , an organic anti-reflection layer 108 and a photoresist 109 are spin-coated on top of the layer 107 , and then a core layer (core layer) photolithography is performed.

接着,如图1C所示,利用光刻胶109作为掩模干法刻蚀形成第二非晶碳层106的牺牲核心层线条图形,至此形成了非晶碳牺牲核心图形及其顶部的无氮抗反射层107。此处形成的非晶碳牺牲核心图形线条由于工艺限制并不能形成完全垂直的侧壁形貌,并且在靠近该图形中第二非晶碳层106顶部处可能产生因刻蚀引起的损伤;此损伤会导致后续侧壁隔离硬掩模靠近非晶碳一面的形貌变化,从而影响后续的图形定义。Next, as shown in Figure 1C, the sacrificial core layer line pattern of the second amorphous carbon layer 106 is formed by dry etching using the photoresist 109 as a mask, so far the amorphous carbon sacrificial core pattern and the nitrogen-free nitrogen layer on the top have been formed. Anti-reflection layer 107. The amorphous carbon sacrificial core pattern lines formed here cannot form a completely vertical sidewall morphology due to process limitations, and damage caused by etching may occur near the top of the second amorphous carbon layer 106 in the pattern; The damage will lead to changes in the morphology of the subsequent sidewall isolation hard mask near the amorphous carbon side, thus affecting the subsequent pattern definition.

经过相应的清洗工艺后,如图1D所示,在非晶碳牺牲核心图形及无氮抗反射层107上方淀积一层氧化硅薄膜硬掩模层110。After a corresponding cleaning process, as shown in FIG. 1D , a silicon oxide thin film hard mask layer 110 is deposited on the amorphous carbon sacrificial core pattern and the nitrogen-free anti-reflection layer 107 .

如图1E所示,利用各向异性干法刻蚀该氧化硅薄膜硬掩模层,并停止于氮化硅刻蚀停止层105上方以形成氧化硅侧墙110。As shown in FIG. 1E , the silicon oxide thin film hard mask layer is etched using an anisotropic dry method, and stops above the silicon nitride etch stop layer 105 to form silicon oxide spacers 110 .

之后,如图1F所示,利用等离子体干法刻蚀工艺去除牺牲核心层线条图形顶部的无氮抗反射层107,使得无氮抗反射层107下方的牺牲核心层非晶碳暴露出来。本步骤中,在去除无氮抗反射层107过程中由于刻蚀停止层105a也暴露于等离子体中,使得刻蚀停止层105a在本步骤会有损失。After that, as shown in FIG. 1F , the nitrogen-free anti-reflective layer 107 on the top of the line pattern of the sacrificial core layer is removed by plasma dry etching process, so that the amorphous carbon of the sacrificial core layer under the nitrogen-free anti-reflective layer 107 is exposed. In this step, since the etching stop layer 105a is also exposed to plasma during the process of removing the nitrogen-free anti-reflection layer 107, the etching stop layer 105a will be lost in this step.

如图1G所示,用干法去胶工艺去除牺牲核心层,使得其下方的刻蚀停止层105b暴露出来。此时,刻蚀停止层105a和105b由于暴露于等离子中的时间不同导致两者的厚度亦不相同,刻蚀停止层105a处的薄膜厚度继续减薄,而刻蚀停止层105b处的薄膜厚度仍保持不变,两者厚度差异进一步放大,会导致利用氧化硅侧墙110硬掩膜线条进行图形传递后,最终侧墙内外形貌差异的进一步放大。As shown in FIG. 1G , the sacrificial core layer is removed by a dry stripping process, so that the underlying etch stop layer 105 b is exposed. At this time, the thicknesses of the etch stop layers 105a and 105b are different due to the different times of exposure to the plasma. The film thickness at the etch stop layer 105a continues to decrease, while the film thickness at the etch stop layer 105b Still remaining unchanged, the further enlargement of the difference in thickness between the two will result in a further enlargement of the final topography difference between the inner and outer sidewalls after the silicon oxide sidewall 110 hard mask lines are used for pattern transfer.

如图1H所示,继续利用干法刻蚀以二氧化硅侧墙110硬掩模为掩模,去除其下方的氮化硅刻蚀停止层105、第一非晶碳层104以及最底部的氮化硅层103,形成节距减半的氮化硅硬掩模113线条图形,并刻蚀停止于二氧化硅绝缘层102上方。As shown in FIG. 1H , continue to use dry etching to use the silicon dioxide sidewall 110 hard mask as a mask to remove the silicon nitride etch stop layer 105, the first amorphous carbon layer 104 and the bottommost The silicon nitride layer 103 forms a silicon nitride hard mask 113 line pattern whose pitch is halved, and the etching stops above the silicon dioxide insulating layer 102 .

完成必要的湿法清洗工艺之后,如图1I所示,进行鱼鳍线顶端切断光刻工艺,即在氮化硅硬掩模113上方旋涂光刻平坦层114、光刻抗反射层115以及光刻胶层116,并曝光、显影形成需要切断的图形。After the necessary wet cleaning process is completed, as shown in FIG. 1I, the fin line top cutting photolithography process is carried out, that is, the photolithography planarization layer 114, the photolithography anti-reflection layer 115 and the silicon nitride hard mask 113 are spin-coated. The photoresist layer 116 is exposed and developed to form the pattern to be cut.

如图1J所示,利用干法刻蚀工艺以光刻胶116、光刻抗反射层115以及平坦层114为掩模去除需要切断的氮化硅线条,并刻蚀停止于二氧化硅绝缘层102上。之后利用干法去胶工艺去除氮化硅硬掩模113上方的非晶碳硬掩模,使氮化硅硬掩模113层完全暴露出来。As shown in FIG. 1J, the silicon nitride lines to be cut are removed by using a dry etching process using the photoresist 116, the photolithographic anti-reflection layer 115 and the flat layer 114 as a mask, and the etching stops at the silicon dioxide insulating layer. 102 on. Afterwards, the amorphous carbon hard mask above the silicon nitride hard mask 113 is removed by a dry stripping process, so that the silicon nitride hard mask 113 layer is completely exposed.

之后,如图1K和图1L所示,利用氮化硅硬掩模113作为硬掩模,刻蚀二氧化硅绝缘层102和硅衬底101以形成鱼鳍结构117。After that, as shown in FIG. 1K and FIG. 1L , using the silicon nitride hard mask 113 as a hard mask, the silicon dioxide insulating layer 102 and the silicon substrate 101 are etched to form fin structures 117 .

综上所述,现有形成鱼鳍结构的方法中,具有以下缺陷:In summary, the existing methods for forming fish fin structures have the following defects:

1.在牺牲核心图形APF刻蚀过程中,核心层图形很难形成垂直度很高的线条(接近90度),因为如果核心层图形侧壁垂直度不够直会使得后续侧墙硬掩模的内侧壁沿着此核心层侧壁形状形成一个倾斜的角度(小于90度),同时在侧墙内侧形成一个倒梯形的侧壁形貌,这会导致后续的图形传递中,影响后续图形的形貌以及后续图形的关键尺寸的控制,如图1H中倾斜的氮化硅硬掩模线条。而鱼鳍形状和关键尺寸对于鳍式场效应晶体管的电学性能的定义至关重要。1. During the APF etching process of the sacrificial core pattern, it is difficult for the core layer pattern to form lines with high verticality (close to 90 degrees), because if the verticality of the sidewall of the core layer pattern is not straight enough, it will make the subsequent sidewall hard mask The inner wall forms an inclined angle (less than 90 degrees) along the shape of the side wall of the core layer, and at the same time forms an inverted trapezoidal side wall shape on the inner side of the side wall, which will affect the shape of the subsequent graphics during the subsequent graphics transfer. The appearance and the control of critical dimensions of subsequent patterns, such as the inclined silicon nitride hard mask lines in Figure 1H. The fin shape and critical dimensions are crucial to the definition of the electrical performance of FinFETs.

2.在完成氧化硅侧墙干法刻蚀后,需要去除此牺牲核心层图形,而一般此牺牲核心层上方由于图形化的需要,在其顶部都有一层无氮抗反射层(NFDARC),因此,为了去除牺牲核心层APF需要先去除其顶部的无氮抗反射层,同时不能对已产生的侧墙硬掩模图形产生任何负面影响,且对已经暴露出来的衬底薄膜产生最小的损伤;如果在侧墙干法刻蚀步骤后直接施加一个过刻蚀(OE)来去除无氮抗反射层,会导致侧墙外侧下方介质的损失,导致核心层去除后,核心层原来位置下方的介质衬底材料的厚度远大于侧墙外下方原先没有被核心层覆盖的位置的厚度,因此,当以侧墙作为掩模往下进行图形传递时会导致形貌和关键尺寸控制问题,同时还可能损伤到侧墙形貌或者侧墙的高度。2. After the silicon oxide sidewall dry etching is completed, the sacrificial core layer pattern needs to be removed. Generally, due to the need for patterning, there is a nitrogen-free anti-reflective layer (NFDARC) on the top of the sacrificial core layer. Therefore, in order to remove the sacrificial core layer APF, it is necessary to remove the nitrogen-free anti-reflective layer on the top first, while not having any negative impact on the generated sidewall hard mask pattern, and causing minimal damage to the exposed substrate film ; If an over-etch (OE) is applied directly after the sidewall dry etching step to remove the nitrogen-free anti-reflective layer, it will cause the loss of the medium below the outside of the sidewall, resulting in the removal of the core layer. The thickness of the dielectric substrate material is much greater than the thickness of the position outside the sidewall that was not originally covered by the core layer. Therefore, when the sidewall is used as a mask to transfer graphics down, it will cause morphology and critical dimension control problems, and at the same time May damage the topography of the side wall or the height of the side wall.

发明内容Contents of the invention

本发明的目的在于弥补上述现有技术的不足,提供一种双重图形化鳍式晶体管的鳍结构制造方法,以避免在去除无氮抗反射层时刻蚀停止层的损失,并且减小由于牺牲核心层侧壁倾斜对后续图形的影响,从而控制鳍结构的形貌和关键尺寸,提高器件的电学性能指标。The purpose of the present invention is to make up for the above-mentioned deficiencies in the prior art, to provide a method for manufacturing a fin structure of a double-patterned fin transistor, so as to avoid the loss of the etch stop layer when removing the nitrogen-free anti-reflection layer, and reduce the loss due to the sacrificial core The influence of layer sidewall inclination on subsequent graphics, thereby controlling the morphology and key dimensions of the fin structure, and improving the electrical performance index of the device.

为实现上述目的,本发明提供一种双重图形化鳍式晶体管的鳍结构制造方法,其包括以下步骤:In order to achieve the above object, the present invention provides a method for manufacturing a fin structure of a double-patterned fin transistor, which includes the following steps:

步骤S01,提供一半导体器件衬底,并在该衬底上自下而上依次淀积第一二氧化硅层、第一氮化硅层、第一非晶碳层、第二氮化硅层、第二非晶碳层以及抗反射层;Step S01, providing a semiconductor device substrate, and sequentially depositing a first silicon dioxide layer, a first silicon nitride layer, a first amorphous carbon layer, and a second silicon nitride layer on the substrate from bottom to top , a second amorphous carbon layer and an antireflection layer;

步骤S02,在顶层抗反射层上涂布光刻胶,通过曝光显影工艺,完成核心牺牲层图形光刻步骤;Step S02, coating photoresist on the top anti-reflection layer, and completing the photolithography step of the core sacrificial layer pattern through the exposure and development process;

步骤S03,以光刻胶为掩模刻蚀抗反射层以及第二非晶碳层,形成具有第二非晶碳层及其顶部抗反射层的核心牺牲层图形;Step S03, using photoresist as a mask to etch the anti-reflection layer and the second amorphous carbon layer to form a core sacrificial layer pattern with the second amorphous carbon layer and its top anti-reflection layer;

步骤S04,在该核心牺牲层图形上方淀积一层第二二氧化硅层;Step S04, depositing a second silicon dioxide layer on the core sacrificial layer pattern;

步骤S05,刻蚀去除该核心牺牲层图形顶部的第二二氧化硅层,以露出该抗反射层,而保留核心牺牲层图形两侧的第二二氧化硅层;Step S05, etching and removing the second silicon dioxide layer on the top of the core sacrificial layer pattern to expose the anti-reflection layer, while retaining the second silicon dioxide layer on both sides of the core sacrificial layer pattern;

步骤S06,刻蚀去除该核心牺牲层图形顶部的抗反射层;Step S06, etching and removing the anti-reflection layer on the top of the core sacrificial layer pattern;

步骤S07,刻蚀去除该第二二氧化硅层;Step S07, etching and removing the second silicon dioxide layer;

步骤S08,在该核心牺牲层图形上方淀积一层第三二氧化硅层;Step S08, depositing a third silicon dioxide layer on the core sacrificial layer pattern;

步骤S09,利用各向异性刻蚀该第三二氧化硅层,露出核心牺牲层图形内的第二非晶碳层,形成核心牺牲层图形的二氧化硅侧墙,之后,去除核心牺牲层图形内的第二非晶碳层;Step S09, using anisotropic etching on the third silicon dioxide layer to expose the second amorphous carbon layer in the core sacrificial layer pattern, forming the silicon dioxide sidewall of the core sacrificial layer pattern, and then removing the core sacrificial layer pattern the second amorphous carbon layer within;

步骤S10,以该二氧化硅侧墙为掩模刻蚀该该第二氮化硅层、第一非晶碳层以及第一氮化硅层,形成底部为氮化硅的硬掩模线条,并去除该硬掩模线条中第一氮化硅层上方的第一非晶碳层;Step S10, using the silicon dioxide sidewall as a mask to etch the second silicon nitride layer, the first amorphous carbon layer and the first silicon nitride layer to form hard mask lines with silicon nitride at the bottom, and removing the first amorphous carbon layer above the first silicon nitride layer in the hard mask line;

步骤S11,以该硬掩模线条中的第一氮化硅层形成的氮化硅线条为掩模刻蚀该第一二氧化硅层以及衬底,形成鳍结构。Step S11 , using the silicon nitride lines formed by the first silicon nitride layer in the hard mask lines as a mask to etch the first silicon dioxide layer and the substrate to form fin structures.

进一步地,步骤S03为干法刻蚀,步骤S05为利用等离子体干法反向刻蚀(etchback),步骤S06为干法刻蚀,步骤S07为湿法刻蚀,步骤S09中形成二氧化硅侧墙为利用各向异性的等离子体干法刻蚀,步骤S09中去除核心牺牲层图形内第二非晶碳层为去胶工艺,步骤S10中形成硬掩模线条为利用各向异性的等离子体干法刻蚀,步骤S10中去除第二硬掩模线条中氮化硅上方非晶碳为去胶工艺,步骤S11为干法刻蚀。Further, step S03 is dry etching, step S05 is plasma dry reverse etching (etchback), step S06 is dry etching, step S07 is wet etching, and silicon dioxide is formed in step S09 The sidewalls are etched using anisotropic plasma dry method. In step S09, removing the second amorphous carbon layer in the pattern of the core sacrificial layer is a glue removal process. In step S10, forming hard mask lines is using anisotropic plasma. Bulk dry etching, removing the amorphous carbon above the silicon nitride in the second hard mask line in step S10 is a glue removal process, and step S11 is dry etching.

进一步地,步骤S06还包括过刻蚀,以去除抗反射层下方的部分第二非晶碳层。Further, step S06 also includes over-etching to remove part of the second amorphous carbon layer under the anti-reflection layer.

进一步地,该抗反射层包括下层无氮抗反射层以及上层抗反射层。Further, the anti-reflection layer includes a lower nitrogen-free anti-reflection layer and an upper layer anti-reflection layer.

进一步地,步骤S04为旋涂第二二氧化硅层。Further, step S04 is to spin-coat the second silicon dioxide layer.

进一步地,步骤S05的刻蚀气体介质为CF4、或CF4和Ar的混合气体。Further, the etching gas medium in step S05 is CF 4 or a mixed gas of CF 4 and Ar.

进一步地,该CF4的流量为50sccm~200sccm,该Ar的流量为50sccm~300sccm,射频源功率为200瓦~700瓦,偏压为50伏~400伏,气压为5毫托~12毫托。Further, the flow rate of the CF 4 is 50 sccm-200 sccm, the flow rate of the Ar is 50 sccm-300 sccm, the power of the radio frequency source is 200 watts to 700 watts, the bias voltage is 50 volts to 400 volts, and the air pressure is 5 millitorr to 12 millitorr .

进一步地,步骤S10中硬掩模线条中的氮化硅线条节距减半。Further, in step S10 , the pitch of the silicon nitride lines in the hard mask lines is halved.

进一步地,步骤S10与S11之间还包括,步骤S101,在该氮化硅线条上依次涂布碳硬掩模层、含硅抗反射层以及光刻胶,通过曝光显影工艺,在光刻胶上制作出所要切断的图形;步骤S102,利用干法刻蚀去除需要切断的氮化硅线条,并利用干法去胶工艺去除剩余氮化硅线条上方的非晶碳,露出氮化硅线条。Further, steps S10 and S11 also include, step S101, sequentially coating a carbon hard mask layer, a silicon-containing anti-reflection layer, and photoresist on the silicon nitride lines, and through the exposure and development process, the photoresist The pattern to be cut is made on the above; step S102, the silicon nitride line to be cut is removed by dry etching, and the amorphous carbon above the remaining silicon nitride line is removed by a dry stripping process to expose the silicon nitride line.

进一步地,该抗反射层为无氮抗反射层。Further, the anti-reflection layer is a nitrogen-free anti-reflection layer.

本发明提供的双重图形化鳍式晶体管的鳍结构制造方法,由于利用了淀积二氧化硅来保护第二氮化硅层,使得在去除第二非晶碳层顶部无氮抗反射层时不会引起第二氮化硅层的厚度损失,避免了现有方法所产生的形貌和关键尺寸控制问题,从而扩大了后续图形化工艺窗口,更有利于鱼鳍结构的关键尺寸和形貌的控制,实现器件电学性能指标的提高。The method for manufacturing the fin structure of the double-patterned fin transistor provided by the present invention utilizes deposited silicon dioxide to protect the second silicon nitride layer, so that no nitrogen-free anti-reflection layer at the top of the second amorphous carbon layer is removed. It will cause the thickness loss of the second silicon nitride layer, avoid the shape and critical dimension control problems caused by the existing method, thereby expanding the subsequent patterning process window, and more conducive to the critical dimension and shape of the fin structure. control, and realize the improvement of the electrical performance index of the device.

附图说明Description of drawings

为能更清楚理解本发明的目的、特点和优点,以下将结合附图对本发明的较佳实施例进行详细描述,其中:In order to understand the purpose, features and advantages of the present invention more clearly, preferred embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings, wherein:

图1A-图1L是现有双重图形鱼鳍形成方法的各步骤示意图;Fig. 1A-Fig. 1L are the schematic diagrams of each step of the existing method for forming double pattern fins;

图2是本发明双重图形化鳍式晶体管的鳍结构制造方法的流程示意图;2 is a schematic flow diagram of a method for manufacturing a fin structure of a double-patterned fin transistor of the present invention;

图3A-图3N是本发明制造方法的各步骤示意图。3A-3N are schematic diagrams of each step of the manufacturing method of the present invention.

具体实施方式detailed description

请同时参阅图2、图3A至图3N,本实施例的双重图形化鳍式晶体管的鳍结构制造方法,包括以下步骤:Please refer to FIG. 2 and FIG. 3A to FIG. 3N at the same time. The method for manufacturing the fin structure of the double-patterned fin transistor in this embodiment includes the following steps:

步骤S01,如图3A所示,提供一半导体器件衬底201,并在该衬底201上自下而上依次淀积第一二氧化硅层202、第一氮化硅层203、第一非晶碳层204、第二氮化硅层205、第二非晶碳层206以及无氮抗反射层207。In step S01, as shown in FIG. 3A, a semiconductor device substrate 201 is provided, and a first silicon dioxide layer 202, a first silicon nitride layer 203, a first non- The crystalline carbon layer 204 , the second silicon nitride layer 205 , the second amorphous carbon layer 206 and the nitrogen-free anti-reflection layer 207 .

步骤S02,如图3B所示,在顶层无氮抗反射层207上淀积有机抗反射层208,并在有机抗反射层208上涂布光刻胶209,通过曝光显影工艺,在光刻胶209上制作出待制备核心牺牲层的图形,完成核心牺牲层图形光刻步骤。Step S02, as shown in FIG. 3B, deposits an organic anti-reflection layer 208 on the top nitrogen-free anti-reflection layer 207, and coats a photoresist 209 on the organic anti-reflection layer 208. Through the exposure and development process, the photoresist 209, the pattern of the core sacrificial layer to be prepared is produced, and the photolithography step of the pattern of the core sacrificial layer is completed.

步骤S03,如图3C所示,以光刻胶209为掩模刻蚀有机抗反射层208、无氮抗反射层207以及第二非晶碳层206,最终形成具有第二非晶碳层206及其顶部无氮抗反射层207的核心牺牲层图形。Step S03, as shown in FIG. 3C, etching the organic anti-reflection layer 208, the nitrogen-free anti-reflection layer 207 and the second amorphous carbon layer 206 with the photoresist 209 as a mask, and finally forming the second amorphous carbon layer 206 And the core sacrificial layer pattern of the nitrogen-free anti-reflection layer 207 on the top.

其中,本步骤为干法刻蚀,可采用本领域常规手段、气体介质。Wherein, this step is dry etching, and conventional means in the art and gas medium can be used.

步骤S04,如图3D所示,在核心牺牲层图形上旋涂一层第二二氧化硅层210。该第二二氧化硅层210的厚度以稍微超过无氮抗反射层207顶部为佳。Step S04 , as shown in FIG. 3D , spin-coating a second silicon dioxide layer 210 on the core sacrificial layer pattern. The thickness of the second silicon dioxide layer 210 is preferably slightly greater than the top of the nitrogen-free anti-reflection layer 207 .

步骤S05,如图3E所示,刻蚀去除核心牺牲层图形顶部的第二二氧化硅层210,以露出无氮抗反射层207,而保留核心牺牲层图形两侧的第二二氧化硅层210。Step S05, as shown in FIG. 3E, etching and removing the second silicon dioxide layer 210 on the top of the core sacrificial layer pattern to expose the nitrogen-free anti-reflection layer 207, while retaining the second silicon dioxide layer on both sides of the core sacrificial layer pattern 210.

其中,本步骤为利用等离子体干法反向刻蚀,刻蚀气体优选CF4、或CF4和Ar的混合气体,其中,CF4的流量为50sccm~200sccm,Ar的流量为50sccm~300sccm,射频源功率为200瓦~700瓦,偏压为50伏~400伏,气压为5毫托~12毫托。Wherein, this step is reverse etching by plasma dry method, and the etching gas is preferably CF 4 or a mixed gas of CF 4 and Ar, wherein the flow rate of CF 4 is 50 sccm-200 sccm, and the flow rate of Ar is 50 sccm-300 sccm, The power of the radio frequency source is 200 watts to 700 watts, the bias voltage is 50 volts to 400 volts, and the air pressure is 5 millitorr to 12 millitorr.

步骤S06,如图3F所示,刻蚀去除核心牺牲层图形顶部的无氮抗反射层207。Step S06 , as shown in FIG. 3F , etching and removing the nitrogen-free anti-reflection layer 207 on the top of the core sacrificial layer pattern.

其中,本步骤为干法刻蚀,可采用本领域常规手段、气体。其中,步骤S06还较佳地包括过刻蚀,以去除抗反射层下方的部分第二非晶碳层。去除第二非晶碳层部分顶部因刻蚀引起的损伤层,起到调整第二非晶碳层高度的作用,使其顶部关键尺寸扩大,避免因垂直度不够而导致其顶部关键尺寸太小的影响,更有利于后续图形的传递。Wherein, this step is dry etching, and conventional methods and gases in this field can be used. Wherein, step S06 also preferably includes over-etching to remove part of the second amorphous carbon layer under the anti-reflection layer. Remove the damage layer caused by etching on the top of the second amorphous carbon layer, which can adjust the height of the second amorphous carbon layer to expand the critical dimension of the top and avoid the critical dimension of the top being too small due to insufficient verticality It is more conducive to the transmission of subsequent graphics.

步骤S07,如图3G所示,刻蚀去除旋涂的第二二氧化硅层210。Step S07 , as shown in FIG. 3G , etching and removing the spin-coated second silicon dioxide layer 210 .

其中,本步骤为湿法刻蚀,可采用本领域常规手段、介质。本步骤采用湿法刻蚀去除剩余的旋涂二氧化硅,可以保持更高的刻蚀选择比,不会造成核心牺牲层图形中第二非晶碳层206以及核心牺牲层图形两侧第二氮化硅层205的损失,以保证后续图形的形貌和关键尺寸。Wherein, this step is wet etching, and conventional methods and media in this field can be used. This step uses wet etching to remove the remaining spin-coated silicon dioxide, which can maintain a higher etching selectivity, and will not cause the second amorphous carbon layer 206 in the core sacrificial layer pattern and the second amorphous carbon layer 206 on both sides of the core sacrificial layer pattern. The silicon nitride layer 205 is lost to ensure the morphology and critical dimensions of subsequent patterns.

步骤S08,如图3H所示,在核心牺牲层图形上方淀积一层第三二氧化硅层211。Step S08 , as shown in FIG. 3H , depositing a third silicon dioxide layer 211 on the core sacrificial layer pattern.

步骤S09,如图3I所示,利用各向异性刻蚀第三二氧化硅层211,露出核心牺牲层图形第二非晶碳层206,并形成核心牺牲层图形的二氧化硅侧墙218,之后,去除核心牺牲层图形内的第二非晶碳层206,也就是整个核心牺牲层图形都已被去除。In step S09, as shown in FIG. 3I, the third silicon dioxide layer 211 is anisotropically etched to expose the second amorphous carbon layer 206 of the core sacrificial layer pattern, and form silicon dioxide sidewalls 218 of the core sacrificial layer pattern, Afterwards, the second amorphous carbon layer 206 in the core sacrificial layer pattern is removed, that is, the entire core sacrificial layer pattern has been removed.

其中,本步骤中形成二氧化硅侧墙为利用各向异性的等离子体干法刻蚀,可采用本领域常规手段、气体;去除核心牺牲层图第二非晶碳层为去胶工艺,可采用本领域常规手段、气体介质。Among them, the formation of silicon dioxide sidewalls in this step is to use anisotropic plasma dry etching, and conventional methods and gases in this field can be used; removing the second amorphous carbon layer of the core sacrificial layer is a glue removal process, which can be Use conventional means and gas medium in this field.

步骤S10,如图3J所示,以二氧化硅侧墙218为掩模刻蚀第二氮化硅层205、第一非晶碳层204以及第一氮化硅层203,形成底部为氮化硅、氮化硅上方为非晶碳的硬掩模线条,并去除硬掩模线条中第一氮化硅层上方的第一非晶碳层。In step S10, as shown in FIG. 3J, the second silicon nitride layer 205, the first amorphous carbon layer 204, and the first silicon nitride layer 203 are etched using the silicon dioxide sidewall 218 as a mask to form a nitride layer at the bottom. A hard mask line of amorphous carbon is formed above the silicon and silicon nitride, and the first amorphous carbon layer above the first silicon nitride layer in the hard mask line is removed.

其中,本步骤中形成硬掩模线条为利用各向异性的等离子体干法刻蚀,可采用本领域常规手段、气体;去除硬掩模线条中氮化硅上方非晶碳为去胶工艺,可采用本领域常规手段、气体。Among them, forming the hard mask lines in this step is to use anisotropic plasma dry etching, and conventional methods and gases in this field can be used; removing the amorphous carbon above the silicon nitride in the hard mask lines is a deglue process, Conventional means and gases in this field can be used.

其中,本步骤完成后形成的硬掩模线条中的氮化硅线条节距减半。Wherein, the pitch of the silicon nitride lines in the hard mask lines formed after this step is halved.

步骤S11,如图3M所示,以硬掩模线条中的第一氮化硅层形成的氮化硅线条为掩模刻蚀第一二氧化硅层202以及硅衬底201,形成鳍结构,该鳍结构的硅槽215的两个侧壁216、217对称,关键尺寸均匀。Step S11, as shown in FIG. 3M , using the silicon nitride line formed by the first silicon nitride layer in the hard mask line as a mask to etch the first silicon dioxide layer 202 and the silicon substrate 201 to form a fin structure, The two sidewalls 216 and 217 of the silicon groove 215 of the fin structure are symmetrical, and the critical dimension is uniform.

其中,本步骤为干法刻蚀,可采用本领域常规手段、气体。Wherein, this step is dry etching, and conventional methods and gases in this field can be used.

在实际应用中,需要对鱼鳍线进行顶端切断工艺,步骤S10与S11之间还包括,步骤S101,如图3K所示,在第一氮化硅层形成的氮化硅线条上依次涂布碳硬掩模层212、含硅抗反射层213以及光刻胶214,通过曝光显影工艺,在光刻胶214上制作出所要切断的图形;步骤S102,如图3L所示,利用干法刻蚀去除需要切断的第一氮化硅层形成的氮化硅线条,并利用干法去胶工艺去除剩余氮化硅线条上方的非晶碳,露出氮化硅线条。最终步骤S09形成的鳍结构如图3N所示。In practical applications, it is necessary to perform a top-cutting process on the fin lines. Steps S10 and S11 also include step S101, as shown in FIG. 3K, sequentially coating the silicon nitride lines formed by the first silicon nitride layer Carbon hard mask layer 212, silicon-containing anti-reflection layer 213 and photoresist 214, through the exposure and development process, make the pattern to be cut on the photoresist 214; step S102, as shown in Figure 3L, use dry etching The silicon nitride lines formed by the first silicon nitride layer that need to be cut are removed by etching, and the amorphous carbon above the remaining silicon nitride lines is removed by a dry stripping process to expose the silicon nitride lines. The fin structure formed in the final step S09 is shown in FIG. 3N .

Claims (9)

1. a kind of fin structure manufacture method of Dual graphing fin transistor, it is characterised in that it comprises the following steps:
Step S01, there is provided semiconductor device substrate, and deposit successively from bottom to top over the substrate the first silicon dioxide layer, First silicon nitride layer, the first amorphous carbon layer, the second silicon nitride layer, the second amorphous carbon layer and anti-reflecting layer;
Step S02, the coating photoresist on top layer anti-reflecting layer, by exposure imaging technique, complete core and sacrifice layer pattern light Carve step;
Step S03, using photoresist as mask etching anti-reflecting layer and the second amorphous carbon layer, formed with the second amorphous carbon layer and The core of its top anti-reflective layer sacrifices layer pattern;
Step S04, sacrificed in the core and one layer of second silicon dioxide layer is deposited above layer pattern;
Step S05, etching remove the second silicon dioxide layer at the top of core sacrifice layer pattern, to expose anti-reflecting layer, and protected Core is stayed to sacrifice the second silicon dioxide layer of layer pattern both sides;
Step S06, etching remove the anti-reflecting layer at the top of core sacrifice layer pattern;
Step S07, etching remove second silicon dioxide layer;
Step S08, sacrificed in the core and one layer of the 3rd silicon dioxide layer is deposited above layer pattern;
Step S09, using the silicon dioxide layer of anisotropic etching the 3rd, expose the second amorphous carbon in core sacrifice layer pattern Layer, the silicon dioxide side wall that core sacrifices layer pattern is formed, afterwards, remove the second amorphous carbon layer in core sacrifice layer pattern;
Step S10, using the silicon dioxide side wall as mask etching second silicon nitride layer, the first amorphous carbon layer and the first nitridation Silicon layer, form bottom and be the hard mask lines of silicon nitride, and remove in the hard mask lines first above the first silicon nitride layer Amorphous carbon layer;
Step S11, the silicon nitride lines formed using the first silicon nitride layer in the hard mask lines is mask etchings the one or two Silicon oxide layer and substrate, form fin structure.
2. the fin structure manufacture method of Dual graphing fin transistor according to claim 1, it is characterised in that:Step S03 is dry etching, and for step S05 reversely to be etched using plasma dry, step S06 is dry etching, and step S07 is wet Method etches, and it is to utilize anisotropic plasma dry etch that silicon dioxide side wall is formed in step S09, in step S09 It is degumming process to sacrifice the second amorphous carbon layer in layer pattern except core, formed in step S10 hard mask lines for utilization it is each to The plasma dry etch of the opposite sex, removes in the second hard mask lines that amorphous carbon is work of removing photoresist above silicon nitride in step S10 Skill, step S11 are dry etching.
3. the fin structure manufacture method of Dual graphing fin transistor according to claim 2, it is characterised in that:Step S06 also includes over etching, to remove the amorphous carbon layer of part second below anti-reflecting layer.
4. the fin structure manufacture method of Dual graphing fin transistor according to claim 2, it is characterised in that:This is anti- Reflecting layer includes lower floor's nitrogen-free anti-reflecting layer and upper strata organic antireflection layer, and step S03 core, which is sacrificed at the top of layer pattern, is Nitrogen-free anti-reflecting layer.
5. the fin structure manufacture method of Dual graphing fin transistor according to claim 2, it is characterised in that:Step S04 is the silicon dioxide layer of spin coating second.
6. the fin structure manufacture method of Dual graphing fin transistor according to claim 2, it is characterised in that:Step S05 etching gas medium is CF4Or CF4With Ar mixed gas.
7. the fin structure manufacture method of Dual graphing fin transistor according to claim 6, it is characterised in that:The CF4 Flow be 50sccm~200sccm, the flow of the Ar is 50sccm~300sccm, and RF source power is 200 watts~700 watts, Bias as 50 volts~400 volts, air pressure is the millitorr of 5 millitorrs~12.
8. the fin structure manufacture method of Dual graphing fin transistor according to claim 1, it is characterised in that:Step Silicon nitride lines pitch in S10 in hard mask lines halves.
9. the fin structure manufacture method of Dual graphing fin transistor according to claim 1, it is characterised in that:Step Also include between S10 and S11, step S101, carbon hard mask is coated with successively on the silicon nitride lines that the first silicon nitride layer is formed Layer, siliceous anti-reflecting layer and photoresist, by exposure imaging technique, produce the figure to be cut off on a photoresist;Step Rapid S102, the silicon nitride lines for needing the first silicon nitride layer cut off to be formed are removed using dry etching, and removed photoresist using dry method Technique removes the amorphous carbon above remaining silicon nitride lines, exposes silicon nitride lines.
CN201410339109.8A 2014-07-16 2014-07-16 Fin structure manufacturing method of double patterned fin transistor Active CN104064474B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410339109.8A CN104064474B (en) 2014-07-16 2014-07-16 Fin structure manufacturing method of double patterned fin transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410339109.8A CN104064474B (en) 2014-07-16 2014-07-16 Fin structure manufacturing method of double patterned fin transistor

Publications (2)

Publication Number Publication Date
CN104064474A CN104064474A (en) 2014-09-24
CN104064474B true CN104064474B (en) 2018-01-26

Family

ID=51552133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410339109.8A Active CN104064474B (en) 2014-07-16 2014-07-16 Fin structure manufacturing method of double patterned fin transistor

Country Status (1)

Country Link
CN (1) CN104064474B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409444B (en) * 2014-11-17 2018-01-02 上海集成电路研发中心有限公司 The preparation method of fin layer photoetching alignment mark
CN107785252B (en) * 2016-08-26 2021-03-09 中芯国际集成电路制造(上海)有限公司 Double patterning method
TWI774318B (en) 2020-05-22 2022-08-11 台灣積體電路製造股份有限公司 Method of manufacturing semiconductor devices and semiconductor device
CN114334820B (en) * 2020-09-30 2025-02-07 上海华力集成电路制造有限公司 Truncation process method of fin field effect transistor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055774C (en) * 1998-10-08 2000-08-23 傅吉康 Keyboard for miniaturized information terminal to input Chinese characters
KR101016334B1 (en) * 2003-07-18 2011-02-22 매그나칩 반도체 유한회사 Gate electrode formation method of semiconductor device
US7981592B2 (en) * 2008-04-11 2011-07-19 Sandisk 3D Llc Double patterning method
US8603893B1 (en) * 2012-05-17 2013-12-10 GlobalFoundries, Inc. Methods for fabricating FinFET integrated circuits on bulk semiconductor substrates

Also Published As

Publication number Publication date
CN104064474A (en) 2014-09-24

Similar Documents

Publication Publication Date Title
US9536987B2 (en) Line-end cutting method for fin structures of FinFETs formed by double patterning technology
CN110739210B (en) Semiconductor structure and forming method thereof
CN104078366B (en) Fin structure manufacturing method of double patterned fin transistor
CN104900495B (en) The preparation method of self-alignment duplex pattern method and fin formula field effect transistor
CN111370299B (en) Semiconductor structure and forming method thereof
CN108321079B (en) Semiconductor structure and forming method thereof
CN107731666B (en) Double patterning method
CN110690117A (en) Semiconductor structure and method of forming the same
CN104124168B (en) The forming method of semiconductor structure
JP2009071306A (en) Method for forming micropattern in semiconductor device
CN104064474B (en) Fin structure manufacturing method of double patterned fin transistor
CN106298929B (en) The forming method of fin field effect pipe
CN111627808B (en) Semiconductor structure and forming method thereof
CN112018034B (en) Semiconductor structure and forming method thereof
CN106960816B (en) Double Graphical Method
CN111696862B (en) Semiconductor structure and forming method thereof
CN114334619A (en) Method of forming a semiconductor structure
CN112185811A (en) Semiconductor structure and forming method thereof
US11557480B2 (en) Semiconductor structure and fabrication method thereof
CN112563200B (en) Semiconductor device and method of forming the same
CN112117192B (en) Method for forming semiconductor structure
CN116230636A (en) Semiconductor structure and forming method thereof
CN104124143B (en) The forming method of gate lateral wall layer
CN104425223B (en) Graphic method
CN102938372B (en) Fin-shaped semiconductor structure manufacturing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant