[go: up one dir, main page]

CN104053223A - A Time Synchronization Method for Low-power Wireless Sensor Networks - Google Patents

A Time Synchronization Method for Low-power Wireless Sensor Networks Download PDF

Info

Publication number
CN104053223A
CN104053223A CN201310090466.0A CN201310090466A CN104053223A CN 104053223 A CN104053223 A CN 104053223A CN 201310090466 A CN201310090466 A CN 201310090466A CN 104053223 A CN104053223 A CN 104053223A
Authority
CN
China
Prior art keywords
synchronization
time
node
nodes
packet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310090466.0A
Other languages
Chinese (zh)
Inventor
易卫东
徐顶鑫
陈永锐
王彬华
孙昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chinese Academy of Sciences
Original Assignee
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chinese Academy of Sciences filed Critical University of Chinese Academy of Sciences
Priority to CN201310090466.0A priority Critical patent/CN104053223A/en
Publication of CN104053223A publication Critical patent/CN104053223A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

The invention provides a low-power wireless sensor network time synchronization method. According to the method, synchronization information is carried by a control packet, a timestamp is printed at the tail of the periodic control packet, and a receiver extracts timestamp information and estimates synchronization delay online after receiving a synchronization packet. The receiver calibrates the time thereof according to the principle of time calibration, and realizes a synchronization mechanism for whole-network synchronization through local synchronization. During synchronization, synchronization is performed only between father and son nodes. By adopting the method of the invention, the number of nodes sending time messages in a network can be greatly reduced, the network traffic in the process of synchronization can be reduced, and the goal of reducing the power consumption of wireless sensor network time synchronization can be achieved under the premise of ensuring the time synchronization accuracy.

Description

一种低功耗无线传感器网络时间同步方法A Time Synchronization Method for Low-power Wireless Sensor Networks

技术领域 technical field

本发明属于无线传感网技术领域,涉及无线传感网中同步消息的发送方式,具体是一种低能耗、高精度无线传感网时间同步方法。  The invention belongs to the technical field of wireless sensor networks, and relates to a transmission method of synchronous messages in the wireless sensor network, in particular to a time synchronization method of the wireless sensor network with low energy consumption and high precision. the

背景技术 Background technique

无线传感网(WSN)是由部署在监测区域内大量的微型传感器节点组成,通过无线通信方式形成的一个多跳自组织网络。它以低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革,在环境感知与监测,无线定位与跟踪,医疗监护,智能家居等领域都展现出广泛的应用前景。  Wireless sensor network (WSN) is composed of a large number of micro sensor nodes deployed in the monitoring area, and forms a multi-hop self-organizing network through wireless communication. It has brought about a revolution in information perception with the characteristics of low power consumption, low cost, distribution and self-organization. It has been widely used in environmental perception and monitoring, wireless positioning and tracking, medical monitoring, smart home and other fields. prospect. the

时间同步是WSN的一项关键支撑技术。WSN是一种分布式系统,各个节点的本地时钟相互独立,这就导致各个节点的系统时间互不相同。许多WSN应用需要各节点协同工作,单个节点采集的原始数据需要和其他节点数据统一处理才能获取有用信息。例如在目标跟踪应用场景中需要对相关节点采集的数据进行卡尔曼滤波才能提取出有用的位置信息。诸如此类的数据处理与数据融合都需要相关节点保持时间同步。另一方面,时间同步在WSN通信协议的设计方面也有重要的应用。MAC(Medium Access Protocol)协议的设计目标主要包括节省能耗和防止冲突碰撞,TDMA在这方面具有先天的优势,而时间同步是TDMA的基础。  Time synchronization is a key supporting technology of WSN. WSN is a distributed system, and the local clocks of each node are independent of each other, which causes the system time of each node to be different from each other. Many WSN applications require all nodes to work together, and the raw data collected by a single node needs to be processed in a unified manner with other node data to obtain useful information. For example, in the target tracking application scenario, it is necessary to perform Kalman filtering on the data collected by relevant nodes to extract useful location information. Such data processing and data fusion require relevant nodes to maintain time synchronization. On the other hand, time synchronization also has important applications in the design of WSN communication protocols. The design goals of the MAC (Medium Access Protocol) protocol mainly include saving energy and preventing collisions. TDMA has inherent advantages in this regard, and time synchronization is the basis of TDMA. the

传感器节点的系统时间由计时器产生,计时信号一般由晶振(晶体振荡器)提供。由于晶振的制造工艺有差别,运行环境有变化,计时频率很难保持一致,导致各个节点的时间很容易失去同步。因此需要设计专门的同步算法来保证网络中节点的时间同步。  The system time of the sensor node is generated by a timer, and the timing signal is generally provided by a crystal oscillator (crystal oscillator). Due to differences in the manufacturing process of crystal oscillators and changes in the operating environment, it is difficult to keep the timing frequency consistent, resulting in the time of each node being easily out of sync. Therefore, it is necessary to design a special synchronization algorithm to ensure the time synchronization of nodes in the network. the

传统的时间同步方法主要有NTP(Network Time Protocol)和GPS(Global Positioning System)。NTP是Internet上的标准时间同步协议,主要为互联网中所有主机提供标准UTC(Coordinated Universal Time)时间。GPS用于进行全球高精度导航和定位。NTP和GPS都需要特定的设备或专用节点才能实现同步。由于传感器节点硬件资源有限,节能要求比较高等特点使得这两种传统时间同步方法都无法直接在WSN中使用。  Traditional time synchronization methods mainly include NTP (Network Time Protocol) and GPS (Global Positioning System). NTP is a standard time synchronization protocol on the Internet, which mainly provides standard UTC (Coordinated Universal Time) time for all hosts on the Internet. GPS is used for global high-precision navigation and positioning. Both NTP and GPS require specific equipment or dedicated nodes to achieve synchronization. Due to the limited hardware resources of sensor nodes and relatively high energy saving requirements, these two traditional time synchronization methods cannot be directly used in WSN. the

目前针对WSN的时间同步方法主要分为以下三种:(1)基于接收者-接收者的时间同步方法。例如RBS(Reference Broadcast Synchronization)。(2)基于发送者-接收者的单向时间同步方法。典型代表为DMTS(Delay Measurement Time Synchronization)和FTSP(Flooding Time Synchronization Protocol)。(3)基于发送者-接收者的双向时间同步方法。例如TPSN(Timing-sync Protocol for Sensor Networks)和LTS(Lightweight Tree-based Synchronization)。下面以采用LTS算法对无线传感网进行时间同步为例对此进行详细介绍:  Currently, time synchronization methods for WSN are mainly divided into the following three types: (1) Receiver-receiver-based time synchronization methods. For example RBS (Reference Broadcast Synchronization). (2) One-way time synchronization method based on sender-receiver. Typical representatives are DMTS (Delay Measurement Time Synchronization) and FTSP (Flooding Time Synchronization Protocol). (3) Two-way time synchronization method based on sender-receiver. For example, TPSN (Timing-sync Protocol for Sensor Networks) and LTS (Lightweight Tree-based Synchronization). The following uses the LTS algorithm to synchronize the time of the wireless sensor network as an example to introduce this in detail:

LTS轻量级生成树同步算法的核心任务是降低同步算法的复杂度,它由加州大学伯克利分校Jana van Greunen等提出的。在有些传感器网络应用中对时间同步的精度要求并不是很高,同时需要时间同步的节点可能不是整个网络的所有节点,这样就可以使用简单的轻量的时间同步机制,通过减少时间同步频率和参与同步的节点数目,在满足同步精度要求的同时降低节点的通信和计算开销,减少网络的能量消耗。在分析单跳节点对之间基于发送-接收方式的时间同步机制基础上提出了集中式和分布式两种LTS多跳时间同步算法。  The core task of the LTS lightweight spanning tree synchronization algorithm is to reduce the complexity of the synchronization algorithm, which was proposed by Jana van Greunen at the University of California, Berkeley. In some sensor network applications, the accuracy requirements for time synchronization are not very high, and the nodes that need time synchronization may not be all nodes in the entire network, so a simple lightweight time synchronization mechanism can be used to reduce the frequency of time synchronization and The number of nodes participating in the synchronization can reduce the communication and computing overhead of the nodes while meeting the synchronization accuracy requirements, and reduce the energy consumption of the network. Two LTS multi-hop time synchronization algorithms, centralized and distributed, are proposed based on the analysis of the time synchronization mechanism based on send-receive between single-hop node pairs. the

集中式多跳同步算法是单跳同步的简单线性扩展,其基本思想是构造低深度的生成树,然后以树根为参考节点,依次向叶节点进行逐级同步,最终达到全网同步。根节点通过同步其邻居子节点启动时间同步过程;接着每个子节点再与它的子节点同步;如此反复,直到树的叶子节点都被同步。在需要时该根节点还要发起再同步。集中式多跳同步算法中,根节点初始化同步,所以节点采用相同频率进行重同步,算法的运行时间正比于生成树的深度,优化的生成树具有最小的深度,沿着所有树枝并行进行同步操作。由于生成树的深度影响整个 网络的同步时间以及叶子节点的精度误差,需要把树的深度传回到根节点以让根节点在决定再同步时利用这个信息。多跳同步的通信复杂度和精度与生成树的构造方法以及树的深度相关,重同步频率与时钟漂移以及单跳同步精度相关。  The centralized multi-hop synchronization algorithm is a simple linear extension of single-hop synchronization. Its basic idea is to construct a low-depth spanning tree, and then use the tree root as a reference node to perform step-by-step synchronization to leaf nodes, and finally achieve network-wide synchronization. The root node initiates the time synchronization process by synchronizing its neighbor child nodes; each child node then synchronizes with its child nodes; and so on, until the leaf nodes of the tree are all synchronized. The root node also initiates resynchronization when needed. In the centralized multi-hop synchronization algorithm, the root node initializes synchronization, so the nodes resynchronize at the same frequency. The running time of the algorithm is proportional to the depth of the spanning tree. The optimized spanning tree has the minimum depth, and the synchronization operation is performed in parallel along all branches . Since the depth of the spanning tree affects the synchronization time of the entire network and the accuracy error of the leaf nodes, it is necessary to transmit the depth of the tree back to the root node so that the root node can use this information when deciding to resynchronize. The communication complexity and precision of multi-hop synchronization are related to the construction method of the spanning tree and the depth of the tree, and the resynchronization frequency is related to the clock drift and single-hop synchronization precision. the

在分布式同步算法中,每个节点决定它自己的同步时间,该算法没有使用生成树。当节点i决定它需要重同步时(由同步精度要求、与时钟源节点的跳数距离和时钟漂移决定),就发送同步请求到最近的参照节点。然后,沿着从时钟源节点到节点i的路径上的所有节点必须在i节点同步之前同步。这种机制的优点在于一些节点可能很少有事件转发,因此很少需要同步。由于节点有机会决定它自己的同步,这就节约了不必要的同步开销。同时,通过融合同步请求,降低了相同路径上请求的数目,节约了资源。  In the distributed synchronization algorithm, each node determines its own synchronization time, and the algorithm does not use spanning tree. When node i decides that it needs to resynchronize (determined by the synchronization accuracy requirement, the hop distance from the clock source node and the clock drift), it sends a synchronization request to the nearest reference node. Then, all nodes along the path from the clock source node to node i must be synchronized before i-node is synchronized. The advantage of this mechanism is that some nodes may have very little event forwarding and thus rarely need to synchronize. This saves unnecessary synchronization overhead since a node has the opportunity to determine its own synchronization. At the same time, by merging synchronous requests, the number of requests on the same path is reduced and resources are saved. the

在LTS算法中,网络中的节点避免了与多个上层节点同步,而只与其直接父节点同步,减少了消息交换数目和同步时间。该算法目的在于最小化复杂度以此降低能耗,精度一般。算法的运行时间与树的深度成比例,因此具有最小深度的生成树时,收敛时间最短,但构造小的生成树也需要一定计算和通信开销。  In the LTS algorithm, nodes in the network avoid synchronizing with multiple upper nodes, but only synchronize with their direct parent nodes, which reduces the number of message exchanges and synchronization time. The purpose of this algorithm is to minimize the complexity to reduce energy consumption, and the accuracy is average. The running time of the algorithm is proportional to the depth of the tree, so the convergence time is the shortest when the spanning tree has the minimum depth, but the construction of a small spanning tree also requires certain calculation and communication overhead. the

发明内容 Contents of the invention

本发明要解决的技术问题是,在不牺牲同步精度的前提下,针对数据采集场景,提供一种低能耗的无线传感网时间同步方法,能有效降低时间同步的开销,达到减小时间同步能耗的目的。  The technical problem to be solved by the present invention is to provide a low-energy wireless sensor network time synchronization method for data collection scenarios without sacrificing synchronization accuracy, which can effectively reduce the cost of time synchronization and reduce time synchronization. purpose of energy consumption. the

为解决上述技术问题,本发明是这样实现的:  For solving the problems of the technologies described above, the present invention is achieved like this:

A、周期性同步信息发送,利用BEACON包(控制包)携带同步信息,将时间戳打在周期性的BEACON包包尾,用于节点间进行时间同步。BEACON包结构如图1所示。  A. To send periodic synchronization information, use the BEACON packet (control packet) to carry the synchronization information, and put the time stamp at the end of the periodic BEACON packet for time synchronization between nodes. The BEACON packet structure is shown in Figure 1. the

B、当接收者接收到BEACON包后,可以根据时间戳信息校准自己时间。时间戳包括TAR和count信息,表明发送节点当前系统时间。  B. When the receiver receives the BEACON packet, it can calibrate its own time according to the timestamp information. The timestamp includes TAR and count information, indicating the current system time of the sending node. the

假设节点1和2要实现时间同步,节点1为时间基准节点(父节点),节点2为待同步节点(子节点)。校准原理如下:  Assuming that nodes 1 and 2 need to implement time synchronization, node 1 is a time reference node (parent node), and node 2 is a node to be synchronized (child node). The calibration principle is as follows:

TAR2=TAR1+ΔT                (1)  TAR 2 =TAR 1 +ΔT (1)

TACCR12=TAR2+(INTERVAL-TAR2%INTERVAL)           (2)  TACCR1 2 = TAR 2 + (INTERVAL - TAR 2 % INTERVAL) (2)

countcount 22 == countcount 11 ++ (( TARTAR 22 INTERVALINTERVAL -- TARTAR 11 INTERVALINTERVAL )) -- -- -- (( 33 ))

TAR1和count1都可以直接从同步包中提取出来,INTERVAL是常量,因此只有一个未知量ΔT。  Both TAR 1 and count 1 can be directly extracted from the synchronization packet, and INTERVAL is constant, so there is only one unknown quantity ΔT.

C、在线估计无线传感网中节点间的同步包时延ΔT,可使用3种估计方法:  C. Online estimation of the synchronization packet delay ΔT between nodes in the wireless sensor network, three estimation methods can be used:

1、定值校正法。  1. Fixed value correction method. the

2、跟踪校正法。  2. Tracking correction method. the

3、小区间均值校正法。  3. Inter-cell mean correction method. the

D、以局部同步实现全网同步的同步机制。所述步骤包括:  D. A synchronization mechanism that realizes the synchronization of the whole network with local synchronization. The steps include:

在数据采集树中,所有的数据交换都是在父节点-子节点对中进行,每一个节点都只与其父节点同步,通过树形拓扑实现逐级的全网同步。  In the data acquisition tree, all data exchange is carried out in the parent node-child node pair, each node is only synchronized with its parent node, and the whole network synchronization is realized step by step through the tree topology. the

1、网络在初始化时会建立一个以SINK节点为根节点的数据采集树。  1. When the network is initialized, a data collection tree with the SINK node as the root node will be established. the

2、SINK节点周期性地发送包含时间戳的BEACON包。3、子结点在收到BEACON包后解析出时间戳,并按照公式(1-3)校准自己的时钟。  2. SINK nodes periodically send BEACON packets containing timestamps. 3. After receiving the BEACON packet, the child node parses out the time stamp, and calibrates its own clock according to the formula (1-3). the

4、每个节点在完成同步(亦即入网)后也会按照SINK节点的方式广播BEACON包,以方便新节点的加入。  4. After each node completes synchronization (that is, network access), it will also broadcast BEACON packets in the way of SINK nodes to facilitate the addition of new nodes. the

5、新节点加入时会首先侦听一段时间,收集到邻居节点的BEACON后会选取一个父节点,并与之同步,从而完成入网。  5. When a new node joins, it will first listen for a period of time. After collecting the BEACON of the neighbor node, it will select a parent node and synchronize with it to complete the network access. the

6、当拓扑发生变化时,掉网的节点会首先侦听一段时间,重新选择父节点,并完成同步入网。  6. When the topology changes, the disconnected node will first listen for a period of time, reselect the parent node, and complete the synchronous access to the network. the

从上述方法可以看出,本发明核心思想是:将时间戳打在周期性的控制包包尾,通过动态估计父子节点的时间同步时延,并利用估计的同步时延对节点时间进行校正,从而实现父子节点间的同步,达到提高无线传感器网络节时间同步精度的目的并且降低网络功耗。  As can be seen from the above method, the core idea of the present invention is: put the time stamp at the end of the periodic control packet, dynamically estimate the time synchronization delay of the parent and child nodes, and use the estimated synchronization delay to correct the node time, In this way, the synchronization between the parent and child nodes is realized, and the purpose of improving the time synchronization accuracy of the wireless sensor network nodes is achieved and the network power consumption is reduced. the

本发明具有以下优点:  The present invention has the following advantages:

1、利用周期性控制包携带同步信息,通过将同步信息完全嵌入上层协议栈产生的控制包中,并将时间戳打在周期性的控制包包尾,同步包只需在MAC层的控制包包尾添加9个字节,就能统一实现同步、路由和网络维护等功能。。这样,时间同步将不会带来任何额外的数据包开销,而只是将已有的包长度增加几个字节,可以有效的节省用于时间同步的能耗。  1. Use periodic control packets to carry synchronization information. By completely embedding the synchronization information into the control packets generated by the upper layer protocol stack, and putting the timestamp at the end of the periodic control packets, the synchronization packets only need to be in the control packets of the MAC layer. By adding 9 bytes to the end of the packet, functions such as synchronization, routing, and network maintenance can be realized uniformly. . In this way, time synchronization will not bring any additional data packet overhead, but only increase the existing packet length by several bytes, which can effectively save energy consumption for time synchronization. the

2、通过分析同步时延的误差分布特性以及时域变化特性,结合时间同步校准原理,提出3种同步时延校正方法:定值校正法、跟踪校正法和小区间均值校正法。3种同步时延校正方法的同步误差的均值及方差都有一定程度的改善,可以达到微秒级(<100微秒)的同步精度,其同步精度与经典算法TPSN和RBS相当。  2. By analyzing the error distribution characteristics and time-domain variation characteristics of synchronization delay, combined with the principle of time synchronization calibration, three synchronization delay correction methods are proposed: fixed value correction method, tracking correction method and inter-cell average correction method. The mean value and variance of the synchronization error of the three synchronization delay correction methods have been improved to a certain extent, and the synchronization accuracy of the microsecond level (<100 microseconds) can be achieved, and the synchronization accuracy is equivalent to the classic algorithm TPSN and RBS. the

3、针对数据应用场景提出数据采集树,所有的数据交换都是在父节点-子节点对中进行,每一个节点都只与其父节点同步。利用树形拓扑,利用局部的父子节点同步可以实现全网节点的同步,大幅度减少了网络中同步包的发送个数,在保证时间同步精度的前提下,有效的达到可降低网络中节点能耗的目的。  3. A data acquisition tree is proposed for data application scenarios. All data exchanges are performed in parent node-child node pairs, and each node is only synchronized with its parent node. Using tree topology and local parent-child node synchronization can realize the synchronization of nodes in the entire network, which greatly reduces the number of synchronization packets sent in the network. On the premise of ensuring the accuracy of time synchronization, it can effectively reduce the energy of nodes in the network consumption purpose. the

附图说明 Description of drawings

图1:控制包的格式说明图。  Figure 1: Format description of the control packet. the

图2:说明同步时延与包长呈线性相关性的示意图。  Figure 2: Schematic illustrating the linear dependence of synchronization delay on packet length. the

图3:采用定值校正法的时间同步误差分布示意图。  Figure 3: Schematic diagram of the time synchronization error distribution using the fixed value correction method. the

图4:采用定值校正法的时间同步误差的时序示意图。  Figure 4: Schematic diagram of the timing of the time synchronization error using the fixed value correction method. the

图5:采用跟踪校正法的时间同步误差分布示意图。  Figure 5: Schematic diagram of time synchronization error distribution using tracking correction method. the

图6:采用跟踪校正法的时间同步误差的时序示意图。  Figure 6: Schematic diagram of the timing of time synchronization errors using the tracking correction method. the

图7:两个节点进行时间同步的过程示意图。  Figure 7: Schematic diagram of the process of time synchronization between two nodes. the

图8:小区间均值校正法的基本原理示意图。  Figure 8: Schematic diagram of the basic principle of inter-cell mean correction method. the

图9:采用小区间均值校正法的时间同步误差分布示意图。  Figure 9: Schematic diagram of time synchronization error distribution using inter-cell mean correction method. the

图10:采用小区间均值校正法的时间同步误差时序示意图。  Figure 10: Schematic diagram of the time series of time synchronization errors using the inter-cell mean correction method. the

具体实施方式 Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明的实施方式作进一步详细的说明。  In order to make the object, technical solution and advantages of the present invention clearer, the implementation of the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings. the

本发明核心思想是:将时间戳打在周期性的控制包包尾,通过动态估计父子节点的时间同步时延,并利用估计的同步时延对节点时间进行校正,从而实现父子节点间的同步,达到提高无线传感器网络节时间同步精度的目的。  The core idea of the present invention is: put the time stamp at the end of the periodic control packet, dynamically estimate the time synchronization delay of the parent and child nodes, and use the estimated synchronization delay to correct the node time, thereby realizing the synchronization between the parent and child nodes , to achieve the purpose of improving the time synchronization accuracy of wireless sensor network nodes. the

下面首先介绍本发明的实现方法,可选一个包括8MHz MSP430微处理器,10KB RAM 寄存器,48KB闪砾寄存器,250kbps射频收发器的传感网硬件节点,节点时间由外部时钟源(晶振)产生,由三个(寄存器)变量TAR、TACCR1和count唯一确定。  First introduce the realization method of the present invention below, optional one comprises 8MHz MSP430 microprocessor, 10KB RAM register, 48KB flash gravel register, the sensor network hardware node of 250kbps radio frequency transceiver, node time is produced by external clock source (crystal oscillator), It is uniquely determined by three (register) variables TAR, TACCR1 and count. the

1、TAR是一个16位的硬件寄存器,根据外部时钟源计数,能够得到以tick(1tick=2-15秒)为单位的时间,计时精度达到微秒级。  1. TAR is a 16-bit hardware register. Counting according to the external clock source, the time in tick (1tick= 2-15 seconds) can be obtained, and the timing accuracy reaches the microsecond level.

2、TACCR1是捕获寄存器,当TAR=TACCR1时能产生TIMER中断,通过将TACCR1的递增步长设定为固定值INTERVAL可以对TIMER中断计数,实现更大范围计时。  2. TACCR1 is a capture register. When TAR=TACCR1, a TIMER interrupt can be generated. By setting the increment step of TACCR1 to a fixed value INTERVAL, the TIMER interrupt can be counted to achieve a wider range of timing. the

3、count是一个32位的软件计数器,记录TIMER中断次数,从而得到毫秒级计时。  3. count is a 32-bit software counter that records the number of TIMER interrupts to obtain millisecond-level timing. the

图1为低功耗时间同步方法的时间同步包结构,所谓同步包,即是在包尾打上时间戳的BEACON包。TYPE为标志位,表明是否需要同步;SenderAddr为发送者地址,接收者据此判断是否为其父节点,从而决定是否需要与其同步;TAR和count为时间戳,表明发送节点当前系统时间。由于节点时间由TAR、TACCR1和count唯一确定,所以如果能保证两个节点的这三对参数一致,即能实现时间同步。  Figure 1 shows the time synchronization packet structure of the low-power time synchronization method. The so-called synchronization packet is a BEACON packet with a time stamp at the end of the packet. TYPE is a flag, indicating whether synchronization is required; SenderAddr is the address of the sender, based on which the receiver judges whether it is its parent node, and thus decides whether to synchronize with it; TAR and count are timestamps, indicating the current system time of the sending node. Since the node time is uniquely determined by TAR, TACCR1 and count, if the three pairs of parameters of the two nodes can be guaranteed to be consistent, time synchronization can be achieved. the

假设节点1和2节点要实现时间同步,节点1为时间基准节点(父节点),节点2为待同步节点(子节点)。校准原理如下:  It is assumed that nodes 1 and 2 need to realize time synchronization, node 1 is a time reference node (parent node), and node 2 is a node to be synchronized (child node). The calibration principle is as follows:

TAR2=TAR1+ΔT                  (1)  TAR 2 =TAR 1 +ΔT (1)

TACCR12=TAR2+(INTERVAL-TAR2%INTERVAL)            (2)  TACCR1 2 = TAR 2 + (INTERVAL - TAR 2 % INTERVAL) (2)

countcount 22 == countcount 11 ++ (( TARTAR 22 INTERVALINTERVAL -- TARTAR 11 INTERVALINTERVAL )) -- -- -- (( 33 ))

TAR1和count1都可以直接从同步包中提取出来,INTERVAL是常量,因此只有一个未知量ΔT,即同步包的时延,对ΔT估计的精度直接影响同步精度。  Both TAR 1 and count 1 can be directly extracted from the synchronization packet. INTERVAL is a constant, so there is only one unknown quantity ΔT, which is the time delay of the synchronization packet. The accuracy of ΔT estimation directly affects the synchronization accuracy.

本发明将同步包的收发置于软件所能控制的最底层——物理层的驱动程序中,利用控制包携带时间戳以及周期性重复发送同步包机制,实现了引入的同步包时延主要包括传输时延,而它是与包长直接相关的。如图2所示,图2表明同步时延ΔT与包长呈线性相关性,经过线性拟合可得如下经验公式:  The present invention puts the sending and receiving of the synchronization packet in the driver program of the physical layer, which is the lowest layer that can be controlled by software, and uses the control packet to carry the time stamp and the mechanism of periodically repeating the transmission of the synchronization packet to realize that the time delay of the synchronization packet introduced mainly includes Transmission delay, which is directly related to packet length. As shown in Figure 2, Figure 2 shows that the synchronization delay ΔT is linearly correlated with the packet length, and the following empirical formula can be obtained through linear fitting:

ΔT(tick)=68.7+1.6*L(byte)                   (4)  ΔT(tick)=68.7+1.6*L(byte) (4)

根据以上公式,给定包长L可以得到ΔT,然后根据公式(1-3)可以进行时间校准。在此基础上,本发明提出了3种时间校正方法。  According to the above formula, ΔT can be obtained for a given packet length L, and then time calibration can be performed according to formula (1-3). On this basis, the present invention proposes three time correction methods. the

1、定值校正法  1. Fixed value correction method

定值校正法的校准公式如公式(5)所示:  The calibration formula of the fixed value correction method is shown in formula (5):

t2=t1+ΔT                        (4)  t 2 =t 1 +ΔT (4)

其中,t1是参考节点的时间;ΔT是同步时延校正参数,在该方法中,ΔT根据公式(4)求得;t2是校正之后的时间。  Among them, t 1 is the time of the reference node; ΔT is the synchronization delay correction parameter, in this method, ΔT is obtained according to formula (4); t 2 is the time after correction.

本发明的具体做法是:子节点收到父节点发送的控制包,解析控制包,提取出TAR1信息, 然后根据包长L和公式(4)估计ΔT,并通公式(5)计算自己当前的时间,实现父子节点间的同步。  The specific method of the present invention is: the child node receives the control packet sent by the parent node, analyzes the control packet, extracts the TAR 1 information, then estimates ΔT according to the packet length L and formula (4), and calculates its current time to achieve synchronization between parent and child nodes.

图3所示为定值校正法的时间同步误差分布示意图,其数据的概率统计结果见表1,可见其同步误差均值为0.968tick,即29.54微秒,均方差为1.2054tick,即36.79微秒。图4为其同步误差的时序示意图,  Figure 3 is a schematic diagram of the time synchronization error distribution of the fixed-value correction method. The probability and statistical results of the data are shown in Table 1. It can be seen that the average value of the synchronization error is 0.968 ticks, or 29.54 microseconds, and the mean square error is 1.2054 ticks, or 36.79 microseconds . Figure 4 is a timing diagram of its synchronization error,

表1三种同步校正方法的同步误差概率统计  Table 1 Synchronization error probability statistics of three synchronization correction methods

2、跟踪校正法  2. Tracking correction method

如图4所示,图4表明同步误差在短时间小区间内同步误差较为稳定,而在长时间大区间内同步误差呈周期性变化。根据这一特性,我们进一步提出了跟踪校正法来进行节点间的时间同步。  As shown in Figure 4, Figure 4 shows that the synchronization error is relatively stable in the short-term small interval, but the synchronization error changes periodically in the long-term large interval. According to this characteristic, we further propose a tracking correction method to synchronize time between nodes. the

跟踪校正法的校正公式如公式(6)所示:  The correction formula of the tracking correction method is shown in formula (6):

t2,n=t1,n+(t′2,n-1-t1,n-1)         (5)  t 2, n = t 1, n + (t′ 2, n-1 -t 1, n-1 ) (5)

其中,下标n,n-1表示采样时刻,下表1,2表示节点号。t1,n,t1,n-1分别表示参考节点在当前时刻和前一时刻的时间,t′2,n-1是同步节点在前一时刻校正之前的时间,t2,n是同步节点在校正之后的时间。  Among them, the subscripts n and n-1 indicate the sampling time, and the following tables 1 and 2 indicate the node numbers. t 1, n , t 1, n-1 represent the time of the reference node at the current moment and the previous moment respectively, t′ 2,n-1 is the time before the synchronous node is corrected at the previous moment, t 2, n is the synchronization The time the node was after the correction.

本发明的具体做法是:子节点记录下前一时刻未校正的时间t′2,n-1以及收到参考节点的时间t1,n-1,然后根据子节点根据当前收到控制包的信息解析出参考节点当前时间t1,n,根据公式(6)计算并估计出子节点自己当前的时间t2,n,实现父子节点间的时间同步。  The specific method of the present invention is: the sub-node records the uncorrected time t′ 2, n-1 at the previous moment and the time t 1, n-1 of receiving the reference node, and then according to the sub-node according to the currently received control packet The information is analyzed to obtain the current time t 1,n of the reference node, and the current time t 2,n of the child node itself is calculated and estimated according to the formula (6), so as to realize the time synchronization between the parent and child nodes.

采用跟踪校正法的同步误差分布如图5所示,其数据的概率统计结果见表1,其同步误差平均值为0.4114tick,即12.55微秒,均方差为0.7003tick,即21.37微秒。对误差的时序进行分析得到同步误差的时序图如图6所示。  The distribution of synchronization errors using the tracking correction method is shown in Figure 5, and the probability and statistical results of the data are shown in Table 1. The average value of the synchronization errors is 0.4114 ticks, or 12.55 microseconds, and the mean square error is 0.7003 ticks, or 21.37 microseconds. The timing diagram of the synchronization error obtained by analyzing the timing of the error is shown in FIG. 6 . the

与定值校正法相比,跟踪校正法的同步精度更高,性能更好。其同步误差的均值减少了57.5%,方差减少了41.9%。  Compared with the fixed value correction method, the tracking correction method has higher synchronization accuracy and better performance. Its synchronization error has a mean reduction of 57.5% and a variance reduction of 41.9%. the

3、小区间均值校正法  3. Inter-cell mean correction method

图6可以反映同步时延ΔT的时域变化趋势,即ΔT在短时间小区间内较为稳定,而在长时间大区间内呈周期性变化。于是,本发明采用该小区间内的平均值来估计当前ΔT。  Figure 6 can reflect the time-domain variation trend of the synchronization delay ΔT, that is, ΔT is relatively stable in a short-term small interval, but changes periodically in a long-term large interval. Therefore, the present invention uses the average value within the cell to estimate the current ΔT. the

小区间均值校正法的基本原理可以用图7和图8描述。如图7所示,图7描述了节点A和B之间的同步过程,节点A在时刻Tn,A,节点B在时刻Tn,B’收到这个控制包,然后经过校正,节点B将自己的时间调整到Tn,B。之前,节点A和节点B之间的时间差如下所示:  The basic principle of inter-cell mean value correction method can be described with FIG. 7 and FIG. 8 . As shown in Figure 7, Figure 7 describes the synchronization process between nodes A and B. Node A receives this control packet at time T n, A , and node B receives this control packet at time T n, B ', and after correction, node B Adjust your own time to T n,B . Previously, the time difference between node A and node B looked like this:

Tn,B′-Tn,A=ΔT+Tdrift             (7)  T n, B ′-T n, A = ΔT n + T drift (7)

其中,ΔTn是通过公式(4)估计得到的同步时延,Tdrift是晶振的频率偏移造成的偏差。  Among them, ΔT n is the synchronization delay estimated by formula (4), and T drift is the deviation caused by the frequency offset of the crystal oscillator.

因为同步时延ΔT在短时间小区间内较为稳定,所以本发明通过追踪历史值来对同步时延进行更为精确的估计。追踪过程如下所示:  Because the synchronization delay ΔT is relatively stable in a short time between cells, the present invention estimates the synchronization delay more accurately by tracking historical values. The tracking process is as follows:

ΔTn-ΔTn-1=(Tn,B′-Tn,A)-(Tn-1,B′-Tn-1,A)     (8)  ΔT n -ΔT n -1 = (T n, B '-T n, A ) - (T n-1, B '-T n-1, A ) (8)

本发明通过追踪3次的历史值来对当前时延ΔT进行估计,如图8所示,图8中采取的区间大小为3,用该区间内的平均值来代替ΔT。通过实验,可以验证小区间均值校正法能有效减小在小区间内的同步时延波动。  The present invention estimates the current delay ΔT by tracking the historical values of three times, as shown in FIG. 8 , the interval taken in FIG. 8 is 3, and the average value in this interval is used to replace ΔT. Through experiments, it can be verified that the inter-cell mean value correction method can effectively reduce the synchronization delay fluctuation between cells. the

采用小区间均值校正法的同步时延误差分布如图9所示,其数据的概率统计结果见表1,可见其同步误差为0.6280tick,即12.55微秒,均方差为0.7629tick,即23.28微秒。对误差的时序进行分析得到同步误差的时序图如图10所示。  The distribution of synchronization delay error using the inter-cell mean value correction method is shown in Figure 9, and the probability statistics results of the data are shown in Table 1. It can be seen that the synchronization error is 0.6280 ticks, or 12.55 microseconds, and the mean square error is 0.7629 ticks, or 23.28 microseconds. Second. The timing diagram of the synchronization error obtained by analyzing the timing of the error is shown in FIG. 10 . the

与定值校正法相比,小区间均值校正法的同步精度更高,性能更好。其同步误差的均值减少了35.1%,方差减少了36.7%。  Compared with the fixed value correction method, the inter-cell mean value correction method has higher synchronization accuracy and better performance. Its synchronization error has a mean reduction of 35.1% and a reduction of variance of 36.7%. the

为了说明本发明在能耗方面的改善,本发明与经典的RBS和TPSN算法进行了对比。RBS和TPSN的同步误差分别为29.13微秒和16.9微秒,与本发明的同步精度相当,但是本发明提出的时间同步方法在能耗方面更有优势。  In order to illustrate the improvement of the present invention in terms of energy consumption, the present invention is compared with the classic RBS and TPSN algorithms. The synchronization errors of RBS and TPSN are 29.13 microseconds and 16.9 microseconds respectively, which are equivalent to the synchronization accuracy of the present invention, but the time synchronization method proposed by the present invention has more advantages in terms of energy consumption. the

WSN节点的能耗主要由射频模块的数据收发产生,因此可以通过同步包收发次数来比较不同同步算法的能耗。考虑在一个广播域内一个参考节点n个接收节点时各算法的同步开销如表2所示。其中K为RBS算法时间记录次数,K越大同步精度越高。从表2中可以看出与RBS和TPSN相比,本发明的时间同步方法可以大大减少同步包的收发次数,因此可以降低能耗。  The energy consumption of WSN nodes is mainly generated by the data transmission and reception of the radio frequency module, so the energy consumption of different synchronization algorithms can be compared by the number of synchronization packet transmission and reception. Table 2 shows the synchronization overhead of each algorithm when considering a reference node and n receiving nodes in a broadcast domain. Among them, K is the time recording times of RBS algorithm, and the larger K is, the higher the synchronization accuracy will be. It can be seen from Table 2 that compared with RBS and TPSN, the time synchronization method of the present invention can greatly reduce the number of sending and receiving of synchronization packets, thus reducing energy consumption. the

表2不同算法同步开销比较  Table 2 Comparison of synchronization overhead of different algorithms

以上所说的具体实施例,是对本发明的目的、技术方案和有益结果进行了进一步说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。  The specific embodiments mentioned above further illustrate the purpose, technical solutions and beneficial results of the present invention. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention. the

Claims (4)

1.一种低功耗的无线传感器时间同步方法,其特征在于:1. A wireless sensor time synchronization method with low power consumption, characterized in that: (1)周期性同步信息发送,利用控制包携带同步信息;(1) Periodic synchronization information transmission, using control packets to carry synchronization information; (2)当接收者接收到同步包后,按照时间校准原理,根据时间戳信息校准自己时间;(2) After receiving the synchronization packet, the receiver calibrates its time according to the time stamp information according to the time calibration principle; (3)三种时间校正方法在线估计无线传感器网络中节点间的同步包时延ΔT并进行校正;(3) Three time correction methods estimate and correct the synchronization packet delay ΔT between nodes in the wireless sensor network online; (4)以局部同步实现全网同步的同步机制,仅需父子节点进行同步。(4) The synchronization mechanism that realizes the synchronization of the whole network with local synchronization, only needs the parent and child nodes to synchronize. 2.根据权利要求1所述的低功耗无线传感器网络时间同步方法,其特征在于:控制包的包尾打上时间戳,可以节省用于时间同步的能耗,同步包只需在MAC层的包尾添加9个字节,包括:TYPE为标志位,表明是否需要同步;SenderAddr为发送者地址,接收者据此判断是否为其父节点,从而决定是否需要与其同步;TAR和count为时间戳,表明发送节点当前系统时间。2. The time synchronization method for low-power wireless sensor networks according to claim 1, characterized in that: the packet tail of the control packet is marked with a time stamp, which can save energy consumption for time synchronization, and the synchronization packet only needs to be in the MAC layer. Add 9 bytes to the end of the packet, including: TYPE is a flag indicating whether synchronization is required; SenderAddr is the address of the sender, and the receiver judges whether it is its parent node based on this, so as to determine whether it needs to synchronize with it; TAR and count are timestamps , indicating the current system time of the sending node. 3.根据权利要求1所述的低功耗无线传感器网络时间同步方法,其特征在于:当接收者接收到同步包后,可以根据时间戳信息校准自己时间,节点时间由TAR、TACCR1和count唯一确定,通过保证两个节点的这三对参数一致,可以实现时间同步,其校准原理如下:3. The time synchronization method for low-power wireless sensor networks according to claim 1, characterized in that: after receiving the synchronization packet, the receiver can calibrate its own time according to the timestamp information, and the node time is unique by TAR, TACCR1 and count It is determined that time synchronization can be achieved by ensuring that the three pairs of parameters of the two nodes are consistent. The calibration principle is as follows: 假设节点1和2节点要实现时间同步,节点1为时间基准节点(父节点),节点2为待同步节点(子节点),校准原理如下:Assuming that nodes 1 and 2 need to achieve time synchronization, node 1 is the time reference node (parent node), and node 2 is the node to be synchronized (child node). The calibration principle is as follows: TAR2=TAR1+ΔT           3-1TAR 2 =TAR 1 +ΔT 3-1 TACCR12=TAR2+(INTERVAL-TAR2%INTERVAL)          3-2TACCR1 2 =TAR 2 +(INTERVAL-TAR 2 % INTERVAL) 3-2 countcount 22 == countcount 11 ++ (( TARTAR 22 INTERVALINTERVAL -- TARTAR 11 INTERVALINTERVAL )) -- -- -- 33 -- 33 TAR1和count1都可以直接从同步包中提取出来,INTERVAL是常量,因此只有一个未知量ΔT。Both TAR 1 and count 1 can be directly extracted from the synchronization packet, and INTERVAL is constant, so there is only one unknown quantity ΔT. 4.根据权利要求1所述的低功耗无线传感器网络时间同步方法,其特征在于:提出3种估计方法对无线传感器网络中节点间的同步包时延ΔT进行在线估计:4. The time synchronization method for low-power wireless sensor networks according to claim 1, characterized in that: three estimation methods are proposed to estimate online the synchronization packet time delay ΔT between nodes in the wireless sensor network: (1)定值校正法(1) Fixed value correction method 定值校正法的校准公式如公式(3-4)所示:The calibration formula of the fixed value correction method is shown in formula (3-4): t2=t1+ΔT                          3-4t 2 =t 1 +ΔT 3-4 其中,t1是参考节点的时间,ΔT是同步时延校正参数,t2是校正之后的时间;Among them, t1 is the time of the reference node, ΔT is the synchronization delay correction parameter, and t2 is the time after correction; (2)跟踪校正法(2) tracking correction method 跟踪校正法的校正公式如公式(3-5)所示:The correction formula of the tracking correction method is shown in formula (3-5): t2,n=t1,n+(t′2,n-1-t1,n-1)            3-5t 2, n = t 1, n + (t' 2, n-1 -t 1, n-1 ) 3-5 其中,下标n,n-1表示采样时刻,下表1,2表示节点号,t1,n,t1,n-1分别表示参考节点在当前时刻和前一时刻的时间,t′2,n-1是同步节点在前一时刻校正之前的时间,t2,n是同步节点在校正之后的时间;Among them, the subscripts n and n-1 indicate the sampling time, the following tables 1 and 2 indicate the node number, t 1, n , t 1, n-1 respectively indicate the time of the reference node at the current moment and the previous moment, and t′ 2 , n-1 is the time before the synchronization node is corrected at the previous moment, t 2, n is the time after the synchronization node is corrected; (3)小区间均值校正法(3) Inter-cell mean correction method ΔT在短时间小区间内较为稳定,而在长时间大区间内呈周期性变化。于是可以用该小区间内的平均值来估计当前ΔT,小区间均值校正法能有效减小在小区间内的同步时延波动。5、根据权利要求1所述的低功耗无线传感器网络时间同步方法,其特征在于:在数据采集树中,所有的数据交换都是在父节点-子节点对中进行,每一个节点都只与其父节点同步,通过树形拓扑以局部同步实现全网同步,同步方式按以下方式处理:ΔT is relatively stable in short-term small intervals, but changes periodically in long-term large intervals. Therefore, the current ΔT can be estimated by using the average value in the cell, and the inter-cell average value correction method can effectively reduce the synchronization delay fluctuation in the cell. 5. The time synchronization method for low-power wireless sensor networks according to claim 1, characterized in that: in the data acquisition tree, all data exchanges are carried out in the parent node-child node pairs, and each node only Synchronize with its parent node, and realize the synchronization of the whole network through partial synchronization through the tree topology. The synchronization method is handled as follows: (1)网络在初始化时会建立一个以SINK节点为根节点的数据采集树;(1) When the network is initialized, a data collection tree with the SINK node as the root node will be established; (2)SINK节点周期性地发送包含时间戳的BEACON包;(2) SINK nodes periodically send BEACON packets containing timestamps; (3)子结点在收到BEACON包后解析出时间戳,并按照公式(3-1~3-3)校准自己的时钟;(3) After receiving the BEACON packet, the child node parses out the time stamp, and calibrates its own clock according to the formula (3-1~3-3); (4)每个节点在完成同步(亦即入网)后也会按照SINK节点的方式广播BEACON包,以方便新节点的加入;(4) After each node completes synchronization (that is, network access), it will also broadcast BEACON packets in the way of SINK nodes to facilitate the addition of new nodes; (5)新节点加入时会首先侦听一段时间,收集到邻居节点的BEACON后会选取一个父节点,并与之同步,从而完成入网;(5) When a new node joins, it will first listen for a period of time, and after collecting the BEACON of the neighbor node, it will select a parent node and synchronize with it to complete the network connection; (6)当拓扑发生变化时,掉网的节点会首先侦听一段时间,重新选择父节点,并完成同步入网。(6) When the topology changes, the disconnected node will first listen for a period of time, reselect the parent node, and complete the synchronous access to the network.
CN201310090466.0A 2013-03-13 2013-03-13 A Time Synchronization Method for Low-power Wireless Sensor Networks Pending CN104053223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310090466.0A CN104053223A (en) 2013-03-13 2013-03-13 A Time Synchronization Method for Low-power Wireless Sensor Networks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310090466.0A CN104053223A (en) 2013-03-13 2013-03-13 A Time Synchronization Method for Low-power Wireless Sensor Networks

Publications (1)

Publication Number Publication Date
CN104053223A true CN104053223A (en) 2014-09-17

Family

ID=51505484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310090466.0A Pending CN104053223A (en) 2013-03-13 2013-03-13 A Time Synchronization Method for Low-power Wireless Sensor Networks

Country Status (1)

Country Link
CN (1) CN104053223A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104540212A (en) * 2014-12-01 2015-04-22 国网河南省电力公司电力科学研究院 Wireless sensor network on-demand clock synchronization method based on AODV (Ad Hoc On-Demand Distance Vector) routing protocol
CN104581943A (en) * 2015-01-15 2015-04-29 浙江大学 Node Localization Method for Distributed Wireless Sensor Networks
CN104602291A (en) * 2014-12-22 2015-05-06 浙江大学 Time measurement method for wireless sensor network
CN105307261A (en) * 2015-11-11 2016-02-03 中国电子科技集团公司第三十研究所 Self-synchronization method for oriented Adhoc network
CN105491656A (en) * 2015-10-12 2016-04-13 山东大学(威海) Light-weight time synchronization method oriented to large-scale ad hoc network
CN105703868A (en) * 2016-01-19 2016-06-22 中国科学院信息工程研究所 Time synchronization method and device for smart device network
CN106332264A (en) * 2015-07-03 2017-01-11 北京信威通信技术股份有限公司 Ad-hoc network node synchronization method combining cluster management mechanism
CN106455042A (en) * 2016-12-15 2017-02-22 无锡源清慧虹信息科技有限公司 Inter-node time synchronization method, wireless sensor network and node thereof
CN107786293A (en) * 2016-08-29 2018-03-09 中兴通讯股份有限公司 Method for synchronizing time, clock equipment, from clockwork and clock synchronization system
CN107911207A (en) * 2017-11-09 2018-04-13 福州开发区慧聚通信技术有限公司 A kind of periodic signal synchronous method based on time adjustment
CN107995681A (en) * 2017-11-16 2018-05-04 全球能源互联网研究院有限公司 A kind of wireless sense network method for synchronizing time and device
CN109074723A (en) * 2016-04-14 2018-12-21 日本电信电话株式会社 Method for synchronizing time, sensor insertion terminal and sensor network system
CN109413734A (en) * 2018-12-14 2019-03-01 郑州联睿电子科技有限公司 Base base station and its construction method when a kind of more
CN110366101A (en) * 2019-07-26 2019-10-22 杭州微萤科技有限公司 A kind of method that UWB centralization calculating realization positions on a large scale
CN110446156A (en) * 2019-07-26 2019-11-12 杭州微萤科技有限公司 A kind of method that the realization of UWB distributed computing positions on a large scale
CN111787607A (en) * 2020-06-30 2020-10-16 大唐终端技术有限公司 Method for improving synchronization precision of ad hoc network
CN115642975A (en) * 2022-09-30 2023-01-24 深圳市欧瑞博科技股份有限公司 Relay communication method, device and system based on low-power wireless communication technology

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102057616A (en) * 2008-04-25 2011-05-11 狄德罗-巴黎第七大学 Computer device for the time-based management of digital documents
CN102118849A (en) * 2011-03-02 2011-07-06 重庆邮电大学 Time synchronization method applicable to wireless sensor network
CN102355319A (en) * 2011-08-17 2012-02-15 中国科学院深圳先进技术研究院 Time synchronization method and system for wireless sensor network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102057616A (en) * 2008-04-25 2011-05-11 狄德罗-巴黎第七大学 Computer device for the time-based management of digital documents
CN102118849A (en) * 2011-03-02 2011-07-06 重庆邮电大学 Time synchronization method applicable to wireless sensor network
CN102355319A (en) * 2011-08-17 2012-02-15 中国科学院深圳先进技术研究院 Time synchronization method and system for wireless sensor network

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104540212A (en) * 2014-12-01 2015-04-22 国网河南省电力公司电力科学研究院 Wireless sensor network on-demand clock synchronization method based on AODV (Ad Hoc On-Demand Distance Vector) routing protocol
CN104540212B (en) * 2014-12-01 2019-01-25 国网河南省电力公司电力科学研究院 On-demand clock synchronization method for wireless sensor network based on AODV routing protocol
CN104602291A (en) * 2014-12-22 2015-05-06 浙江大学 Time measurement method for wireless sensor network
CN104602291B (en) * 2014-12-22 2018-06-15 浙江大学 A kind of method of time measurement in wireless sensor network
CN104581943A (en) * 2015-01-15 2015-04-29 浙江大学 Node Localization Method for Distributed Wireless Sensor Networks
CN104581943B (en) * 2015-01-15 2018-02-13 浙江大学 Node positioning method for Distributed Wireless Sensor Networks
CN106332264A (en) * 2015-07-03 2017-01-11 北京信威通信技术股份有限公司 Ad-hoc network node synchronization method combining cluster management mechanism
CN105491656B (en) * 2015-10-12 2019-08-13 山东大学(威海) A kind of lightweight method for synchronizing time towards extensive ad hoc network
CN105491656A (en) * 2015-10-12 2016-04-13 山东大学(威海) Light-weight time synchronization method oriented to large-scale ad hoc network
CN105307261B (en) * 2015-11-11 2019-02-01 中国电子科技集团公司第三十研究所 A kind of orientation Ad hoc network motor synchronizing method
CN105307261A (en) * 2015-11-11 2016-02-03 中国电子科技集团公司第三十研究所 Self-synchronization method for oriented Adhoc network
CN105703868A (en) * 2016-01-19 2016-06-22 中国科学院信息工程研究所 Time synchronization method and device for smart device network
CN105703868B (en) * 2016-01-19 2018-11-30 中国科学院信息工程研究所 A kind of method for synchronizing time and device for smart machine network
US10862602B2 (en) 2016-04-14 2020-12-08 Nippon Telegraph And Telephone Corporation Time synchronization method, sensor data acquisition terminal, and sensor network system
CN109074723A (en) * 2016-04-14 2018-12-21 日本电信电话株式会社 Method for synchronizing time, sensor insertion terminal and sensor network system
CN107786293A (en) * 2016-08-29 2018-03-09 中兴通讯股份有限公司 Method for synchronizing time, clock equipment, from clockwork and clock synchronization system
CN106455042B (en) * 2016-12-15 2019-10-11 无锡源清慧虹信息科技有限公司 A kind of time synchronization between nodes method, wireless sensor network and its node
CN106455042A (en) * 2016-12-15 2017-02-22 无锡源清慧虹信息科技有限公司 Inter-node time synchronization method, wireless sensor network and node thereof
CN107911207A (en) * 2017-11-09 2018-04-13 福州开发区慧聚通信技术有限公司 A kind of periodic signal synchronous method based on time adjustment
CN107995681A (en) * 2017-11-16 2018-05-04 全球能源互联网研究院有限公司 A kind of wireless sense network method for synchronizing time and device
CN109413734A (en) * 2018-12-14 2019-03-01 郑州联睿电子科技有限公司 Base base station and its construction method when a kind of more
CN110366101A (en) * 2019-07-26 2019-10-22 杭州微萤科技有限公司 A kind of method that UWB centralization calculating realization positions on a large scale
CN110446156A (en) * 2019-07-26 2019-11-12 杭州微萤科技有限公司 A kind of method that the realization of UWB distributed computing positions on a large scale
CN111787607A (en) * 2020-06-30 2020-10-16 大唐终端技术有限公司 Method for improving synchronization precision of ad hoc network
CN111787607B (en) * 2020-06-30 2023-04-18 大唐终端技术有限公司 Method for improving synchronization precision of ad hoc network
CN115642975A (en) * 2022-09-30 2023-01-24 深圳市欧瑞博科技股份有限公司 Relay communication method, device and system based on low-power wireless communication technology

Similar Documents

Publication Publication Date Title
CN104053223A (en) A Time Synchronization Method for Low-power Wireless Sensor Networks
CN104507156B (en) For the time synchronization improved method based on IEEE 1588PTP mechanism of wireless network
CN102118849B (en) Time synchronization method applicable to wireless sensor network
US9226252B2 (en) Recursive time synchronization protocol method for wireless sensor networks
Akhlaq et al. RTSP: An accurate and energy-efficient protocol for clock synchronization in WSNs
Lenzen et al. PulseSync: An efficient and scalable clock synchronization protocol
CN104968043B (en) A kind of clock synchronizing frequency deviation estimating method suitable for WIA-PA network
Gong et al. CESP: A low-power high-accuracy time synchronization protocol
CN111193997B (en) Time difference of arrival (TDOA) measuring and calibrating method for UWB positioning system
CN1972182B (en) A Method of Improving the Time Synchronization Accuracy of Wireless Sensor Networks
CN104754722B (en) A kind of method for synchronizing time towards stratification heterogeneous network
CN103458498A (en) Intelligent wireless sensor network time synchronization method
CN108900273A (en) A kind of consistent method for synchronizing time of wireless sensor network multi-hop
Chen et al. An implementation of IEEE 1588 protocol for IEEE 802.11 WLAN
CN105188126A (en) Distributed multi-hop wireless network clock synchronization method based on mean field
Akhlaq et al. The recursive time synchronization protocol for wireless sensor networks
WO2018098791A1 (en) Clock synchronization frequency deviation estimation method applicable to multi-hop wireless sensor network
CN104837197A (en) Method for synchronizing two-way time of wireless sensor network
Beke et al. Time synchronization in IoT mesh networks
CN106162858A (en) Directintermination time synchronization method and device
CN105142211A (en) Neighborhood averaging clock synchronization algorithm of wireless sensor network
Yildirim et al. Drift estimation using pairwise slope with minimum variance in wireless sensor networks
CN115623580A (en) Time synchronization method, system, control device and medium for cross-terminal communication
Gautam et al. A comparative study of time synchronization protocols in wireless sensor networks
Qi et al. A clock synchronization method for ad hoc networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140917