CN104060140A - A high temperature resistant magnesium oxide alloy - Google Patents
A high temperature resistant magnesium oxide alloy Download PDFInfo
- Publication number
- CN104060140A CN104060140A CN201410327889.4A CN201410327889A CN104060140A CN 104060140 A CN104060140 A CN 104060140A CN 201410327889 A CN201410327889 A CN 201410327889A CN 104060140 A CN104060140 A CN 104060140A
- Authority
- CN
- China
- Prior art keywords
- alloy
- magnesium
- pure
- temperature resistant
- high temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 61
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 58
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 239000000395 magnesium oxide Substances 0.000 title claims abstract description 23
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 47
- 239000011777 magnesium Substances 0.000 claims abstract description 31
- 229910052718 tin Inorganic materials 0.000 claims abstract description 29
- 239000012535 impurity Substances 0.000 claims abstract description 28
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 20
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 abstract description 25
- 238000007254 oxidation reaction Methods 0.000 abstract description 25
- 230000007547 defect Effects 0.000 abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 abstract description 4
- 238000003723 Smelting Methods 0.000 abstract description 3
- 238000003756 stirring Methods 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract 2
- 238000005266 casting Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000000465 moulding Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000004584 weight gain Effects 0.000 description 5
- 235000019786 weight gain Nutrition 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 241001062472 Stokellia anisodon Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 238000005844 autocatalytic reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Forging (AREA)
Abstract
Description
技术领域technical field
本发明属于镁合金技术领域,涉及一种抗氧化镁合金,特别涉及一种抗高温镁合金。The invention belongs to the technical field of magnesium alloys, and relates to an anti-oxidation magnesium alloy, in particular to a high-temperature resistant magnesium alloy.
背景技术Background technique
镁合金综合性能优异,用途广泛,但是熔点较低,在高温条件下易氧化甚至燃烧,严重限制了其使用范围。Magnesium alloy has excellent comprehensive properties and is widely used, but its melting point is low, and it is easy to oxidize or even burn under high temperature conditions, which seriously limits its application range.
影响镁合金高温氧化性能的因素多种多样,主要包括:There are various factors affecting the high temperature oxidation performance of magnesium alloys, mainly including:
一、材料化学成分,如合金元素的种类及分布均匀性,杂质及其偏聚程度;1. The chemical composition of the material, such as the type and distribution uniformity of alloying elements, impurities and their degree of segregation;
二、合金的相组成及组织结构,如高温氧化区相变情况,合金宏微观组织缺陷等;2. The phase composition and structure of the alloy, such as the phase transition in the high temperature oxidation zone, the macro and micro structure defects of the alloy, etc.;
三、氧化膜的性质,包括氧化膜本身性质,如氧化膜的完整性与致密性,即氧化物体积与金属体积之比(PBR),氧化膜的热力学稳定性及物理性质;氧化膜与金属界面相容性,如氧化膜与金属的外延生长关系,界面的几何形状,界面化学性质(如界面杂质偏聚情况),氧化膜与基体的界面能及界面结合强度;氧化膜与气相相容性,如是否构成自催化反应或氧化还原反应。3. The properties of the oxide film, including the properties of the oxide film itself, such as the integrity and compactness of the oxide film, that is, the ratio of the oxide volume to the metal volume (PBR), the thermodynamic stability and physical properties of the oxide film; the relationship between the oxide film and the metal Interface compatibility, such as the epitaxial growth relationship between the oxide film and the metal, the geometry of the interface, the chemical properties of the interface (such as the segregation of impurities at the interface), the interface energy and the interface bonding strength between the oxide film and the substrate; the oxide film is compatible with the gas phase properties, such as whether it constitutes an autocatalytic reaction or a redox reaction.
普通镁合金或者在化学成分上存在问题,或者合金组织结构不合理,或者初步氧化所得到的氧化膜不符合要求,不能阻止后续氧化,均不具有高温抗氧化效果。Ordinary magnesium alloys either have problems in chemical composition, or the structure of the alloy is unreasonable, or the oxide film obtained by initial oxidation does not meet the requirements, cannot prevent subsequent oxidation, and does not have high-temperature oxidation resistance.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种具有优异的抗高温氧化性能的镁合金。In view of this, the object of the present invention is to provide a magnesium alloy with excellent high temperature oxidation resistance.
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
抗高温氧化镁合金,所述镁合金按质量百分比计由以下组分组成:Y:1~3%,Sn:0.1~1.5%,其余为镁和不可避免的杂质。The high-temperature resistant magnesium oxide alloy is composed of the following components in terms of mass percentage: Y: 1-3%, Sn: 0.1-1.5%, and the rest are magnesium and unavoidable impurities.
作为本发明抗高温氧化镁合金的优选,所述Y的质量百分含量为1.5-2.2%,所述Sn的质量百分含量为0.1-0.5%。As a preferred embodiment of the high temperature resistant magnesium oxide alloy of the present invention, the mass percentage of Y is 1.5-2.2%, and the mass percentage of Sn is 0.1-0.5%.
作为本发明抗高温氧化镁合金的另一种优选,所述Y与Sn的质量比为2:1-7:1。As another preference of the high temperature resistant magnesium oxide alloy of the present invention, the mass ratio of Y to Sn is 2:1-7:1.
作为本发明抗高温氧化镁合金的进一步优选,所述不可避免的杂质总量≤0.03%,其中Fe≤0.002%,Cu≤0.001%,Si≤0.005%。As a further preference of the high-temperature resistant magnesium oxide alloy of the present invention, the total amount of inevitable impurities is ≤0.03%, wherein Fe≤0.002%, Cu≤0.001%, and Si≤0.005%.
制备所述抗高温氧化镁合金的方法,包括以下步骤:The method for preparing the high temperature resistant magnesium oxide alloy comprises the following steps:
1)、取材:取纯Mg,纯Sn以及Mg-Y中间合金,其中Mg-Y中间合金中Y的质量百分比为25-30%;1), materials: take pure Mg, pure Sn and Mg-Y master alloy, wherein the mass percentage of Y in the Mg-Y master alloy is 25-30%;
2)、熔炼:在CO2和SF6气氛保护下首先将纯镁加热到690-705℃,然后加入纯Sn和Mg-Y中间合金,充分搅拌熔炼得到镁合金熔液;2) Melting: under the protection of CO 2 and SF 6 atmosphere, first heat pure magnesium to 690-705°C, then add pure Sn and Mg-Y master alloy, fully stir and smelt to obtain magnesium alloy melt;
3)、浇注:将步骤2)的镁合金熔液于715-730℃保温15-25分钟、除杂后浇注成型;3), pouring: heat the magnesium alloy melt in step 2) at 715-730°C for 15-25 minutes, remove impurities, and cast into shape;
4)、空冷步骤3)所得铸锭。4), air cooling the ingot obtained in step 3).
本发明的有益效果在于:本发明在镁合金中添加适量的Y和Sn,氧化时得到的Y2O3(PBR值1.39)和SnO2(PBR值1.32)可以显著增强氧化膜的致密性,克服MgO薄膜(PBR值0.89)疏松多孔的缺陷,且SnO2、Y2O3和MgO相容性好、含Y的氧化膜与镁合金基体结合紧密,所得氧化膜理化性能稳定,其阻止继续氧化镁合金的效果十分明显。本发明进一步对限定了合金中杂质特别是Cu、Fe、Si的含量,既可以避免杂质对合金高温氧化性能的影响,又充分降低杂质含量所带来的成本。本发明严格限制了镁合金熔炼、保温温度等工艺参数,浇筑得到的合金材料组织均匀,宏微观缺陷少,进一步增强了合金的抗高温氧化能力。The beneficial effects of the present invention are: the present invention adds appropriate amount of Y and Sn to the magnesium alloy, and Y2O3 (PBR value 1.39) and SnO2 (PBR value 1.32) obtained during oxidation can significantly enhance the compactness of the oxide film, Overcome the loose and porous defects of MgO film (PBR value 0.89), and the compatibility of SnO 2 , Y 2 O 3 and MgO is good, and the oxide film containing Y is closely combined with the magnesium alloy matrix, and the physical and chemical properties of the obtained oxide film are stable, which prevents further The effect of magnesium oxide alloy is very obvious. The invention further limits the content of impurities in the alloy, especially Cu, Fe and Si, which can not only avoid the influence of impurities on the high-temperature oxidation performance of the alloy, but also fully reduce the cost caused by the content of impurities. The invention strictly limits the process parameters such as magnesium alloy smelting and heat preservation temperature, and the alloy material obtained by pouring has uniform structure and few macro and micro defects, and further enhances the high-temperature oxidation resistance of the alloy.
附图说明Description of drawings
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical scheme and beneficial effect of the present invention clearer, the present invention provides the following drawings for illustration:
图1为实施例1所得镁合金与纯镁,AZ31镁合金的氧化增重曲线图;Fig. 1 is the obtained magnesium alloy of embodiment 1 and pure magnesium, the oxidation weight gain curve figure of AZ31 magnesium alloy;
图2为实施例1镁合金氧化处理后氧化层的横截面扫描图片;Fig. 2 is the cross-sectional scanning picture of the oxide layer after the magnesium alloy oxidation treatment of embodiment 1;
图3、图4、图5为实施例1镁合金氧化层的横截面面扫描电镜能谱图,分别反映Mg、Y、Sn在横截面的分布情况。Fig. 3, Fig. 4 and Fig. 5 are scanning electron microscope energy spectrum diagrams of the cross-section of the magnesium alloy oxide layer in Example 1, respectively reflecting the distribution of Mg, Y, and Sn in the cross-section.
具体实施方式Detailed ways
下面将结合附图,对本发明的优选实施例进行详细的描述。The preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
以下实施例将公开一种新型镁合金,其化学组分及配比如下:Y:1~3%,Sn:0.1~1.5%,其余为镁和不可避免的杂质。The following examples will disclose a new type of magnesium alloy, the chemical composition and ratio of which are as follows: Y: 1-3%, Sn: 0.1-1.5%, and the rest is magnesium and unavoidable impurities.
进一步,该合金中Y的质量百分含量为1.5-2.2%,Sn的质量百分含量为0.1-0.5%。Further, the mass percentage of Y in the alloy is 1.5-2.2%, and the mass percentage of Sn is 0.1-0.5%.
进一步,该合金中Y与Sn的质量比为2:1-7:1。Further, the mass ratio of Y to Sn in the alloy is 2:1-7:1.
进一步,该合金中不可避免的杂质总量≤0.03%,其中Fe≤0.002%,Cu≤0.001%,Si≤0.005%。Further, the total amount of unavoidable impurities in the alloy is ≤0.03%, wherein Fe≤0.002%, Cu≤0.001%, and Si≤0.005%.
实施例1:Example 1:
本实施例制备抗高温氧化镁合金的方法,包括:The method for preparing high temperature resistant magnesium oxide alloy in this embodiment includes:
1)、取材:取一定量的纯Mg,纯Sn以及Mg-Y中间合金,其中Mg-Y中间合金中Y的质量百分比为30%;1), drawing materials: take a certain amount of pure Mg, pure Sn and Mg-Y master alloy, wherein the mass percentage of Y in the Mg-Y master alloy is 30%;
2)、熔炼:在CO2和SF6气氛保护下首先将纯镁加热到700℃,然后加入纯Sn和Mg-Y中间合金,充分搅拌熔炼得到镁合金熔液;2) Melting: under the protection of CO 2 and SF 6 atmosphere, the pure magnesium is first heated to 700°C, then pure Sn and Mg-Y master alloy are added, fully stirred and smelted to obtain a magnesium alloy melt;
3)、浇注:将步骤2)的镁合金熔液于720℃保温20分钟、除杂后倒入直径80mm的钢模中浇注成型得到铸锭;3), pouring: heat the magnesium alloy melt in step 2) at 720° C. for 20 minutes, remove impurities, pour it into a steel mold with a diameter of 80 mm, and cast it to obtain an ingot;
4)、空冷步骤3)所得铸锭。4), air cooling the ingot obtained in step 3).
经过检测,本实施例所得镁合金化学组分及配比如下:其化学组分及配比如下:Y:1.75%,Sn:0.25%,Mg:97.98%;杂质总量0.02%,其中:Fe=0.001%,Cu=0.001%,Si=0.003%。After testing, the chemical composition and ratio of the magnesium alloy obtained in this example are as follows: the chemical composition and ratio are as follows: Y: 1.75%, Sn: 0.25%, Mg: 97.98%; the total amount of impurities is 0.02%, of which: Fe =0.001%, Cu=0.001%, Si=0.003%.
将本实施例所得镁合金与纯镁,AZ31镁合金分别在空气供应充足的环境中以10℃/min的速度加热至600℃,保温2h,测试其氧化增重曲线。The magnesium alloy obtained in this example, pure magnesium, and AZ31 magnesium alloy were respectively heated to 600°C at a rate of 10°C/min in an environment with sufficient air supply, kept for 2 hours, and their oxidation weight gain curves were tested.
图1为实施例1所得镁合金与纯镁,AZ31镁合金的氧化增重曲线图;从图中可以看出,纯Mg,AZ31合金在高温氧化过程中增重都比较严重,而Mg-Y-Sn合金氧化增重不明显,说明本实施例所制得的镁合金具有良好的抗高温氧化能力。Fig. 1 is the magnesium alloy obtained in embodiment 1 and pure magnesium, the oxidation weight gain curve of AZ31 magnesium alloy; As can be seen from the figure, pure Mg, AZ31 alloy weight gain are all more serious in the high temperature oxidation process, and Mg-Y The oxidation weight gain of the -Sn alloy is not obvious, indicating that the magnesium alloy prepared in this example has good high temperature oxidation resistance.
图2为本实施例所得镁合金经过500℃保温6h所得氧化层的横截面扫面图片,可以看到,氧化层与基体之间并没有明显的分层现象,这说明氧化层与基体的结合能力较好,不易脱落。Figure 2 is a cross-sectional scanning picture of the oxide layer obtained by the magnesium alloy obtained in this example after being kept at 500°C for 6 hours. It can be seen that there is no obvious delamination between the oxide layer and the substrate, which shows that the oxide layer is combined with the substrate. Good ability, not easy to fall off.
图3、图4、图5为图2中氧化处理后镁合金氧化层的横截面面扫描电镜能谱图,由图可知,Mg元素在外表面层含量逐渐减少,而Y元素在表面层富集,这说明经过高温氧化后,Y元素富集在表面层形成了Y2O3与MgO的复合氧化层,由于Y2O3的PBR值为1.39,大于1,可以与MgO形成致密的氧化层,从而提高合金的抗高温氧化性能,阻止合金的进一步氧化。Figure 3, Figure 4, and Figure 5 are the cross-sectional scanning electron microscope energy spectrum diagrams of the magnesium alloy oxide layer after oxidation treatment in Figure 2. It can be seen from the figure that the content of Mg element in the outer surface layer gradually decreases, while Y element is enriched in the surface layer , which shows that after high temperature oxidation, the Y element is enriched in the surface layer to form a composite oxide layer of Y 2 O 3 and MgO. Since the PBR value of Y 2 O 3 is 1.39, which is greater than 1, it can form a dense oxide layer with MgO , thereby improving the high temperature oxidation resistance of the alloy and preventing further oxidation of the alloy.
实施例2:Example 2:
本实施例制备抗高温氧化镁合金的方法,包括:The method for preparing high temperature resistant magnesium oxide alloy in this embodiment includes:
1)、取材:取一定量的纯Mg,纯Sn以及Mg-Y中间合金,其中Mg-Y中间合金中Y的质量百分比为25%;1), drawing materials: take a certain amount of pure Mg, pure Sn and Mg-Y master alloy, wherein the mass percentage of Y in the Mg-Y master alloy is 25%;
2)、熔炼:在CO2和SF6气氛保护下首先将纯镁加热到705℃,然后加入纯Sn和Mg-Y中间合金,充分搅拌熔炼得到镁合金熔液;2) Melting: under the protection of CO 2 and SF 6 atmosphere, the pure magnesium is first heated to 705°C, then pure Sn and Mg-Y master alloy are added, fully stirred and smelted to obtain a magnesium alloy melt;
3)、浇注:将步骤2)的镁合金熔液于715℃保温25分钟、除杂后倒入直径80mm的钢模中浇注成型得到铸锭;3), pouring: heat the magnesium alloy melt in step 2) at 715° C. for 25 minutes, remove impurities, pour it into a steel mold with a diameter of 80 mm, and cast it to obtain an ingot;
4)、空冷步骤3)所得铸锭。4), air cooling the ingot obtained in step 3).
经过检测,本实施例所得镁合金化学组分及配比如下:其化学组分及配比如下:Y:1.6%,Sn:0.5%,Mg:97.65%;杂质总量0.25%,其中:Fe=0.001%,Cu=0.001%,Si=0.005%After testing, the chemical composition and ratio of the magnesium alloy obtained in this example are as follows: the chemical composition and ratio are as follows: Y: 1.6%, Sn: 0.5%, Mg: 97.65%; the total amount of impurities is 0.25%, of which: Fe =0.001%, Cu=0.001%, Si=0.005%
实施例3:Example 3:
本实施例制备抗高温氧化镁合金的方法,包括:The method for preparing high temperature resistant magnesium oxide alloy in this embodiment includes:
1)、取材:取一定量的纯Mg,纯Sn以及Mg-Y中间合金,其中Mg-Y中间合金中Y的质量百分比为28%;1), drawing materials: get a certain amount of pure Mg, pure Sn and Mg-Y master alloy, wherein the mass percentage of Y in the Mg-Y master alloy is 28%;
2)、熔炼:在CO2和SF6气氛保护下首先将纯镁加热到690℃,然后加入纯Sn和Mg-Y中间合金,充分搅拌熔炼得到镁合金熔液;2) Melting: under the protection of CO 2 and SF 6 atmosphere, firstly heat pure magnesium to 690°C, then add pure Sn and Mg-Y master alloy, fully stir and smelt to obtain magnesium alloy melt;
3)、浇注:将步骤2)的镁合金熔液于730℃保温15分钟、除杂后倒入直径80mm的钢模中浇注成型得到铸锭;3), pouring: heat the magnesium alloy melt in step 2) at 730° C. for 15 minutes, remove impurities, pour it into a steel mold with a diameter of 80 mm, and cast it to obtain an ingot;
4)、空冷步骤3)所得铸锭。4), air cooling the ingot obtained in step 3).
经过检测,本实施例所得镁合金化学组分及配比如下:其化学组分及配比如下:Y:2.1%,Sn:0.9%,Mg:96.7%;杂质总量=0.03%,其中:Fe=0.002%,Cu=0.001%,Si=0.005%After testing, the chemical composition and proportion of the magnesium alloy obtained in this embodiment are as follows: the chemical composition and proportion are as follows: Y: 2.1%, Sn: 0.9%, Mg: 96.7%; total amount of impurities = 0.03%, wherein: Fe=0.002%, Cu=0.001%, Si=0.005%
实施例4:Example 4:
本实施例制备抗高温氧化镁合金的方法,包括:The method for preparing high temperature resistant magnesium oxide alloy in this embodiment includes:
1)、取材:取一定量的纯Mg,纯Sn以及Mg-Y中间合金,其中Mg-Y中间合金中Y的质量百分比为28%;1), drawing materials: get a certain amount of pure Mg, pure Sn and Mg-Y master alloy, wherein the mass percentage of Y in the Mg-Y master alloy is 28%;
2)、熔炼:在CO2和SF6气氛保护下首先将纯镁加热到695℃,然后加入纯Sn和Mg-Y中间合金,充分搅拌熔炼得到镁合金熔液;2) Melting: under the protection of CO 2 and SF 6 atmosphere, the pure magnesium is first heated to 695°C, then pure Sn and Mg-Y master alloy are added, fully stirred and smelted to obtain a magnesium alloy melt;
3)、浇注:将步骤2)的镁合金熔液于725℃保温20分钟、除杂后倒入直径80mm的钢模中浇注成型得到铸锭;3), pouring: heat the magnesium alloy melt in step 2) at 725° C. for 20 minutes, remove impurities and pour it into a steel mold with a diameter of 80 mm to form an ingot;
4)、空冷步骤3)所得铸锭。4), air cooling the ingot obtained in step 3).
经过检测,本实施例所得镁合金化学组分及配比如下:Y:1%,Sn:0.2%,Mg:98.78%;杂质总量=0.02%,其中Fe=0.002%,Cu=0.001%,Si=0.002%。After testing, the chemical composition and ratio of the magnesium alloy obtained in this example are as follows: Y: 1%, Sn: 0.2%, Mg: 98.78%; total amount of impurities = 0.02%, wherein Fe = 0.002%, Cu = 0.001%, Si = 0.002%.
实施例5:Example 5:
本实施例制备抗高温氧化镁合金的方法,包括:The method for preparing high temperature resistant magnesium oxide alloy in this embodiment includes:
1)、取材:取一定量的纯Mg,纯Sn以及Mg-Y中间合金,其中Mg-Y中间合金中Y的质量百分比为27%;1), drawing materials: take a certain amount of pure Mg, pure Sn and Mg-Y master alloy, wherein the mass percentage of Y in the Mg-Y master alloy is 27%;
2)、熔炼:在CO2和SF6气氛保护下首先将纯镁加热到700℃,然后加入纯Sn和Mg-Y中间合金,充分搅拌熔炼得到镁合金熔液;2) Melting: under the protection of CO 2 and SF 6 atmosphere, the pure magnesium is first heated to 700°C, then pure Sn and Mg-Y master alloy are added, fully stirred and smelted to obtain a magnesium alloy melt;
3)、浇注:将步骤2)的镁合金熔液于725℃保温18分钟、除杂后倒入直径80mm的钢模中浇注成型得到铸锭;3), pouring: heat the magnesium alloy melt in step 2) at 725° C. for 18 minutes, remove impurities, pour it into a steel mold with a diameter of 80 mm, and cast it to obtain an ingot;
4)、空冷步骤3)所得铸锭。4), air cooling the ingot obtained in step 3).
经过检测,本实施例所得镁合金化学组分及配比如下:其化学组分及配比如下:Y:3%,Sn:1.5%,Mg:95.47,杂质总量=0.03%,其中Fe=0.001%,Cu=0.001%,Si=0.004%。After testing, the chemical composition and proportion of the magnesium alloy obtained in this embodiment are as follows: its chemical composition and proportion are as follows: Y: 3%, Sn: 1.5%, Mg: 95.47, total amount of impurities = 0.03%, wherein Fe = 0.001%, Cu=0.001%, Si=0.004%.
本发明在镁合金中添加适量的Y和Sn,可以显著增强氧化膜的致密性,有效阻止继续氧化镁合金。本发明进一步对限定了合金中杂质特别含量,避免杂质对合金高温氧化性能的影响。本发明严格限制了镁合金熔炼、保温温度等工艺参数,浇筑得到的合金材料组织均匀,宏微观缺陷少,进一步增强了合金的抗高温氧化能力。The present invention adds appropriate amount of Y and Sn to the magnesium alloy, which can significantly enhance the compactness of the oxide film and effectively prevent the continuous oxidation of the magnesium alloy. The invention further limits the special content of impurities in the alloy to avoid the influence of impurities on the high-temperature oxidation performance of the alloy. The invention strictly limits the process parameters such as magnesium alloy smelting and heat preservation temperature, and the alloy material obtained by pouring has uniform structure and few macro and micro defects, and further enhances the high-temperature oxidation resistance of the alloy.
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。Finally, it should be noted that the above preferred embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail through the above preferred embodiments, those skilled in the art should understand that it can be described in terms of form and Various changes may be made in the details without departing from the scope of the invention defined by the claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410327889.4A CN104060140B (en) | 2014-07-10 | 2014-07-10 | High-temperature-resistant magnesium oxide alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410327889.4A CN104060140B (en) | 2014-07-10 | 2014-07-10 | High-temperature-resistant magnesium oxide alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104060140A true CN104060140A (en) | 2014-09-24 |
CN104060140B CN104060140B (en) | 2016-08-24 |
Family
ID=51548069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410327889.4A Expired - Fee Related CN104060140B (en) | 2014-07-10 | 2014-07-10 | High-temperature-resistant magnesium oxide alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104060140B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108193108A (en) * | 2017-12-29 | 2018-06-22 | 重庆大学 | Good Mg-Sn-Y alloy materials of a kind of mechanical property and preparation method thereof |
CN108425056A (en) * | 2018-05-03 | 2018-08-21 | 重庆大学 | A kind of room temperature high plastic magnesium alloy and preparation method thereof containing rare-earth yttrium |
CN108796324A (en) * | 2018-07-03 | 2018-11-13 | 重庆大学 | A kind of room temperature high-ductility magnesium-tin-yttrium-zircaloy and preparation method thereof |
CN111172439A (en) * | 2020-03-06 | 2020-05-19 | 西南交通大学 | Refined grain magnesium alloy and preparation method thereof |
CN111321333A (en) * | 2020-03-06 | 2020-06-23 | 西南交通大学 | A kind of heat-resistant magnesium alloy and preparation method thereof |
CN113249626A (en) * | 2021-05-13 | 2021-08-13 | 西南交通大学 | Magnesium alloy and processing method for improving tension-compression asymmetry thereof |
CN115161528A (en) * | 2022-06-14 | 2022-10-11 | 西南交通大学 | Mg-RE-based high-temperature-resistant high-performance magnesium alloy and preparation method thereof |
CN115233059A (en) * | 2022-08-15 | 2022-10-25 | 重庆大学 | High-damping Mg-Sn-Y alloy and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101532107A (en) * | 2009-04-13 | 2009-09-16 | 河南科技大学 | Heat resisting rare earth magnesium alloy and preparation method thereof |
CN102449177A (en) * | 2009-05-29 | 2012-05-09 | 住友电气工业株式会社 | Linear bodies, bolts, nuts and washers each comprising a magnesium alloy |
CN102676896A (en) * | 2012-05-24 | 2012-09-19 | 狄石磊 | Corrosion resistant magnesium alloy material and preparation method thereof |
CN103131925A (en) * | 2013-03-14 | 2013-06-05 | 河南科技大学 | High-strength heat-resisting composite rare earth magnesium alloy |
CN103290285A (en) * | 2013-05-23 | 2013-09-11 | 重庆大学 | Magnesium-zinc-manganese-tin-yttrium alloy and preparation method of same |
-
2014
- 2014-07-10 CN CN201410327889.4A patent/CN104060140B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101532107A (en) * | 2009-04-13 | 2009-09-16 | 河南科技大学 | Heat resisting rare earth magnesium alloy and preparation method thereof |
CN102449177A (en) * | 2009-05-29 | 2012-05-09 | 住友电气工业株式会社 | Linear bodies, bolts, nuts and washers each comprising a magnesium alloy |
CN102676896A (en) * | 2012-05-24 | 2012-09-19 | 狄石磊 | Corrosion resistant magnesium alloy material and preparation method thereof |
CN103131925A (en) * | 2013-03-14 | 2013-06-05 | 河南科技大学 | High-strength heat-resisting composite rare earth magnesium alloy |
CN103290285A (en) * | 2013-05-23 | 2013-09-11 | 重庆大学 | Magnesium-zinc-manganese-tin-yttrium alloy and preparation method of same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108193108A (en) * | 2017-12-29 | 2018-06-22 | 重庆大学 | Good Mg-Sn-Y alloy materials of a kind of mechanical property and preparation method thereof |
CN108425056A (en) * | 2018-05-03 | 2018-08-21 | 重庆大学 | A kind of room temperature high plastic magnesium alloy and preparation method thereof containing rare-earth yttrium |
CN108796324A (en) * | 2018-07-03 | 2018-11-13 | 重庆大学 | A kind of room temperature high-ductility magnesium-tin-yttrium-zircaloy and preparation method thereof |
CN111172439A (en) * | 2020-03-06 | 2020-05-19 | 西南交通大学 | Refined grain magnesium alloy and preparation method thereof |
CN111321333A (en) * | 2020-03-06 | 2020-06-23 | 西南交通大学 | A kind of heat-resistant magnesium alloy and preparation method thereof |
CN113249626A (en) * | 2021-05-13 | 2021-08-13 | 西南交通大学 | Magnesium alloy and processing method for improving tension-compression asymmetry thereof |
CN115161528A (en) * | 2022-06-14 | 2022-10-11 | 西南交通大学 | Mg-RE-based high-temperature-resistant high-performance magnesium alloy and preparation method thereof |
CN115161528B (en) * | 2022-06-14 | 2023-01-31 | 西南交通大学 | Preparation method of Mg-RE-based high-temperature-resistant high-performance magnesium alloy |
CN115233059A (en) * | 2022-08-15 | 2022-10-25 | 重庆大学 | High-damping Mg-Sn-Y alloy and preparation method thereof |
CN115233059B (en) * | 2022-08-15 | 2023-07-25 | 重庆大学 | High-damping Mg-Sn-Y alloy and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104060140B (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104060140B (en) | High-temperature-resistant magnesium oxide alloy | |
CN104195385B (en) | Improve long-acting alterant and the preparation and application of hypoeutectic Al-Si alloy electrical conductivity | |
CN107858552B (en) | A kind of casting tire enamel copper master alloy and preparation method thereof | |
CN104388756B (en) | A kind of nickel-base alloy and preparation method thereof | |
CN103243251A (en) | Magnesium alloy and smelting and heat treatment processes thereof | |
CN106893951A (en) | Cu base bulk metallic glass composite and preparation method thereof | |
CN105154736B (en) | A kind of heat resistance casting magnesium alloy and preparation method thereof | |
CN100532604C (en) | A kind of Nd, Sr composite strengthening heat-resistant magnesium alloy and preparation method thereof | |
CN103074510B (en) | Refining method of aluminum-magnesium-series cast aluminum alloy material | |
CN115558825A (en) | A high thermal conductivity, high strength and toughness die-casting aluminum alloy and its preparation method | |
CN1431329A (en) | Heat-resistant rare earth magnesium alloy | |
CN101020983A (en) | Heat treatment process for large size as-cast high-Nb TiAl-base alloy to obtain complete lamellar structure | |
CN105002409B (en) | A kind of Mg Mn intermediate alloys and preparation method thereof | |
CN101985711A (en) | Multicomponent heat-resistant magnesium alloy taking Sn and Gd as main components and preparation method thereof | |
CN101994060B (en) | Ferrum-aluminium-chromium (Fe-Al-Cr) intermetallic compound powder metallurgy material and preparation method thereof | |
CN100567538C (en) | A kind of Nd-containing heat-resistant magnesium alloy and its preparation method | |
CN114622121B (en) | A kind of medium entropy alloy and preparation method thereof | |
CN103436776B (en) | A kind of carbide strengthens the preparation method of Heat Resistant Steel Composites | |
CN101440441A (en) | Method for thinning CaMgSn phase in Mg-Sn-Ca magnesium alloy by adding Y | |
CN114480941B (en) | A kind of eutectic medium entropy alloy with high strength and high thermal stability and preparation method thereof | |
CN118773460B (en) | A Re-doped refractory high-entropy alloy material and preparation method thereof | |
CN117448645A (en) | Anti-oxidation magnesium alloy and preparation method thereof | |
CN106191366A (en) | A kind of vermiculizer preparing vermicular cast iron and preparation method thereof | |
CN115305417A (en) | Zirconium-based amorphous alloy with plasticity and hardness and preparation method thereof | |
CN115584445A (en) | Plastic centimeter-scale zirconium-based amorphous alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160824 Termination date: 20190710 |