CN104058392A - Method for preparing graphene colloid dispersion liquid - Google Patents
Method for preparing graphene colloid dispersion liquid Download PDFInfo
- Publication number
- CN104058392A CN104058392A CN201410261400.8A CN201410261400A CN104058392A CN 104058392 A CN104058392 A CN 104058392A CN 201410261400 A CN201410261400 A CN 201410261400A CN 104058392 A CN104058392 A CN 104058392A
- Authority
- CN
- China
- Prior art keywords
- graphene
- preparation
- dispersion
- colloidal dispersion
- graphene colloidal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 154
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 141
- 239000006185 dispersion Substances 0.000 title claims abstract description 45
- 239000000084 colloidal system Substances 0.000 title claims abstract description 17
- 239000007788 liquid Substances 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title description 21
- 238000002360 preparation method Methods 0.000 claims abstract description 25
- 238000001246 colloidal dispersion Methods 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 12
- 239000010439 graphite Substances 0.000 claims abstract description 12
- 239000000243 solution Substances 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 239000011259 mixed solution Substances 0.000 claims abstract description 4
- 230000002829 reductive effect Effects 0.000 claims description 10
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 8
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 8
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 4
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical group [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 claims description 4
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims description 4
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 claims description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 claims description 2
- 229940074391 gallic acid Drugs 0.000 claims description 2
- 235000004515 gallic acid Nutrition 0.000 claims description 2
- 239000012279 sodium borohydride Substances 0.000 claims description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 4
- 239000013543 active substance Substances 0.000 claims 3
- 238000011835 investigation Methods 0.000 claims 2
- 239000004141 Sodium laurylsulphate Substances 0.000 claims 1
- 239000004094 surface-active agent Substances 0.000 abstract description 11
- 239000002245 particle Substances 0.000 abstract description 7
- 230000008901 benefit Effects 0.000 abstract description 5
- 239000003638 chemical reducing agent Substances 0.000 abstract description 5
- 238000009826 distribution Methods 0.000 abstract description 5
- 239000002356 single layer Substances 0.000 abstract description 5
- 239000002131 composite material Substances 0.000 abstract description 3
- 238000009776 industrial production Methods 0.000 abstract description 3
- 238000003860 storage Methods 0.000 abstract description 3
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 abstract description 2
- 238000006722 reduction reaction Methods 0.000 description 11
- 230000009467 reduction Effects 0.000 description 8
- 238000001035 drying Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 4
- 238000007306 functionalization reaction Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000000693 micelle Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000000967 suction filtration Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- SDGKUVSVPIIUCF-UHFFFAOYSA-N 2,6-dimethylpiperidine Chemical compound CC1CCCC(C)N1 SDGKUVSVPIIUCF-UHFFFAOYSA-N 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- -1 carboxyl anions Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种石墨烯胶体分散液的制备方法,包括以下步骤:(1)将氧化石墨加入水中,超声分散,得到单片层均匀分散的氧化石墨烯胶体;(2)将表面活性剂加入到氧化石墨烯胶体中,混合均匀后超声分散;(3)向步骤(2)所得溶液中加入还原剂,反应至pH上升为10.5~11.5,然后将混合液置于70~90℃反应,得到具有稳定分散性的石墨烯胶体分散液。与现有技术相比,本发明制备的石墨烯分散液可用于石墨烯的大规模制备、储存和运输以及制备石墨烯复合材料等领域;本发明制备的石墨烯分散液具有浓度高、分散性好、能保持长期稳定性的优点,其中的石墨烯片层粒径大小分布均匀、剥离度好;成本低,制备工艺简单,无环境污染,易于实现大规模的工业化生产。
The invention relates to a preparation method of a graphene colloidal dispersion liquid, comprising the following steps: (1) adding graphite oxide into water and ultrasonically dispersing to obtain graphene oxide colloids uniformly dispersed in a single layer; (2) adding a surfactant (3) adding a reducing agent to the solution obtained in step (2), reacting until the pH rises to 10.5 to 11.5, and then placing the mixed solution at 70 to 90°C for reaction to obtain Graphene colloidal dispersion with stable dispersion. Compared with the prior art, the graphene dispersion prepared by the present invention can be used in the large-scale preparation, storage and transportation of graphene and the preparation of graphene composite materials and other fields; the graphene dispersion prepared by the present invention has high concentration, good dispersibility Good, can maintain the advantages of long-term stability, wherein the particle size distribution of graphene sheets is uniform, good peeling degree; low cost, simple preparation process, no environmental pollution, easy to realize large-scale industrial production.
Description
技术领域technical field
本发明涉及一种石墨烯胶体分散液的制备方法,属于纳米材料的制备领域。The invention relates to a preparation method of a graphene colloidal dispersion liquid, belonging to the field of preparation of nanometer materials.
背景技术Background technique
石墨烯是一种由单层碳原子紧密堆积而成的二维蜂窝状碳材料。2004年,英国科学家Geim等人成功制备了室温下稳定存在的石墨烯,引起了广泛的关注(Novoselov K,Geim A,et al.Science,2004,v306:666-669)。石墨烯具有优异的电学性能(电导率高达106S/cm)、热学性能(热导率为3000-5000J/m·K·s)、力学性能(强度为110-130GPa、弹性模量为1.0TPa)和光学性能(透光率可达到97.7%),因此在电子、高强度材料、能源转换和储存、催化、传感器等领域都具有广阔的应用前景。Graphene is a two-dimensional honeycomb carbon material composed of a single layer of carbon atoms tightly packed. In 2004, British scientist Geim et al. successfully prepared graphene that existed stably at room temperature, which attracted widespread attention (Novoselov K, Geim A, et al. Science, 2004, v306: 666-669). Graphene has excellent electrical properties (conductivity up to 106S/cm), thermal properties (thermal conductivity 3000-5000J/m K s), mechanical properties (strength 110-130GPa, elastic modulus 1.0TPa) And optical properties (light transmittance can reach 97.7%), so it has broad application prospects in electronics, high-strength materials, energy conversion and storage, catalysis, sensors and other fields.
制备石墨烯的方法主要分为两类:自下而上法和自上而下法;前者包括微机械剥离法和化学还原氧化石墨烯法等,后者包括外延生长法和化学气相沉积法等。在制备石墨烯的众多方法中,化学还原氧化石墨烯法被认为是最有可能实现工业化生产石墨烯的方法;其具有成本低、产量高、控制简便等优点。但是,由于还原过程中氧化石墨烯表面亲水性含氧基团逐渐减少,片层间的静电斥力减弱,石墨烯会产生团聚,分散性逐步下降,甚至产生沉淀(Stankovich S,et al.Carbon,2007,v45:1558-1565)。The methods for preparing graphene are mainly divided into two categories: bottom-up method and top-down method; the former includes micromechanical exfoliation method and chemical reduction graphene oxide method, etc., and the latter includes epitaxial growth method and chemical vapor deposition method, etc. . Among the many methods for preparing graphene, the chemical reduction of graphene oxide method is considered to be the most likely method to realize the industrial production of graphene; it has the advantages of low cost, high yield, and easy control. However, due to the gradual reduction of the hydrophilic oxygen-containing groups on the surface of graphene oxide during the reduction process, the electrostatic repulsion between the sheets is weakened, graphene will agglomerate, the dispersion will gradually decrease, and even precipitation will occur (Stankovich S, et al.Carbon , 2007, v45:1558-1565).
由于石墨烯层间强烈的π-π键相互作用,结构完整的石墨烯在水和有机溶剂等分散介质中容易聚集并沉淀,不利于石墨烯的大规模制备和应用。为了解决这一问题,人们将石墨烯功能化处理,不仅改善了其溶解性,而且利用多种化学键可以调控石墨烯的结构,赋予石墨烯新的性能。按照是否引入新的共价键,将石墨烯功能化处理方法分为共价键功能化和非共价键功能化。前者一般用于制备石墨烯复合材料,其中石墨烯一般具有良好的溶解性;但由于其他官能团的引入,破坏了石墨烯大π键共轭结构,使其导电性和其他性能显著降低。非共价键功能化通过利用π-π相互作用、离子键及氢键等非共价键使修饰分子对石墨烯进行表面功能化,不仅能够保持石墨烯自身的性质,而且可以保持石墨烯的溶解性。Li等人研究了石墨烯分散状态及其电荷排斥作用。结果表明,氧化石墨烯之所以能够溶于水主要是由于其表面负电荷相互排斥,形成了稳定的胶体溶液,并不只是含氧基团的亲水性。他们利用这一发现通过控制其还原程度,在除去石墨烯氧化物的羟基、环氧基等含氧官能团时保留其中的羧基负离子,使其可以在水溶液中稳定分散(Li D,et al.Nanotechnology,2008,v3:101-105)。Due to the strong π-π bond interaction between graphene layers, graphene with a complete structure is easy to aggregate and precipitate in dispersion media such as water and organic solvents, which is not conducive to the large-scale preparation and application of graphene. In order to solve this problem, people functionalize graphene, which not only improves its solubility, but also uses a variety of chemical bonds to regulate the structure of graphene and endow graphene with new properties. According to whether new covalent bonds are introduced, graphene functionalization methods can be divided into covalent bond functionalization and non-covalent bond functionalization. The former is generally used to prepare graphene composite materials, in which graphene generally has good solubility; but due to the introduction of other functional groups, the large π bond conjugated structure of graphene is destroyed, making its conductivity and other properties significantly reduced. Non-covalent functionalization uses non-covalent bonds such as π-π interactions, ionic bonds, and hydrogen bonds to functionalize the surface of graphene with modified molecules, which not only maintains the properties of graphene itself, but also maintains the properties of graphene. Solubility. Li et al. studied the dispersed state of graphene and its charge repulsion. The results show that the reason why graphene oxide can dissolve in water is mainly due to the mutual repulsion of negative charges on its surface to form a stable colloidal solution, not just the hydrophilicity of oxygen-containing groups. They took advantage of this discovery to retain the carboxyl anions in graphene oxide when removing oxygen-containing functional groups such as hydroxyl groups and epoxy groups by controlling the degree of reduction, so that it can be stably dispersed in aqueous solution (Li D, et al.Nanotechnology , 2008, v3: 101-105).
目前,在石墨烯的分散性研究中已经取得了许多重要的成果。付宏刚等人将石墨烯和环糊精混合后溶于醇中,制得具有良好稳定性的石墨烯分散液(高稳定性石墨烯分散液的制备方法;公布号:CN102515149A;公布日:2012.06.27)。张文等人把氧化石墨烯分散在甲醇等有机溶剂中,然后将分散液喷入液氮容器中进行速冻处理,其产物恢复至室温后进行还原处理,得到黑色的石墨烯浆料(一种石墨烯分散液的制备方法;公布号:CN103496691A;公布日:2014.01.08)。陈国华等人采用将还原氧化石墨烯和混合溶剂(例如N-甲基-2-吡咯烷酮和水按照9∶1的体积比混合)共混后进行球磨处理的方法,制备出2.5~10mg/ml的石墨烯分散液(一种高浓度小片径石墨烯分散液的制备方法;公布号:CN103407998A;公布日:2013.11.27)。徐燕等人制备了寡层石墨烯悬浮液,并采用超高压或超临界设备对石墨烯溶液进行纳米细化分散处理(一种石墨烯分散液制备方法;公布号:CN103253656A;公布日:2013.08.21)。孙静等人采用溶液交换法将氧化石墨烯分散于N,N-二甲基甲酰胺中,还原后制得浓度约为0.5mg/ml的石墨烯分散液(一种石墨烯胶体分散液的制备方法;公布号:CN102633256A;公布日:2012.08.15)。但是现有关于石墨烯分散性的研究中,普遍存在着采用有毒的有机溶剂,制备工艺复杂,稳定分散的石墨烯水溶液浓度低,片层尺寸小,表面改性处理后石墨烯的电导率降低等问题。因此,探索一种能够制备出高浓度、兼具良好的分散性和稳定性的石墨烯水溶液的方法具有十分重要的意义。At present, many important results have been achieved in the study of the dispersion of graphene. People such as Fu Honggang mix graphene and cyclodextrin and dissolve it in alcohol to prepare a graphene dispersion with good stability (preparation method of highly stable graphene dispersion; publication number: CN102515149A; publication date: 2012.06.27). Zhang Wen and others dispersed graphene oxide in organic solvents such as methanol, and then sprayed the dispersion into a liquid nitrogen container for quick-freezing treatment. After the product returned to room temperature, it was subjected to reduction treatment to obtain a black graphene slurry (a Preparation method of graphene dispersion; publication number: CN103496691A; publication date: 2014.01.08). Chen Guohua et al adopted the method of ball milling after blending reduced graphene oxide and a mixed solvent (such as N-methyl-2-pyrrolidone and water in a volume ratio of 9:1) to prepare 2.5-10 mg/ml Graphene dispersion (a method for preparing a high-concentration small-diameter graphene dispersion; publication number: CN103407998A; publication date: 2013.11.27). Xu Yan and others prepared the oligolayer graphene suspension, and used ultra-high pressure or supercritical equipment to carry out nano-fine dispersion treatment on the graphene solution (a preparation method of graphene dispersion; publication number: CN103253656A; publication date: 2013.08 .twenty one). People such as Sun Jing adopt the solution exchange method to disperse graphene oxide in N,N-dimethylformamide, make the graphene dispersion liquid (a kind of graphene colloidal dispersion liquid) of concentration about 0.5mg/ml after reduction. Preparation method; publication number: CN102633256A; publication date: 2012.08.15). However, in the existing research on the dispersion of graphene, toxic organic solvents are commonly used, the preparation process is complicated, the concentration of the stable dispersed graphene aqueous solution is low, the sheet size is small, and the conductivity of graphene after surface modification is reduced. And other issues. Therefore, it is of great significance to explore a method for preparing a graphene aqueous solution with high concentration, good dispersion and stability.
发明内容Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种高品质石墨烯胶体分散液的制备方法。其特点是以水为分散体系,通过超声、表面活性剂和高温的协同作用使石墨烯达到较高的品质且石墨烯的稳定分散浓度较高,干燥为石墨烯粉末后重新溶解仍然可以达到同样的浓度和稳定性。The purpose of the present invention is exactly to provide a kind of preparation method of high-quality graphene colloidal dispersion liquid in order to overcome the defective that above-mentioned prior art exists. It is characterized by using water as the dispersion system. Through the synergistic effect of ultrasound, surfactant and high temperature, the graphene can reach a higher quality and the stable dispersion concentration of graphene is higher. After drying into graphene powder and redissolving, it can still reach the same level. concentration and stability.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
(1)按照水与氧化石墨的质量比为(400~1000)∶1的比例将氧化石墨加入水中,超声分散2~3小时,形成浓度为1~2.5mg/ml的单片层均匀分散的氧化石墨烯胶体;(1) According to the mass ratio of water to graphite oxide (400-1000): 1, add graphite oxide into water, ultrasonically disperse for 2-3 hours, and form a uniformly dispersed single-sheet layer with a concentration of 1-2.5mg/ml Graphene oxide colloid;
(2)将表面活性剂按照与氧化石墨烯胶体的质量比为1∶(50~100)的比例加入氧化石墨烯胶体中,采用磁力搅拌器搅拌混合均匀(转速100rmp~500rmp,10~30分钟)后超声分散1小时(工作频率≥40kHz),温度为40~50℃;(2) Add the surfactant into the graphene oxide colloid in a ratio of 1: (50-100) according to the mass ratio with the graphene oxide colloid, and stir and mix evenly with a magnetic stirrer (rotating speed 100rmp-500rmp, 10-30 minutes ) after ultrasonic dispersion for 1 hour (working frequency ≥ 40kHz), the temperature is 40-50°C;
其中,表面活性剂为十二烷基苯磺酸钠、十二烷基硫酸钠中的至少一种。Wherein, the surfactant is at least one of sodium dodecylbenzenesulfonate and sodium dodecylsulfate.
(3)加入与步骤(2)所得液体的体积比为1∶(10~1000)的还原剂,室温(20~25℃)反应1-3小时,直至pH上升至约11,将混合液置于80℃反应12小时,可得到具有稳定分散性的黑色还原氧化石墨烯胶体,其中石墨烯几乎全部(>90%)以单层的状态存在。该石墨烯胶体分散液静置1个月后仍可保持其分散性不变。(3) Add a reducing agent with a volume ratio of 1: (10-1000) to the liquid obtained in step (2), react at room temperature (20-25°C) for 1-3 hours until the pH rises to about 11, and place the mixed solution in After reacting at 80°C for 12 hours, a black reduced graphene oxide colloid with stable dispersion can be obtained, in which almost all (>90%) graphene exists in a single layer state. The graphene colloidal dispersion can still keep its dispersibility unchanged after standing for 1 month.
其中,还原剂为肼、水合肼、二甲肼、硼氢化钠、抗坏血酸、没食子酸中的至少一种。Wherein, the reducing agent is at least one of hydrazine, hydrazine hydrate, dimethylhydrazine, sodium borohydride, ascorbic acid, and gallic acid.
表面活性剂分子一端的疏水基团和石墨烯结合,另一端亲水基团和水相互作用,这样当石墨烯颗粒在相互碰撞时由于表面活性剂分子层的熵弹性和水化层的保护阻止了它们的聚集,产生空间位阻作用,从而提高了稳定性。另外,表面活性剂降低了溶剂的表面张力,可以促进石墨烯的剥离,因而可以有较高的分散浓度。The hydrophobic group at one end of the surfactant molecule combines with graphene, and the hydrophilic group at the other end interacts with water, so that when graphene particles collide with each other, the entropy elasticity of the surfactant molecular layer and the protection of the hydration layer prevent Prevent their aggregation, resulting in steric hindrance, thereby improving the stability. In addition, the surfactant reduces the surface tension of the solvent, which can promote the stripping of graphene, so it can have a higher dispersion concentration.
超声剥离法是一种常用的片层剥离、粉碎手段。超声波在氧化石墨悬浮液中疏密相间地辐射,使液体流动产生成千上万的微小气泡,这些气泡在超声波纵向传播形成的负压区形成、生长,而在正压区迅速闭合,这种闭合可形成瞬间高压和高温。连续不断产生的高压和高温就像一连串小“爆炸”不断地冲击氧化石墨,使各片层迅速剥落。氧化石墨烯的尺寸可以通过调节超声功率的大小及超声时间的长短进行控制。Ultrasonic peeling method is a commonly used means of sheet peeling and crushing. Ultrasonic waves radiate densely and alternately in the graphite oxide suspension, making the liquid flow generate thousands of tiny bubbles, which form and grow in the negative pressure zone formed by the longitudinal propagation of ultrasonic waves, and quickly close in the positive pressure zone. Closure can create momentary high pressure and high temperature. The continuously generated high pressure and high temperature are like a series of small "explosions" that continuously impact the graphite oxide, causing the layers to peel off rapidly. The size of graphene oxide can be controlled by adjusting the ultrasonic power and ultrasonic time.
本发明中超声的作用不仅在于剥离氧化石墨烯,而且还起到将表面活性剂充分分散在氧化石墨烯胶体中的作用。由于表面活性剂的用量高于临界胶束浓度,因此溶液中表面活性剂分子必然会形成胶团,进而整体上降低了其分散石墨烯的效率。超声波通过对胶团核心水的作用进而显著抑制了胶团的形成。加入水合肼进行还原反应时,进行中温阶段的预反应,有利于还原氧化石墨烯的分散。因为直接进行高温反应,随着温度升高布朗运动增加,导致石墨烯片絮凝速度增加。此外,温度升高会降低表面活性剂的活性,也不利于石墨烯的分散。The function of ultrasound in the present invention is not only to peel off the graphene oxide, but also to fully disperse the surfactant in the graphene oxide colloid. Since the amount of surfactant used is higher than the critical micelle concentration, the surfactant molecules in the solution will inevitably form micelles, thereby reducing the efficiency of dispersing graphene as a whole. Ultrasound significantly inhibited the formation of micelles through the effect on the core water of micelles. When adding hydrazine hydrate for the reduction reaction, the pre-reaction in the middle temperature stage is beneficial to the dispersion of the reduced graphene oxide. Because the high-temperature reaction is carried out directly, the Brownian motion increases as the temperature increases, resulting in an increase in the flocculation speed of graphene sheets. In addition, increasing temperature will reduce the activity of surfactants, which is also not conducive to the dispersion of graphene.
(4)将石墨烯胶体分散液置于80~100℃度干燥后,得到石墨烯粉末;按照水与石墨烯的质量比为(400~1000)∶1的比例将干燥的石墨烯粉末加入水中,超声分散10~30秒后,形成浓度为1~2.5mg/ml的单片层均匀分散的石墨烯胶体,其分散性同干燥前的石墨烯分散液;(4) After the graphene colloidal dispersion liquid is placed in 80~100 ℃ degree of drying, obtain graphene powder; According to the mass ratio of water and graphene is (400~1000): 1 ratio, dry graphene powder is added into water After ultrasonic dispersion for 10-30 seconds, a uniformly dispersed graphene colloid with a concentration of 1-2.5 mg/ml is formed, and its dispersibility is the same as that of the graphene dispersion before drying;
采用该方法制备的石墨烯分散液可用于石墨烯的大规模制备、储存和运输以及制备石墨烯复合材料等领域。The graphene dispersion prepared by the method can be used in the fields of large-scale preparation, storage and transportation of graphene, preparation of graphene composite materials and the like.
与现有技术相比,本发明具有如下优点:Compared with prior art, the present invention has following advantage:
1、本发明制备的石墨烯分散液具有浓度高、分散性好、能保持长期稳定性的优点,其中的石墨烯片层粒径大小分布均匀、剥离度好(几乎全部为单层);1, the graphene dispersion prepared by the present invention has the advantages of high concentration, good dispersibility, and ability to maintain long-term stability, wherein the graphene sheet particle size distribution is uniform, and the peeling degree is good (almost all are monolayers);
2、成本低,制备工艺简单,无环境污染,易于实现大规模的工业化生产。2. Low cost, simple preparation process, no environmental pollution, and easy realization of large-scale industrial production.
附图说明Description of drawings
图1为石墨烯在水中分散的原理示意图;Fig. 1 is the schematic diagram of the principle of graphene dispersion in water;
图2为实施例1中单层石墨烯的AFM图;Fig. 2 is the AFM figure of monolayer graphene in embodiment 1;
图3为实施例1中石墨烯的粒径尺寸分布图;Fig. 3 is the particle size distribution figure of graphene in embodiment 1;
图4为实施例1中氧化石墨烯(1)和石墨烯(2)的XPS图;Fig. 4 is the XPS figure of graphene oxide (1) and graphene (2) in embodiment 1;
图5为实施例1中石墨烯的Raman图。Fig. 5 is the Raman diagram of graphene in embodiment 1.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
配置2.0mg/ml的氧化石墨分散液,超声3小时制得氧化石墨烯胶体,石墨烯在水中分散的原理示意图如图1所示。加入1.0wt%的十二烷基苯磺酸钠,搅拌10分钟后使之完全溶解,50℃超声1小时;加入0.2vol%的水合肼,25℃静置1h后,pH上升至10.7。80℃加热12h,可制得黑色的石墨烯分散液。取200ml石墨烯分散液真空抽滤成膜,干燥后采用四探针测试其方块电阻。2.0mg/ml graphite oxide dispersion liquid was prepared, and graphene oxide colloid was obtained by ultrasonication for 3 hours. The schematic diagram of the principle of graphene dispersion in water is shown in Figure 1. Add 1.0wt% sodium dodecylbenzenesulfonate, stir for 10 minutes to dissolve it completely, and ultrasonicate at 50°C for 1 hour; add 0.2vol% hydrazine hydrate, and let it stand at 25°C for 1h, the pH rises to 10.7.80 ℃ heating for 12h, a black graphene dispersion can be prepared. Take 200ml of graphene dispersion to form a film by vacuum suction filtration, and use four probes to test its sheet resistance after drying.
如图2所示,石墨烯原子力显微镜(AFM)表征图,可以看出还原氧化石墨烯的剥离度较好,片层直径一般为200-500nm间;从衡量表面粗糙度的横向尺寸图中可以看出,还原后石墨烯几乎没有团聚,厚度一般为0.3-0.7nm间,主要为单层石墨烯。氧化还原过程对石墨烯的结构破坏小,仅表面形成少数孔洞。As shown in Figure 2, the graphene atomic force microscope (AFM) characterization diagram, it can be seen that the degree of exfoliation of reduced graphene oxide is better, and the sheet diameter is generally between 200-500nm; It can be seen that there is almost no agglomeration of graphene after reduction, the thickness is generally between 0.3-0.7nm, and it is mainly single-layer graphene. The oxidation-reduction process has little damage to the structure of graphene, and only a few holes are formed on the surface.
如图3所示为所得石墨烯分散液的动态光散射-粒径分布图,从图中可以看出,石墨烯的粒径分布均匀,主要为150-450nm,与AFM的分析数据相吻合,平均粒径为288.5nm,多分散系数为0.265,说明该粒径分析数据可靠度高。测试其Zeta电位为-38~-41.8mV,说明该分散液的稳定性好。As shown in Figure 3, it is the dynamic light scattering-particle size distribution diagram of the obtained graphene dispersion liquid, as can be seen from the figure, the particle size distribution of graphene is uniform, mainly 150-450nm, which is consistent with the analysis data of AFM, The average particle size is 288.5nm, and the polydispersity coefficient is 0.265, indicating that the particle size analysis data has high reliability. Its zeta potential was tested to be -38 ~ -41.8mV, indicating that the dispersion liquid has good stability.
如图4所示为氧化石墨烯及其还原后石墨烯的X射线光电子能谱(XPS)图,可以看出在氧化石墨烯中含有许多含氧官能团(-OH,286.5eV;-C=O,287.5eV;-COOH,289eV),但是还原后这些含氧官能团消失,说明该方法制备的石墨烯还原程度好,也解释了制得的石墨烯具有良好电导率的原因。As shown in Figure 4, it is the X-ray photoelectron spectrum (XPS) figure of graphene after graphene oxide and its reduction, it can be seen that many oxygen-containing functional groups (-OH, 286.5eV;-C=O are contained in graphene oxide. , 287.5eV; -COOH, 289eV), but these oxygen-containing functional groups disappear after reduction, indicating that the reduction degree of graphene prepared by this method is good, and it also explains the reason why the prepared graphene has good conductivity.
如图5所示为石墨烯的拉曼光谱(Raman)分析图,在1576cm-1附近由于E2g振动产生的G峰,在1340cm-1处由缺陷引起的D峰;其中,G峰明显高于D峰(D/G=0.72)说明石墨烯的结构破坏小,反映了该方法中还原过程对石墨烯片层结构的恢复性好,缺陷少。As shown in Figure 5, it is the Raman spectrum (Raman) analysis diagram of graphene, the G peak due to E2g vibration is produced near 1576cm -1 , and the D peak is caused by defects at 1340cm -1 ; wherein, the G peak is obviously higher than The D peak (D/G=0.72) shows that the structural damage of graphene is small, which reflects that the reduction process in this method has good recoverability to the graphene sheet structure and few defects.
实施例2Example 2
配置1.0mg/ml的氧化石墨分散液,超声3小时制得氧化石墨烯胶体。加入1.0wt%的十二烷基苯磺酸钠,搅拌10分钟后使之完全溶解,40℃超声1小时;加入0.2vol%的水合肼,25℃静置2h后,pH上升至11。80℃加热12h,可制得黑色的石墨烯分散液。取200ml石墨烯分散液真空抽滤成膜,干燥后采用四探针测试其方块电阻。Prepare a 1.0 mg/ml graphite oxide dispersion, and ultrasonicate for 3 hours to prepare graphene oxide colloids. Add 1.0wt% sodium dodecylbenzene sulfonate, stir for 10 minutes to dissolve it completely, ultrasonicate at 40°C for 1 hour; add 0.2vol% hydrazine hydrate, let it stand at 25°C for 2h, the pH rises to 11.80 ℃ heating for 12h, a black graphene dispersion can be obtained. Take 200ml of graphene dispersion to form a film by vacuum suction filtration, and use four probes to test its sheet resistance after drying.
实施例3Example 3
配置2.0mg/ml的氧化石墨分散液,超声3小时制得氧化石墨烯胶体。加入2.0wt%的十二烷基硫酸钠,搅拌30分钟后使之完全溶解,50℃超声1小时;加入0.1vol%的水合肼,25℃静置2h后,pH上升至11。80℃加热12h,可制得黑色的石墨烯分散液。取200ml石墨烯分散液真空抽滤成膜,干燥后采用四探针测试其方块电阻。Prepare a 2.0 mg/ml graphite oxide dispersion, and ultrasonicate for 3 hours to prepare graphene oxide colloids. Add 2.0wt% sodium lauryl sulfate, stir for 30 minutes to dissolve it completely, ultrasonicate at 50°C for 1 hour; add 0.1vol% hydrazine hydrate, let it stand at 25°C for 2 hours, the pH rises to 11. Heat at 80°C 12h, a black graphene dispersion can be obtained. Take 200ml of graphene dispersion to form a film by vacuum suction filtration, and use four probes to test its sheet resistance after drying.
实施例4Example 4
配置2.0mg/ml的氧化石墨分散液,超声3小时制得氧化石墨烯胶体。加入0.5wt%的十二烷基硫酸钠,搅拌30分钟后使之完全溶解,50℃超声1小时;加入0.2vol%的水合肼,25℃静置1h后,pH上升至11。80℃加热12h,可制得黑色的石墨烯分散液。取200ml石墨烯分散液真空抽滤成膜,干燥后采用四探针测试其方块电阻。Prepare a 2.0 mg/ml graphite oxide dispersion, and ultrasonicate for 3 hours to prepare graphene oxide colloids. Add 0.5wt% sodium lauryl sulfate, stir for 30 minutes to dissolve it completely, ultrasonicate at 50°C for 1 hour; add 0.2vol% hydrazine hydrate, let it stand at 25°C for 1 hour, the pH rises to 11. Heat at 80°C 12h, a black graphene dispersion can be obtained. Take 200ml of graphene dispersion to form a film by vacuum suction filtration, and use four probes to test its sheet resistance after drying.
实施例1~实施例4制备得到的石墨烯分散液导电性如表1所示。The electrical conductivity of the graphene dispersion prepared in Examples 1 to 4 is shown in Table 1.
表1实施例1~4的导电性The electrical conductivity of table 1 embodiment 1~4
实施例5Example 5
配置2.5mg/ml的氧化石墨分散液,超声2小时制得氧化石墨烯胶体。加入1.5wt%的十二烷基硫酸钠,搅拌30分钟后使之完全溶解,50℃超声1小时;加入0.2vol%的水合肼,25℃静置1h后,pH上升至11。80℃加热12h,可制得黑色的石墨烯分散液。Prepare a 2.5 mg/ml graphite oxide dispersion, and ultrasonicate for 2 hours to prepare graphene oxide colloids. Add 1.5wt% sodium lauryl sulfate, stir for 30 minutes to dissolve it completely, ultrasonicate at 50°C for 1 hour; add 0.2vol% hydrazine hydrate, let it stand at 25°C for 1 hour, the pH rises to 11. Heat at 80°C 12h, a black graphene dispersion can be obtained.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The above descriptions of the embodiments are for those of ordinary skill in the art to understand and use the invention. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles described here to other embodiments without creative effort. Therefore, the present invention is not limited to the above-mentioned embodiments. Improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should fall within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410261400.8A CN104058392B (en) | 2014-06-12 | 2014-06-12 | A kind of preparation method of graphene colloid dispersion solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410261400.8A CN104058392B (en) | 2014-06-12 | 2014-06-12 | A kind of preparation method of graphene colloid dispersion solution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104058392A true CN104058392A (en) | 2014-09-24 |
CN104058392B CN104058392B (en) | 2016-06-29 |
Family
ID=51546373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410261400.8A Expired - Fee Related CN104058392B (en) | 2014-06-12 | 2014-06-12 | A kind of preparation method of graphene colloid dispersion solution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104058392B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104458849A (en) * | 2014-11-27 | 2015-03-25 | 西北师范大学 | Method for preparing glassy carbon electrode modified by noncovalent-functionalized graphene and ionic liquid compound |
CN105731444A (en) * | 2016-04-22 | 2016-07-06 | 武汉理工大学 | Preparation method of graphene easy to disperse |
CN106590078A (en) * | 2016-12-16 | 2017-04-26 | 深圳大学 | A kind of graphene modified nano heat insulation slurry and preparation method thereof |
CN106978009A (en) * | 2017-05-11 | 2017-07-25 | 台州瑞祥教育科技有限公司 | A kind of prepared Chinese ink of high gloss and preparation method thereof |
CN107032342A (en) * | 2017-04-28 | 2017-08-11 | 青岛德通纳米技术有限公司 | A kind of preparation method of the stable aqueous dispersion of graphene |
CN108455586A (en) * | 2018-02-27 | 2018-08-28 | 深圳名飞远科技有限公司 | A method of improving graphene dispersion performance |
CN108467027A (en) * | 2018-03-13 | 2018-08-31 | 镇江致达新材料科技有限公司 | A kind of method of the microwave radiation technology preparation with wearability CGN/HA composite materials |
CN108997867A (en) * | 2018-09-17 | 2018-12-14 | 深圳市心版图科技有限公司 | A kind of Environmental Protective Water-paint and preparation method thereof |
CN111341568A (en) * | 2020-03-17 | 2020-06-26 | 浙江浙能技术研究院有限公司 | Preparation method of graphene mixed film |
CN111411511A (en) * | 2019-01-05 | 2020-07-14 | 雷达 | Graphene functionalized high-performance cashmere product and preparation method thereof |
CN113336221A (en) * | 2021-07-22 | 2021-09-03 | 山东科技大学 | Preparation method of porous graphene dispersion liquid attached with oxygen-containing groups |
CN115536010A (en) * | 2021-12-17 | 2022-12-30 | 曲靖华金雨林科技有限责任公司 | Preparation method of graphene |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101613098A (en) * | 2009-06-12 | 2009-12-30 | 中国科学院宁波材料技术与工程研究所 | A kind of solution phase preparation method of graphene |
CN102502612A (en) * | 2011-11-21 | 2012-06-20 | 南京工业大学 | Method for preparing graphene through oxidation reduction |
CN103011135A (en) * | 2011-09-20 | 2013-04-03 | 安炬科技股份有限公司 | The preparation method of graphene |
-
2014
- 2014-06-12 CN CN201410261400.8A patent/CN104058392B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101613098A (en) * | 2009-06-12 | 2009-12-30 | 中国科学院宁波材料技术与工程研究所 | A kind of solution phase preparation method of graphene |
CN103011135A (en) * | 2011-09-20 | 2013-04-03 | 安炬科技股份有限公司 | The preparation method of graphene |
CN102502612A (en) * | 2011-11-21 | 2012-06-20 | 南京工业大学 | Method for preparing graphene through oxidation reduction |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104458849A (en) * | 2014-11-27 | 2015-03-25 | 西北师范大学 | Method for preparing glassy carbon electrode modified by noncovalent-functionalized graphene and ionic liquid compound |
CN105731444A (en) * | 2016-04-22 | 2016-07-06 | 武汉理工大学 | Preparation method of graphene easy to disperse |
CN106590078A (en) * | 2016-12-16 | 2017-04-26 | 深圳大学 | A kind of graphene modified nano heat insulation slurry and preparation method thereof |
WO2018108016A1 (en) * | 2016-12-16 | 2018-06-21 | 深圳大学 | Graphene modified nano heat-insulating slurry and preparation method therefor |
CN107032342A (en) * | 2017-04-28 | 2017-08-11 | 青岛德通纳米技术有限公司 | A kind of preparation method of the stable aqueous dispersion of graphene |
CN106978009A (en) * | 2017-05-11 | 2017-07-25 | 台州瑞祥教育科技有限公司 | A kind of prepared Chinese ink of high gloss and preparation method thereof |
CN108455586A (en) * | 2018-02-27 | 2018-08-28 | 深圳名飞远科技有限公司 | A method of improving graphene dispersion performance |
CN108467027A (en) * | 2018-03-13 | 2018-08-31 | 镇江致达新材料科技有限公司 | A kind of method of the microwave radiation technology preparation with wearability CGN/HA composite materials |
CN108467027B (en) * | 2018-03-13 | 2019-11-05 | 镇江致达新材料科技有限公司 | A kind of method that microwave-assisted preparation has wearability CGN/HA composite material |
CN108997867A (en) * | 2018-09-17 | 2018-12-14 | 深圳市心版图科技有限公司 | A kind of Environmental Protective Water-paint and preparation method thereof |
CN111411511A (en) * | 2019-01-05 | 2020-07-14 | 雷达 | Graphene functionalized high-performance cashmere product and preparation method thereof |
CN111341568A (en) * | 2020-03-17 | 2020-06-26 | 浙江浙能技术研究院有限公司 | Preparation method of graphene mixed film |
CN113336221A (en) * | 2021-07-22 | 2021-09-03 | 山东科技大学 | Preparation method of porous graphene dispersion liquid attached with oxygen-containing groups |
CN113336221B (en) * | 2021-07-22 | 2022-07-29 | 山东科技大学 | Preparation method of porous graphene dispersion liquid attached with oxygen-containing group |
CN115536010A (en) * | 2021-12-17 | 2022-12-30 | 曲靖华金雨林科技有限责任公司 | Preparation method of graphene |
Also Published As
Publication number | Publication date |
---|---|
CN104058392B (en) | 2016-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104058392B (en) | A kind of preparation method of graphene colloid dispersion solution | |
Gu et al. | Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene | |
Li et al. | Research progress of the liquid-phase exfoliation and stable dispersion mechanism and method of graphene | |
Paredes et al. | Impact of covalent functionalization on the aqueous processability, catalytic activity, and biocompatibility of chemically exfoliated MoS2 nanosheets | |
Choi et al. | Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes | |
He et al. | Processable aqueous dispersions of graphene stabilized by graphene quantum dots | |
Zhang et al. | Preparation of a stable graphene dispersion with high concentration by ultrasound | |
Wang et al. | Fabrication of boron nitride nanosheets by exfoliation | |
CN104495826B (en) | Single-layer graphene dispersion liquid and preparation method thereof | |
Gao et al. | Graphene production via supercritical fluids | |
Kabiri et al. | Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction | |
WO2017193532A1 (en) | Dispersing agent for two-dimensional nanomaterial, method for preparing two-dimensional nanomaterial by means of liquid-phase exfoliation, and application thereof | |
JP2008274502A (en) | Fine carbon fiber aggregate for redispersion and method for producing the same | |
CN103937016A (en) | Spraying method for preparing graphene/polymer emulsion composite thin film material | |
CN102614871A (en) | Method for preparing grapheme/silver nanoparticles composite material by using liquid phase method | |
CN103977748A (en) | Magnetic aerogel and preparation method thereof | |
CN114068927B (en) | Graphene carbon nanotube composite material and preparation method thereof | |
CN101314469A (en) | Preparation of water-soluble carbon nanotubes and loading method of nano-noble metal particles | |
Wang et al. | Enhanced exfoliation effect of solid auxiliary agent on the synthesis of biofunctionalized MoS2 using grindstone chemistry | |
CN104384524A (en) | Method for preparing flake graphite single/multiple load precious metal nano particles | |
CN106800293B (en) | A kind of partially hydroxylated graphene and preparation method thereof | |
CN107365259B (en) | Molybdenum disulfide dispersant, molybdenum disulfide dispersion, preparation method and application thereof | |
CN105645388A (en) | Graphene dispersant and applications thereof | |
CN100545218C (en) | Method of coating iron oxide with silica | |
CN107364839B (en) | Boron nitride dispersing agent, method for stripping two-dimensional boron nitride nanosheet in liquid phase and application of boron nitride dispersing agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160629 Termination date: 20190612 |
|
CF01 | Termination of patent right due to non-payment of annual fee |