CN104038166B - Operational amplifier circuit and method for improving driving capability thereof - Google Patents
Operational amplifier circuit and method for improving driving capability thereof Download PDFInfo
- Publication number
- CN104038166B CN104038166B CN201310071528.3A CN201310071528A CN104038166B CN 104038166 B CN104038166 B CN 104038166B CN 201310071528 A CN201310071528 A CN 201310071528A CN 104038166 B CN104038166 B CN 104038166B
- Authority
- CN
- China
- Prior art keywords
- current
- output
- circuit
- transistor
- output voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Amplifiers (AREA)
Abstract
本发明提供一种运算放大器电路及提高其驱动能力的方法,用以驱动一负载。所述运算放大器电路包括一输出级模块。输出级模块包括一检测电路及一输出级电路。检测电路用以根据一目前输入电压与一目前输出电压的一比较结果来检测目前输出电压与一先前输出电压。并且,检测电路根据一检测结果来增加输出级电路对负载的充电速度或放电速度。
The present invention provides an operational amplifier circuit and a method for improving its driving capability, which are used to drive a load. The operational amplifier circuit includes an output stage module. The output stage module includes a detection circuit and an output stage circuit. The detection circuit is used to detect a current output voltage and a previous output voltage according to a comparison result between a current input voltage and a current output voltage. Moreover, the detection circuit increases the charging speed or discharging speed of the output stage circuit to the load according to a detection result.
Description
技术领域technical field
本发明涉及一种电子电路及改善其电路特性的方法,且特别涉及一种运算放大器电路及提高其驱动能力的方法。The invention relates to an electronic circuit and a method for improving its circuit characteristics, and in particular to an operational amplifier circuit and a method for improving its driving capability.
背景技术Background technique
输出级运算放大器(operational amplifier)在集成电路设计中扮演着相当重要的角色,其广泛的应用在无线电通信、电视广播的发送机及接收机、高传真的立体音响设备、微计算机及其他电子设备。输出级运算放大器的功用为增加信号能量,以驱动负载或者下一级电路。传统的线性功率放大器,如A类、B类及AB类放大器将有源元件偏压于固定直流电流下,故具有较佳的线性度。The output stage operational amplifier (operational amplifier) plays a very important role in the design of integrated circuits. It is widely used in radio communication, TV broadcast transmitters and receivers, high-fidelity stereo equipment, microcomputers and other electronic equipment . The function of the output stage operational amplifier is to increase the signal energy to drive the load or the next stage circuit. Traditional linear power amplifiers, such as Class A, Class B and Class AB amplifiers, bias the active components at a fixed DC current, so they have better linearity.
然而,在大尺寸面板的驱动芯片的应用中,如果是驱动芯片的操作频率增高,或是面板尺寸变大,输出级运算放大器常有对负载或者下一级电路充放电不足的现象。一般而言,输出级运算放大器的芯片面积决定了其驱动电流的大小。因此,如果是要改善驱动芯片的充放电能力,通常可通过增加输出级运算放大器的面积大小来达成,但是此种方式又会增加驱动芯片的面积,造成成本上升。However, in the application of a driver chip for a large-sized panel, if the operating frequency of the driver chip increases or the size of the panel becomes larger, the output-stage operational amplifier often has insufficient charge and discharge for the load or the next-stage circuit. Generally speaking, the chip area of the output stage operational amplifier determines the size of its drive current. Therefore, if it is desired to improve the charge-discharge capability of the driver chip, it can usually be achieved by increasing the area of the output stage operational amplifier, but this method will increase the area of the driver chip, resulting in an increase in cost.
发明内容Contents of the invention
本发明提供一种运算放大器电路,可动态检测输出电压的大小,以提高其输出级电路的驱动能力。The invention provides an operational amplifier circuit, which can dynamically detect the magnitude of the output voltage, so as to improve the driving ability of the output stage circuit.
本发明提供一种提高运算放大器电路的驱动能力的方法,可动态检测输出电压的大小,以提高运算放大器电路的驱动能力。The invention provides a method for improving the driving ability of the operational amplifier circuit, which can dynamically detect the magnitude of the output voltage to improve the driving ability of the operational amplifier circuit.
本发明提供一种运算放大器电路,用以驱动一负载。所述运算放大器电路包括一输出级模块。输出级模块包括一检测电路及一输出级电路。检测电路用以根据一目前输入电压与一目前输出电压的一比较结果来检测目前输出电压与一先前输出电压。并且,检测电路根据一检测结果来增加输出级电路对负载的充电速度或放电速度。The invention provides an operational amplifier circuit for driving a load. The operational amplifier circuit includes an output stage module. The output stage module includes a detection circuit and an output stage circuit. The detection circuit is used for detecting the current output voltage and a previous output voltage according to a comparison result between a current input voltage and a current output voltage. Moreover, the detection circuit increases the charging speed or discharging speed of the load by the output stage circuit according to a detection result.
在本发明一实施例中,当先前输出电压大于目前输出电压时,上述的检测电路根据检测结果,增加输出级电路对负载的充电速度。In an embodiment of the present invention, when the previous output voltage is greater than the current output voltage, the detection circuit increases the charging speed of the output stage circuit to the load according to the detection result.
在本发明一实施例中,当先前输出电压小于目前输出电压时,上述的检测电路根据检测结果,增加输出级电路对负载的放电速度。In an embodiment of the present invention, when the previous output voltage is lower than the current output voltage, the detection circuit increases the discharge speed of the output stage circuit to the load according to the detection result.
在本发明一实施例中,上述的输出级电路包括一第一晶体管以及一第二晶体管。第一晶体管具有第一端、第二端及控制端。第一晶体管的第一端耦接至一第一电压。第一晶体管的第二端作为输出级电路的输出端。第一晶体管的控制端耦接至检测电路。检测电路通过降低第一晶体管的控制端电压来导通第一晶体管,以增加输出级电路对负载的充电速度。第二晶体管具有第一端、第二端及控制端。第二晶体管的第一端耦接至第一晶体管的第一端。第二晶体管的第二端耦接至一第二电压。第二晶体管的控制端耦接至检测电路。检测电路通过提高第二晶体管的控制端电压来导通第二晶体管,以增加输出级电路对负载的放电速度。In an embodiment of the present invention, the above-mentioned output stage circuit includes a first transistor and a second transistor. The first transistor has a first terminal, a second terminal and a control terminal. The first end of the first transistor is coupled to a first voltage. The second terminal of the first transistor serves as the output terminal of the output stage circuit. The control terminal of the first transistor is coupled to the detection circuit. The detection circuit turns on the first transistor by reducing the voltage of the control terminal of the first transistor, so as to increase the charging speed of the output stage circuit to the load. The second transistor has a first terminal, a second terminal and a control terminal. The first terminal of the second transistor is coupled to the first terminal of the first transistor. The second terminal of the second transistor is coupled to a second voltage. The control terminal of the second transistor is coupled to the detection circuit. The detection circuit turns on the second transistor by increasing the voltage of the control terminal of the second transistor, so as to increase the discharge speed of the output stage circuit to the load.
在本发明一实施例中,上述的输出级电路还包括一第一电流源。第一电流源具有第一端及第二端。第一电流源的第一端耦接至第一电压。第一电流源的第二端耦接至第一晶体管的控制端。当第一电流源开启时,第二晶体管的控制端电压上升,以导通第二晶体管,从而增加输出级电路对负载的放电速度。In an embodiment of the present invention, the above-mentioned output stage circuit further includes a first current source. The first current source has a first terminal and a second terminal. A first terminal of the first current source is coupled to a first voltage. The second terminal of the first current source is coupled to the control terminal of the first transistor. When the first current source is turned on, the voltage at the control terminal of the second transistor rises to turn on the second transistor, thereby increasing the discharge speed of the output stage circuit to the load.
在本发明一实施例中,上述的输出级电路还包括一第二电流源。第二电流源具有第一端及第二端。第二电流源的第一端耦接至第二晶体管的控制端。第二电流源的第二端耦接至第二电压。当第二电流源开启时,第一晶体管的控制端电压下降,以导通第一晶体管,从而增加输出级电路对负载的充电速度。In an embodiment of the present invention, the above output stage circuit further includes a second current source. The second current source has a first terminal and a second terminal. The first terminal of the second current source is coupled to the control terminal of the second transistor. The second terminal of the second current source is coupled to the second voltage. When the second current source is turned on, the voltage at the control terminal of the first transistor drops to turn on the first transistor, thereby increasing the charging speed of the output stage circuit to the load.
在本发明一实施例中,上述的输出级电路包括一第三晶体管以及一第四晶体管。第三晶体管具有第一端、第二端及控制端。第三晶体管的第一端耦接至一第一电压。第三晶体管的第二端作为输出级电路的输出端。第三晶体管的控制端耦接至检测电路。检测电路通过提高第三晶体管的控制端电压来导通第三晶体管,以增加输出级电路对负载的充电速度。第四晶体管具有第一端、第二端及控制端。第四晶体管的第一端耦接至第三晶体管的第一端。第四晶体管的第二端耦接至一第二电压。第四晶体管的控制端耦接至检测电路。检测电路通过降低第四晶体管的控制端电压来导通第四晶体管,以增加输出级电路对负载的放电速度。In an embodiment of the present invention, the above-mentioned output stage circuit includes a third transistor and a fourth transistor. The third transistor has a first terminal, a second terminal and a control terminal. The first terminal of the third transistor is coupled to a first voltage. The second terminal of the third transistor serves as the output terminal of the output stage circuit. The control terminal of the third transistor is coupled to the detection circuit. The detection circuit turns on the third transistor by increasing the voltage of the control terminal of the third transistor, so as to increase the charging speed of the output stage circuit to the load. The fourth transistor has a first terminal, a second terminal and a control terminal. The first terminal of the fourth transistor is coupled to the first terminal of the third transistor. The second end of the fourth transistor is coupled to a second voltage. The control terminal of the fourth transistor is coupled to the detection circuit. The detection circuit turns on the fourth transistor by reducing the voltage of the control terminal of the fourth transistor, so as to increase the discharge speed of the output stage circuit to the load.
在本发明一实施例中,上述的输出级电路包括一第三电流源以及一第五晶体管。第三电流源具有第一端及第二端。第三电流源的第一端耦接至一第一电压。第三电流源的第二端耦接至输出级电路的输出端。当第三电流源开启时,第三电流源对负载充电,以增加输出级电路对负载的充电速度。第五晶体管具有第一端、第二端及控制端。第五晶体管的第一端耦接至输出级电路的输出端。第五晶体管的第二端耦接至一第二电压。第五晶体管的控制端耦接至检测电路。检测电路通过提高第五晶体管的控制端电压来导通第五晶体管,以增加输出级电路对负载的放电速度。In an embodiment of the present invention, the above-mentioned output stage circuit includes a third current source and a fifth transistor. The third current source has a first terminal and a second terminal. The first end of the third current source is coupled to a first voltage. The second terminal of the third current source is coupled to the output terminal of the output stage circuit. When the third current source is turned on, the third current source charges the load, so as to increase the charging speed of the output stage circuit to the load. The fifth transistor has a first terminal, a second terminal and a control terminal. The first terminal of the fifth transistor is coupled to the output terminal of the output stage circuit. The second terminal of the fifth transistor is coupled to a second voltage. The control terminal of the fifth transistor is coupled to the detection circuit. The detection circuit turns on the fifth transistor by increasing the voltage of the control terminal of the fifth transistor, so as to increase the discharge speed of the output stage circuit to the load.
在本发明一实施例中,上述的输出级电路包括一第一控制端及一第二控制端。并且,检测电路包括一差动输入对、一第一电流镜模块以及一第二电流镜模块。差动输入对具有第一端及第二端。差动输入对的第一端接收先前输出电压。差动输入对的第二端接收目前输出电压。第一电流镜模块耦接至差动输入对,受控于一致能信号。当先前输出电压大于目前输出电压时,第一电流镜模块根据致能信号提供一第一电流至第一控制端。第二电流镜模块耦接至差动输入对,受控于致能信号。当先前输出电压小于目前输出电压时,第二电流镜模块根据致能信号从第二控制端汲取一第二电流。In an embodiment of the present invention, the above-mentioned output stage circuit includes a first control terminal and a second control terminal. Moreover, the detection circuit includes a differential input pair, a first current mirror module and a second current mirror module. The differential input pair has a first end and a second end. The first end of the differential input pair receives the previous output voltage. The second terminal of the differential input pair receives the current output voltage. The first current mirror module is coupled to the differential input pair and controlled by an enable signal. When the previous output voltage is greater than the current output voltage, the first current mirror module provides a first current to the first control terminal according to the enabling signal. The second current mirror module is coupled to the differential input pair and controlled by the enabling signal. When the previous output voltage is lower than the current output voltage, the second current mirror module draws a second current from the second control terminal according to the enabling signal.
在本发明一实施例中,上述的输出级电路包括一第一控制端及一第二控制端。并且,检测电路包括一差动输入对、一第一开关以及一第二开关。差动输入对具有第一端及第二端。差动输入对的第一端接收先前输出电压。差动输入对的第二端接收目前输出电压。第一开关具有第一端、第二端及控制端。第一开关的第一端经由一第三电流镜模块耦接至第一控制端。第一开关的第二端耦接至差动输入对。第一开关的控制端受控于一致能信号。当先前输出电压大于目前输出电压时,致能信号导通第一开关,以让第三电流镜模块提供一第三电流至第一控制端。第二开关具有第一端、第二端及控制端。第二开关的第一端耦接至差动输入对。第二开关的第二端经由一第四电流镜模块耦接至第二控制端。第二开关的控制端受控于致能信号。当先前输出电压小于目前输出电压时,致能信号导通第二开关,以让第四电流镜模块从第二控制端汲取一第四电流。In an embodiment of the present invention, the above-mentioned output stage circuit includes a first control terminal and a second control terminal. Moreover, the detection circuit includes a differential input pair, a first switch and a second switch. The differential input pair has a first end and a second end. The first end of the differential input pair receives the previous output voltage. The second terminal of the differential input pair receives the current output voltage. The first switch has a first terminal, a second terminal and a control terminal. The first terminal of the first switch is coupled to the first control terminal via a third current mirror module. The second end of the first switch is coupled to the differential input pair. The control end of the first switch is controlled by an enabling signal. When the previous output voltage is greater than the current output voltage, the enabling signal turns on the first switch, so that the third current mirror module provides a third current to the first control terminal. The second switch has a first terminal, a second terminal and a control terminal. The first terminal of the second switch is coupled to the differential input pair. The second terminal of the second switch is coupled to the second control terminal via a fourth current mirror module. The control end of the second switch is controlled by the enabling signal. When the previous output voltage is lower than the current output voltage, the enabling signal turns on the second switch, so that the fourth current mirror module draws a fourth current from the second control terminal.
在本发明一实施例中,上述的检测电路包括一比较器电路。比较器电路用以比较目前输出电压与先前输出电压。比较器电路具有第一输入端、第二输入端、控制端及输出端。比较器电路的第一输入端接收先前输出电压。比较器电路的第二输入端接收目前输出电压。比较器电路的输出端输出目前输出电压与先前输出电压的一比较结果。比较器电路的控制端接收一致能信号。比较器电路根据致能信号来决定是否比较目前输出电压与先前输出电压。In an embodiment of the present invention, the above detection circuit includes a comparator circuit. The comparator circuit is used for comparing the current output voltage with the previous output voltage. The comparator circuit has a first input terminal, a second input terminal, a control terminal and an output terminal. A first input terminal of the comparator circuit receives the previous output voltage. The second input terminal of the comparator circuit receives the current output voltage. The output terminal of the comparator circuit outputs a comparison result between the current output voltage and the previous output voltage. The control terminal of the comparator circuit receives an enabling signal. The comparator circuit determines whether to compare the current output voltage with the previous output voltage according to the enabling signal.
在本发明一实施例中,当目前输入电压大于或小于目前输出电压时,上述的检测电路被致能,以检测目前输出电压与先前输出电压。In an embodiment of the present invention, when the current input voltage is greater than or less than the current output voltage, the above detection circuit is enabled to detect the current output voltage and the previous output voltage.
在本发明一实施例中,上述的运算放大器电路还包括一前置运算放大器。前置运算放大器耦接至输出级模块,用以比较目前输入电压与目前输出电压,并且根据比较结果来输出一致能信号至检测电路。检测电路根据致能信号来决定是否检测目前输出电压与先前输出电压。In an embodiment of the present invention, the above operational amplifier circuit further includes a pre-operational amplifier. The pre-operational amplifier is coupled to the output stage module for comparing the current input voltage and the current output voltage, and outputs an enable signal to the detection circuit according to the comparison result. The detection circuit determines whether to detect the current output voltage and the previous output voltage according to the enabling signal.
本发明提供一种提高运算放大器电路的驱动能力的方法。运算放大器电路用以驱动一负载。所述方法包括如下步骤。比较一目前输入电压与一目前输出电压,并且根据比较结果来产生一致能信号。根据致能信号来检测目前输出电压与一先前输出电压。根据一检测结果来增加输出级电路对负载的充电速度或放电速度。The present invention provides a method of improving the driving capability of an operational amplifier circuit. The operational amplifier circuit is used to drive a load. The method includes the following steps. A current input voltage is compared with a current output voltage, and an enabling signal is generated according to the comparison result. The current output voltage and a previous output voltage are detected according to the enabling signal. According to a detection result, the charging speed or discharging speed of the output stage circuit to the load is increased.
在本发明一实施例中,增加输出级电路对负载的充电速度或放电速度的步骤包括根据检测结果,当先前输出电压大于目前输出电压时,增加输出级电路对负载的充电速度。In an embodiment of the present invention, the step of increasing the charging speed or discharging speed of the output stage circuit to the load includes increasing the charging speed of the output stage circuit to the load when the previous output voltage is greater than the current output voltage according to the detection result.
在本发明一实施例中,增加输出级电路对负载的充电速度或放电速度的步骤包括根据检测结果,当先前输出电压小于目前输出电压时,增加输出级电路对负载的放电速度。In an embodiment of the present invention, the step of increasing the charging or discharging speed of the output stage circuit to the load includes increasing the discharge speed of the output stage circuit to the load when the previous output voltage is lower than the current output voltage according to the detection result.
在本发明一实施例中,在比较目前输入电压与目前输出电压的步骤中,当目前输入电压大于或小于目前输出电压时,产生致能信号,以检测目前输出电压与先前输出电压。In an embodiment of the present invention, in the step of comparing the current input voltage and the current output voltage, when the current input voltage is greater than or less than the current output voltage, an enable signal is generated to detect the current output voltage and the previous output voltage.
基于上述,在本发明的范例实施例中,运算放大器电路的输出级模块包括检测电路。检测电路可动态的检测输出电压的大小,来提高输出级电路对负载或者下一级电路的充放电能力。Based on the above, in an exemplary embodiment of the present invention, the output stage module of the operational amplifier circuit includes a detection circuit. The detection circuit can dynamically detect the magnitude of the output voltage to improve the charging and discharging capability of the output stage circuit to the load or the next stage circuit.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.
附图说明Description of drawings
图1绘示本发明一相关技术的运算放大器电路的概要电路图。FIG. 1 shows a schematic circuit diagram of an operational amplifier circuit of a related art of the present invention.
图2绘示本发明一实施例的运算放大器电路的概要电路图。FIG. 2 is a schematic circuit diagram of an operational amplifier circuit according to an embodiment of the present invention.
图3、图4及图8绘示本发明其他实施例的运算放大器电路的概要电路图。FIG. 3 , FIG. 4 and FIG. 8 are schematic circuit diagrams of operational amplifier circuits of other embodiments of the present invention.
图5绘示本发明一实施例的检测电路的概要电路图。FIG. 5 is a schematic circuit diagram of a detection circuit according to an embodiment of the present invention.
图6绘示图2的运算放大器电路的电路结构图。FIG. 6 is a circuit structure diagram of the operational amplifier circuit in FIG. 2 .
图7绘示图6的检测电路的电路结构图。FIG. 7 is a circuit structure diagram of the detection circuit in FIG. 6 .
图9绘示本发明一实施例的提高运算放大器电路的驱动能力的步骤流程图。FIG. 9 is a flow chart showing the steps of improving the driving capability of the operational amplifier circuit according to an embodiment of the present invention.
【主要元件符号说明】[Description of main component symbols]
100、200、300、400、800:运算放大器电路100, 200, 300, 400, 800: Operational amplifier circuits
110、210、310、410、810:前置运算放大器110, 210, 310, 410, 810: pre-operational amplifier
120、220、320、420、820:输出级运算放大器120, 220, 320, 420, 820: Output Stage Operational Amplifiers
130、230、330、430、830:输出级电路130, 230, 330, 430, 830: output stage circuit
140、240、340、440、840:输出开关140, 240, 340, 440, 840: output switch
222、322、422、822:检测电路222, 322, 422, 822: detection circuit
224:第三电流镜模块224: The third current mirror module
226:第四电流镜模块226: The fourth current mirror module
510、710:差动输入对510, 710: differential input pair
520:第一电流镜模块520: the first current mirror module
522:第一电流镜522: First current mirror
524、720:第一开关524, 720: first switch
530:第二电流镜模块530: second current mirror module
532:第二电流镜532: second current mirror
534、730:第二开关534, 730: second switch
823:比较器电路823: Comparator circuit
V1、V2:输出级晶体管的栅极源极跨压V1, V2: Gate-to-source voltage across output stage transistors
VIN:输入电压VIN: input voltage
VIN+:目前输入电压VIN+: current input voltage
VOUT:输出电压VOUT: output voltage
VOUT-:先前输出电压VOUT-: previous output voltage
VOUT+:目前输出电压VOUT+: current output voltage
VDD:系统电压VDD: system voltage
Vb1、Vb2、Vb3、Vb4:控制电压Vb1, Vb2, Vb3, Vb4: control voltage
C1、C2:电容器C1, C2: Capacitors
I1、I2、I3:电流源I1, I2, I3: current sources
A:第一控制端A: The first control terminal
B:第二控制端B: the second control terminal
C、D:节点C, D: node
Nout、Nout2、Nout5、Nout3、N1、N2、N3、N4、N5、N6:N型晶体管Nout, Nout2, Nout5, Nout3, N1, N2, N3, N4, N5, N6: N-type transistors
Pout、Pout1、Pout4、P1、P2、P3、P4、P5、P6:P型晶体管:Pout, Pout1, Pout4, P1, P2, P3, P4, P5, P6: P-type transistors:
SW1:开关控制信号SW1: switch control signal
EN:致能信号EN: enable signal
ENB:反相的致能信号ENB: Inverted enable signal
IM1:第一电流IM1: first current
IM2:第二电流IM2: second current
IM3:第三电流IM3: third current
IM4:第四电流IM4: fourth current
S900、S910、S920:提高运算放大器电路的驱动能力的步骤S900, S910, S920: Procedures for Improving the Drive Capability of Operational Amplifier Circuits
具体实施方式detailed description
图1绘示本发明一相关技术的运算放大器电路的概要电路图。请参考图1,此例的运算放大器电路100例如是应用在显示面板的驱动芯片中,其包括AB类输出级电路130。AB类输出级电路130的驱动能力,诸如对负载或者下一级电路(未绘示)的充放电能力,取决于输出级晶体管Pout、Nout的尺寸大小。在此架构下,如果是欲增加驱动芯片对显示面板的驱动能力,只能通过增加输出级晶体管Pout、Nout的尺寸大小,但是此种方式又会增加驱动芯片的面积,造成成本上升。FIG. 1 shows a schematic circuit diagram of an operational amplifier circuit of a related art of the present invention. Please refer to FIG. 1 , the operational amplifier circuit 100 of this example is for example applied in a driver chip of a display panel, and includes a class AB output stage circuit 130 . The driving capability of the class AB output stage circuit 130 , such as the charge and discharge capability of the load or the next stage circuit (not shown), depends on the size of the output stage transistors Pout and Nout. Under this framework, if it is desired to increase the driving capability of the driver chip for the display panel, the only way is to increase the size of the output stage transistors Pout and Nout, but this method will increase the area of the driver chip, resulting in an increase in cost.
在此例中,AB类输出级电路130在对负载或者下一级电路的充放电时,其输出电流值也可取决于其输出级晶体管Pout、Nout的栅极源极跨压V1、V2。因此,如果是可以利用电路方法来调整栅极源极跨压V1、V2的大小,则同样尺寸的输出级晶体管就可以提供更大的电流,从而增加运算放大器电路的驱动能力。至少基于此一概念,本公开的检测电路可动态的检测输出级电路的输出电压值,来调整输出级晶体管的栅极源极跨压的大小。为更清楚地了解本发明,以下将配合附图,以至少一范例实施例来详细说明。In this example, when the class AB output stage circuit 130 is charging and discharging the load or the next stage circuit, its output current value may also depend on the gate-to-source voltages V1 and V2 of the output stage transistors Pout and Nout. Therefore, if a circuit method can be used to adjust the magnitude of the gate-source cross voltage V1, V2, then the output stage transistor of the same size can provide a larger current, thereby increasing the driving capability of the operational amplifier circuit. At least based on this concept, the detection circuit of the present disclosure can dynamically detect the output voltage value of the output stage circuit to adjust the magnitude of the gate-source cross voltage of the output stage transistor. In order to understand the present invention more clearly, at least one exemplary embodiment will be described in detail below with reference to the accompanying drawings.
图2绘示本发明一实施例的运算放大器电路的概要电路图。请参考图2,本实施例的运算放大器电路200用以驱动显示面板上例如是数据线等负载。运算放大器电路200大致可区分为两个电路级,包括前置级及输出级,其中前置级包括前置运算放大器210,输出级包括输出级模块。在此例中,输出级模块包括输出级运算放大器220以及输出级电路230。至少为了执行检测输出电压值的功能,输出级运算放大器220内部配置一检测电路222,用来检测输出级电路230的目前输出电压VOUT+与先前输出电压VOUT-。此处的先前输出电压VOUT-例如是指在运算放大器电路200所输出的前一笔数据电压,用以驱动显示面板上的数据线,目前输出电压VOUT+例如是指在运算放大器电路200即将输出的下一笔数据电压,同样用以驱动显示面板上的数据线。因此,为了降低目前输出电压VOUT+与先前输出电压VOUT-两者之间彼此影响,本实施例更配置了一个输出开关240,当在进行输出电压检测及调整栅极源极跨压时,可降低目前输出电压VOUT+受到先前输出电压VOUT-的影响。应注意的是,本实施例虽以检测电路222配置于输出级运算放大器220内部来例示说明,但本发明并不限于此。FIG. 2 is a schematic circuit diagram of an operational amplifier circuit according to an embodiment of the present invention. Please refer to FIG. 2 , the operational amplifier circuit 200 of this embodiment is used to drive loads such as data lines on the display panel. The operational amplifier circuit 200 can be roughly divided into two circuit stages, including a pre-stage and an output stage, wherein the pre-stage includes a pre-operational amplifier 210 , and the output stage includes an output stage module. In this example, the output stage module includes an output stage operational amplifier 220 and an output stage circuit 230 . At least to perform the function of detecting the output voltage value, the output stage operational amplifier 220 internally configures a detection circuit 222 for detecting the current output voltage VOUT+ and the previous output voltage VOUT− of the output stage circuit 230 . Here, the previous output voltage VOUT-, for example, refers to the previous data voltage output by the operational amplifier circuit 200 to drive the data lines on the display panel, and the current output voltage VOUT+, for example, refers to the data voltage to be output by the operational amplifier circuit 200 The next data voltage is also used to drive the data lines on the display panel. Therefore, in order to reduce the mutual influence between the current output voltage VOUT+ and the previous output voltage VOUT-, this embodiment further configures an output switch 240, which can reduce the The current output voltage VOUT+ is affected by the previous output voltage VOUT-. It should be noted that although the present embodiment is illustrated by taking the detection circuit 222 disposed inside the output-stage operational amplifier 220 as an example, the present invention is not limited thereto.
具体而言,本实施例的前置运算放大器210耦接至输出级模块的输出级运算放大器220,用以比较目前输入电压VIN+与目前输出电压VOUT+,并且根据比较结果来输出致能信号EN至检测电路222,以执行动态检测输出电压值的功能。因此,检测电路222根据致能信号EN来决定是否检测目前输出电压VOUT+与先前输出电压VOUT-。在本实施例中,当目前输入电压VIN+大于或小于目前输出电压时VOUT+,表示运算放大器电路200的驱动能力有调整的需求,因此检测电路222会被致能,以检测目前输出电压VOUT+与先前输出电压VOUT-,从而达到增强驱动能力的目的。反之,如果目前输入电压VIN+等于目前输出电压时VOUT+,检测电路222不会执行增强驱动能力的操作。另外,前置运算放大器210的具体实施方式例如可以是如图1中所绘示的前置运算放大器110的电路结构,在此不再赘述。Specifically, the pre-operational amplifier 210 of this embodiment is coupled to the output-stage operational amplifier 220 of the output-stage module to compare the current input voltage VIN+ with the current output voltage VOUT+, and output the enable signal EN to VOUT+ according to the comparison result. The detection circuit 222 is configured to perform the function of dynamically detecting the output voltage value. Therefore, the detection circuit 222 determines whether to detect the current output voltage VOUT+ and the previous output voltage VOUT− according to the enable signal EN. In this embodiment, when the current input voltage VIN+ is greater than or less than the current output voltage VOUT+, it indicates that the driving capability of the operational amplifier circuit 200 needs to be adjusted, so the detection circuit 222 is enabled to detect the difference between the current output voltage VOUT+ and the previous The output voltage VOUT-, so as to achieve the purpose of enhancing the driving capability. On the contrary, if the current input voltage VIN+ is equal to the current output voltage VOUT+, the detection circuit 222 will not perform the operation of enhancing the driving capability. In addition, the specific implementation manner of the pre-operational amplifier 210 may be, for example, the circuit structure of the pre-operational amplifier 110 as shown in FIG. 1 , which will not be repeated here.
在本实施例中,检测电路222被致能后会检测目前输出电压VOUT+与先前输出电压VOUT-,并且根据检测结果来增加输出级电路230对负载的充电速度或放电速度。在此例中,根据检测结果,当先前输出电压VOUT-大于目前输出电压VOUT+时,检测电路222会增加输出级电路230对负载的充电速度。反之,根据检测结果,当先前输出电压VOUT-小于目前输出电压VOUT+时,检测电路230会增加输出级电路230对负载的放电速度。检测电路230增强输出级电路230的驱动能力的方式具体说明如下。In this embodiment, the detection circuit 222 detects the current output voltage VOUT+ and the previous output voltage VOUT- after being enabled, and increases the charging or discharging speed of the output stage circuit 230 to the load according to the detection result. In this example, according to the detection result, when the previous output voltage VOUT− is greater than the current output voltage VOUT+, the detection circuit 222 will increase the charging speed of the output stage circuit 230 to the load. On the contrary, according to the detection result, when the previous output voltage VOUT− is smaller than the current output voltage VOUT+, the detection circuit 230 will increase the discharge speed of the output stage circuit 230 to the load. The manner in which the detection circuit 230 enhances the driving capability of the output stage circuit 230 is specifically described as follows.
以AB类输出级电路为例,本实施例的输出级电路包括P型晶体管Pout1以及N型晶体管Nout2。P型晶体管Pout1的源极耦接至系统电压VDD。P型晶体管Pout1的漏极作为输出级电路230的输出端。P型晶体管Pout1的栅极作为第一控制端A耦接至检测电路222。N型晶体管Nout2的漏极耦接至P型晶体管Pout1的漏极。N型晶体管Nout2的源极耦接至接地电压。N型晶体管Nout2的栅极作为第二控制端B耦接至检测电路222。Taking the class AB output stage circuit as an example, the output stage circuit of this embodiment includes a P-type transistor Pout1 and an N-type transistor Nout2. The source of the P-type transistor Pout1 is coupled to the system voltage VDD. The drain of the P-type transistor Pout1 serves as the output terminal of the output stage circuit 230 . The gate of the P-type transistor Pout1 is coupled to the detection circuit 222 as the first control terminal A. The drain of the N-type transistor Nout2 is coupled to the drain of the P-type transistor Pout1 . The source of the N-type transistor Nout2 is coupled to the ground voltage. The gate of the N-type transistor Nout2 is coupled to the detection circuit 222 as the second control terminal B.
在本实施例中,检测电路222通过降低P型晶体管Pout1的栅极电压来导通P型晶体管Pout1,以增加输出级电路230对负载的充电速度。类似的,检测电路222通过提高N型晶体管Nout2的栅极电压来导通N型晶体管Nout2,以增加输出级电路230对负载的放电速度。从另一观点来看,降低P型晶体管Pout1的栅极电压,也就是增加P型晶体管Pout1的栅极源极跨压V1。提高N型晶体管Nout2的栅极电压,也就是增加N型晶体管Nout2的栅极源极跨压V2。In this embodiment, the detection circuit 222 turns on the P-type transistor Pout1 by reducing the gate voltage of the P-type transistor Pout1 , so as to increase the charging speed of the output stage circuit 230 to the load. Similarly, the detection circuit 222 turns on the N-type transistor Nout2 by increasing the gate voltage of the N-type transistor Nout2, so as to increase the discharge speed of the output stage circuit 230 to the load. From another point of view, reducing the gate voltage of the P-type transistor Pout1 means increasing the gate-source voltage V1 of the P-type transistor Pout1 . Increasing the gate voltage of the N-type transistor Nout2 means increasing the gate-source voltage V2 of the N-type transistor Nout2.
总结来说,在运算放大器电路200的暂态反应中,开关控制信号SW1会先断开输出开关240,使得先前输出电压VOUT-维持在上一个驱动时点的充电的电压值。接着,当致能信号EN致能检测电路222之后,检测电路222就会比较目前输出电压时VOUT+与先前输出电压VOUT-的大小关系。如果目前输出电压时VOUT+大于先前输出电压VOUT-,检测电路222即会将降低第一控制端A与第二控制端B电压,使P型晶体管Pout1的栅极和源极电压差V1增加,加速输出级电路230对负载的充电能力。同理,如果目前输出电压时VOUT+小于先前输出电压VOUT-,检测电路222即会将提高第一控制端A与第二控制端B电压,使N型晶体管Nout2的栅极和源极电压差V2增加,以加速输出级电路230对负载的放电能力。。To sum up, in the transient response of the operational amplifier circuit 200 , the switch control signal SW1 will first turn off the output switch 240 , so that the previous output voltage VOUT− maintains the charged voltage value at the last driving time point. Next, after the enable signal EN enables the detection circuit 222 , the detection circuit 222 compares the magnitude relationship between the current output voltage VOUT+ and the previous output voltage VOUT−. If the current output voltage VOUT+ is greater than the previous output voltage VOUT-, the detection circuit 222 will reduce the voltages of the first control terminal A and the second control terminal B, so that the voltage difference V1 between the gate and source of the P-type transistor Pout1 increases, accelerating The charging capability of the output stage circuit 230 to the load. Similarly, if the current output voltage VOUT+ is lower than the previous output voltage VOUT-, the detection circuit 222 will increase the voltages of the first control terminal A and the second control terminal B, so that the voltage difference between the gate and source of the N-type transistor Nout2 is V2 increase to speed up the discharge capability of the output stage circuit 230 to the load. .
在本实施例中,输出级电路230是以AB类输出级电路为例,但本发明并不限于此,本公开的动态检测输出级电路的输出电压值的概念也可应用在输出级电路是A类输出级电路或B类输出级电路的实施方式中,分别说明如下。In this embodiment, the output stage circuit 230 is an example of an AB class output stage circuit, but the present invention is not limited thereto. The concept of dynamically detecting the output voltage value of the output stage circuit in the present disclosure can also be applied to the output stage circuit is The implementations of the class A output stage circuit or the class B output stage circuit are respectively described as follows.
图3绘示本发明另一实施例的运算放大器电路的概要电路图。请参考图2及图3,本实施例的运算放大器电路300类似于图2的运算放大器电路200,然而两者之间的主要差异例如在于运算放大器电路300的输出级电路330是A类输出级的电路结构,详细说明如下。FIG. 3 is a schematic circuit diagram of an operational amplifier circuit according to another embodiment of the present invention. Please refer to FIG. 2 and FIG. 3, the operational amplifier circuit 300 of the present embodiment is similar to the operational amplifier circuit 200 of FIG. The circuit structure is described in detail as follows.
在本实施例中,输出级电路330包括电流源I3以及N型晶体管Nout5。电流源I3的一端耦接至系统电压VDD。电流源I3的另一端耦接至输出级电路330的输出端。在此例中,当电流源I3开启时,电流源I3会对负载充电,以增加输出级电路330对负载的充电速度。N型晶体管Nout5的漏极耦接至输出级电路330的输出端。N型晶体管Nout5的源极耦接至接地电压。N型晶体管Nout5的栅极作为第二控制端B耦接至检测电路322。在此例中,检测电路322通过提高N型晶体管Nout5的栅极电压来导通N型晶体管Nout5,以增加输出级电路330对负载的放电速度。In this embodiment, the output stage circuit 330 includes a current source I3 and an N-type transistor Nout5. One end of the current source I3 is coupled to the system voltage VDD. The other terminal of the current source I3 is coupled to the output terminal of the output stage circuit 330 . In this example, when the current source I3 is turned on, the current source I3 will charge the load, so as to increase the charging speed of the output stage circuit 330 to the load. The drain of the N-type transistor Nout5 is coupled to the output terminal of the output stage circuit 330 . The source of the N-type transistor Nout5 is coupled to the ground voltage. The gate of the N-type transistor Nout5 is coupled to the detection circuit 322 as the second control terminal B. In this example, the detection circuit 322 turns on the N-type transistor Nout5 by increasing the gate voltage of the N-type transistor Nout5 , so as to increase the discharge speed of the output stage circuit 330 to the load.
图4绘示本发明另一实施例的运算放大器电路的概要电路图。请参考图2及图4,本实施例的运算放大器电路400类似于图2的运算放大器电路200,然而两者之间的主要差异例如在于运算放大器电路400的输出级电路430是B类输出级的电路结构,详细说明如下。FIG. 4 is a schematic circuit diagram of an operational amplifier circuit according to another embodiment of the present invention. Please refer to FIG. 2 and FIG. 4, the operational amplifier circuit 400 of the present embodiment is similar to the operational amplifier circuit 200 of FIG. The circuit structure is described in detail as follows.
在本实施例中,输出级电路430包括N型晶体管Nout3以及P型晶体管Pout4。N型晶体管Nout3的漏极耦接至系统电压。N型晶体管Nout3的源极作为输出级电路的输出端。N型晶体管Nout3的栅极作为第一控制端A耦接至检测电路。检测电路通过提高N型晶体管Nout3的栅极电压来导通N型晶体管Nout3,以增加输出级电路对负载的充电速度。P型晶体管Pout4的源极耦接至N型晶体管Nout3的漏极。P型晶体管Pout4的漏极耦接至接地电压。P型晶体管Pout4的栅极作为第二控制端B耦接至检测电路。检测电路通过降低P型晶体管Pout4的栅极电压来导通P型晶体管Pout4,以增加输出级电路430对负载的放电速度。In this embodiment, the output stage circuit 430 includes an N-type transistor Nout3 and a P-type transistor Pout4 . The drain of the N-type transistor Nout3 is coupled to the system voltage. The source of the N-type transistor Nout3 serves as the output terminal of the output stage circuit. The gate of the N-type transistor Nout3 is coupled to the detection circuit as the first control terminal A. The detection circuit turns on the N-type transistor Nout3 by increasing the gate voltage of the N-type transistor Nout3, so as to increase the charging speed of the output stage circuit to the load. The source of the P-type transistor Pout4 is coupled to the drain of the N-type transistor Nout3 . The drain of the P-type transistor Pout4 is coupled to the ground voltage. The gate of the P-type transistor Pout4 is coupled to the detection circuit as the second control terminal B. The detection circuit turns on the P-type transistor Pout4 by reducing the gate voltage of the P-type transistor Pout4, so as to increase the discharge speed of the output stage circuit 430 to the load.
图5绘示本发明一实施例的检测电路的概要电路图。请参考图5,本实施例的检测电路500例如至少可应用在上述任一实施例所公开的运算放大器电路。在本实施例中,检测电路500包括差动输入对510、第一电流镜模块520以及第二电流镜模块530。其中,第一电流镜模块520包括第一电流镜522以及第一开关524。第二电流镜模块530包括第二电流镜532以及第二开关534。FIG. 5 is a schematic circuit diagram of a detection circuit according to an embodiment of the present invention. Please refer to FIG. 5 , the detection circuit 500 of this embodiment, for example, can at least be applied to the operational amplifier circuit disclosed in any one of the above embodiments. In this embodiment, the detection circuit 500 includes a differential input pair 510 , a first current mirror module 520 and a second current mirror module 530 . Wherein, the first current mirror module 520 includes a first current mirror 522 and a first switch 524 . The second current mirror module 530 includes a second current mirror 532 and a second switch 534 .
本实施例的差动输入对510的两端分别接收先前输出电压VOUT-及目前输出电压VOUT+。并且,先前输出电压VOUT-及目前输出电压VOUT+的大小关系将决定晶体管N1或P1何者被开启。第一电流镜522耦接至差动输入对510,并且第一开关524受控于反相的致能信号ENB。第二电流镜532耦接至差动输入对510,并且第二开关534受控于致能信号EN。在本实施例中,当先前输出电压VOUT-大于目前输出电压VOUT+时,晶体管N1会被开启,并且第一开关524会被反相的致能信号ENB所开启。此时第一电流镜522提供第一电流IM1至输出级电路的第一控制端A,以降低或提高第一控制端A的电压。反之,当先前输出电压VOUT-小于目前输出电压时VOUT+,晶体管P1会被开启,并且第二开关534会被致能信号EN所开启。此时第二电流镜532从输出级电路的第二控制端B汲取第二电流IM2,以提高或降低第二控制端B的电压。Two ends of the differential input pair 510 in this embodiment respectively receive the previous output voltage VOUT− and the current output voltage VOUT+. Moreover, the magnitude relationship between the previous output voltage VOUT− and the current output voltage VOUT+ will determine which transistor N1 or P1 is turned on. The first current mirror 522 is coupled to the differential input pair 510 , and the first switch 524 is controlled by the inverted enable signal ENB. The second current mirror 532 is coupled to the differential input pair 510, and the second switch 534 is controlled by the enable signal EN. In this embodiment, when the previous output voltage VOUT− is greater than the current output voltage VOUT+, the transistor N1 is turned on, and the first switch 524 is turned on by the inverted enable signal ENB. At this moment, the first current mirror 522 provides the first current IM1 to the first control terminal A of the output stage circuit, so as to decrease or increase the voltage of the first control terminal A. On the contrary, when the previous output voltage VOUT− is lower than the current output voltage VOUT+, the transistor P1 will be turned on, and the second switch 534 will be turned on by the enable signal EN. At this moment, the second current mirror 532 draws the second current IM2 from the second control terminal B of the output stage circuit to increase or decrease the voltage of the second control terminal B.
详细而言,以AB类输出级电路为例,在本实施例中,晶体管N1、P1会判断先前输出电压VOUT-及目前输出电压VOUT+的大小关系。如果是先前输出电压VOUT-大于目前输出电压VOUT+与晶体管N1的临界电压Vtn的和,晶体管N1即会导通。检测电路500经由晶体管P2、P3、P4产生第一电流IM1至运算放大器电路,第一电流IM1再对输出级电路的第一控制端A与第二控制端B充电,使两者电压上升,加速其对负载放电的驱动能力。如果是先前输出电压VOUT-及目前输出电压VOUT+的电压大小差距越大,晶体管N1导通的幅度就会愈大,其结果将使得提供至运算放大器的第一电流IM1得以增加,输出级晶体管的栅极电压会根据先前输出电压VOUT-及目前输出电压VOUT+的大小关系动态调整其驱动能力的大小。反之,如果先前输出电压VOUT-小于目前输出电压VOUT+与晶体管P1的临界电压绝对值|Vtp|的差,则晶体管P1会从差动输入对510接收目前输出电压VOUT+的端点汲取一路电流至晶体管N2,接着再由晶体管N3、N4对输出级电路汲取第二电流IM2。输出级电路的第一控制端A与第二控制端B的电压会因电流被汲取而下降,从而加速输出级晶体管的充电速度。另一方面,如果是先前输出电压VOUT-大于目前输出电压VOUT+与晶体管P1的临界电压绝对值|Vtp|的差,并且小于目前输出电压VOUT+与晶体管N1的临界电压Vtn的和,则差动输入对510的晶体管N1、P1皆不会导通,因此也不会对输出级电路有额外的电流注入或输出。因此,输出级电路的驱动能力即维持未被调整的状态,并且其输出波形也不会过冲。In detail, taking the class AB output stage circuit as an example, in this embodiment, the transistors N1 and P1 determine the magnitude relationship between the previous output voltage VOUT− and the current output voltage VOUT+. If the previous output voltage VOUT− is greater than the sum of the current output voltage VOUT+ and the threshold voltage Vtn of the transistor N1, the transistor N1 is turned on. The detection circuit 500 generates the first current IM1 to the operational amplifier circuit through the transistors P2, P3, and P4, and the first current IM1 charges the first control terminal A and the second control terminal B of the output stage circuit, so that the voltage of both rises and accelerates Its driving ability to discharge the load. If the voltage difference between the previous output voltage VOUT- and the current output voltage VOUT+ is larger, the turn-on range of the transistor N1 will be larger, and as a result, the first current IM1 provided to the operational amplifier will be increased, and the transistor of the output stage will increase. The gate voltage dynamically adjusts its driving capability according to the relationship between the previous output voltage VOUT- and the current output voltage VOUT+. Conversely, if the previous output voltage VOUT- is smaller than the difference between the current output voltage VOUT+ and the absolute threshold voltage |Vtp| of the transistor P1, the transistor P1 will draw a current from the terminal receiving the current output voltage VOUT+ of the differential input pair 510 to the transistor N2 , and then the transistors N3 and N4 draw the second current IM2 to the output stage circuit. The voltages of the first control terminal A and the second control terminal B of the output stage circuit will drop due to the current being drawn, thereby accelerating the charging speed of the output stage transistor. On the other hand, if the previous output voltage VOUT- is greater than the difference between the current output voltage VOUT+ and the absolute value of the threshold voltage |Vtp| The transistors N1 and P1 of the 510 are not turned on, so there is no additional current injection or output to the output stage circuit. Therefore, the driving capability of the output stage circuit remains unregulated, and its output waveform will not overshoot.
本实施例的检测电路除了直接连接于输出级电路的第一控制端A与第二控制端B以外,也可以连接于运算放大器电路中会影响流进或流出第一控制端A与第二控制端B的电流的操作点。In addition to being directly connected to the first control terminal A and the second control terminal B of the output stage circuit, the detection circuit of this embodiment can also be connected to an operational amplifier circuit that will affect the flow into or out of the first control terminal A and the second control terminal. The operating point of the terminal B current.
再以AB类输出级电路为例,图6绘示图2的运算放大器电路的电路结构图,图7绘示图6的检测电路的电路结构图。请参考图6及图7,本实施例的检测电路222包括差动输入对710、第一开关720以及第二开关730。差动输入对的两端分别接收先前输出电压VOUT-与目前输出电压VOUT+。第一开关720的第一端经由节点C以及输出级运算放大器220内部的第三电流镜模块224耦接至第一控制端A。第一开关720的第二端耦接至差动输入对710。第一开关720的控制端受控于致能信号EN。第二开关730的第一端耦接至差动输入对710。第二开关的第二端经由节点D以及输出级运算放大器220内部的第四电流镜模块226耦接至第二控制端B。第二开关的控制端受控于反相的致能信号ENB。在本实施例中,当先前输出电压VOUT-大于目前输出电压VOUT+时,致能信号EN导通第一开关720,以让第三电流镜模块224提供第三电流IM3至第一控制端A。当先前输出电压VOUT-小于目前输出电压VOUT+时,反相的致能信号ENB导通第二开关730,以让第四电流镜模块226从第二控制端B汲取第四电流IM4。Taking the class AB output stage circuit as an example again, FIG. 6 shows a circuit structure diagram of the operational amplifier circuit in FIG. 2 , and FIG. 7 shows a circuit structure diagram of the detection circuit in FIG. 6 . Please refer to FIG. 6 and FIG. 7 , the detection circuit 222 of this embodiment includes a differential input pair 710 , a first switch 720 and a second switch 730 . Two ends of the differential input pair respectively receive the previous output voltage VOUT− and the current output voltage VOUT+. The first terminal of the first switch 720 is coupled to the first control terminal A via the node C and the third current mirror module 224 inside the output stage operational amplifier 220 . The second terminal of the first switch 720 is coupled to the differential input pair 710 . The control terminal of the first switch 720 is controlled by the enable signal EN. A first end of the second switch 730 is coupled to the differential input pair 710 . The second terminal of the second switch is coupled to the second control terminal B via the node D and the fourth current mirror module 226 inside the output stage operational amplifier 220 . The control terminal of the second switch is controlled by the inverted enabling signal ENB. In this embodiment, when the previous output voltage VOUT− is greater than the current output voltage VOUT+, the enable signal EN turns on the first switch 720 to allow the third current mirror module 224 to provide the third current IM3 to the first control terminal A. When the previous output voltage VOUT− is smaller than the current output voltage VOUT+, the inverted enable signal ENB turns on the second switch 730 so that the fourth current mirror module 226 draws the fourth current IM4 from the second control terminal B.
详细而言,当先前输出电压VOUT-与目前输出电压VOUT+两者的电压差值大到足以导通晶体管N1时,节点C与差动输入对710接收目前输出电压VOUT+的端点之间会产生一个电流,此电流经由节点C、晶体管N2、N1导通至差动输入对710接收目前输出电压VOUT+的端点。接着,检测电路222再利用第三电流镜模块224的晶体管P5、P6映射相同的电流IM3进入第一控制端A与第二控制端B而对其充电,使得第二控制端B的电压上升,从而加速N型晶体管Nout2的放电能力。反之,当先前输出电压VOUT-与目前输出电压VOUT+两者的电压差值大到足以导通晶体管P1时,差动输入对710接收目前输出电压VOUT+的端点与节点D之间会产生另一个电流,此电流经由差动输入对710接收目前输出电压VOUT+的端点、晶体管P1、P2导通至节点C。接着,检测电路222再利用第四电流镜模块226的晶体管N5、N6从第一控制端A与第二控制端B汲取相同的电流IM4而对其放电,使得第一控制端A的电压下降,从而加速P型晶体管Pout1的充电能力。In detail, when the voltage difference between the previous output voltage VOUT− and the current output voltage VOUT+ is large enough to turn on the transistor N1, a voltage is generated between the node C and the terminal of the differential input pair 710 receiving the current output voltage VOUT+. The current is conducted to the terminal of the differential input pair 710 receiving the current output voltage VOUT+ via the node C, the transistors N2 and N1. Then, the detection circuit 222 uses the transistors P5 and P6 of the third current mirror module 224 to map the same current IM3 into the first control terminal A and the second control terminal B to charge them, so that the voltage of the second control terminal B rises, Thus, the discharge capability of the N-type transistor Nout2 is accelerated. Conversely, when the voltage difference between the previous output voltage VOUT- and the current output voltage VOUT+ is large enough to turn on the transistor P1, another current will be generated between the terminal of the differential input pair 710 receiving the current output voltage VOUT+ and node D , this current receives the terminal of the current output voltage VOUT+ through the differential input pair 710 , and the transistors P1 and P2 are turned on to the node C. Next, the detection circuit 222 uses the transistors N5 and N6 of the fourth current mirror module 226 to draw the same current IM4 from the first control terminal A and the second control terminal B to discharge it, so that the voltage of the first control terminal A drops, Thus, the charging capability of the P-type transistor Pout1 is accelerated.
此外,在本公开中,检测电路是用以比较先前输出电压与目前输出电压,并且反应适当的电流至输出级运算放大器内部,因此检测电路也可使用比较器电路来实施。In addition, in the present disclosure, the detection circuit is used to compare the previous output voltage with the current output voltage, and respond a proper current to the inside of the output stage operational amplifier, so the detection circuit can also be implemented by using a comparator circuit.
图8绘示本发明另一实施例的运算放大器电路的概要电路图。请参考图2及图8,本实施例的运算放大器电路800类似于图2的运算放大器电路200,然而两者之间的主要差异例如在于输出级电路830是以另一种AB类输出级的电路结构来实施,并且检测电路822包括比较器电路823,详细说明如下。FIG. 8 is a schematic circuit diagram of an operational amplifier circuit according to another embodiment of the present invention. Please refer to FIG. 2 and FIG. 8, the operational amplifier circuit 800 of this embodiment is similar to the operational amplifier circuit 200 of FIG. A circuit structure is implemented, and the detection circuit 822 includes a comparator circuit 823, which is described in detail below.
在本实施例中,相较于输出级电路230,输出级电路830还包括电流源I1、I2。电流源I1的第一端耦接至系统电压VDD。电流源I1的第二端耦接至P型晶体管Pout1的栅极,即第一控制端A。当电流源I1开启时,第一控制端A与第二控制端B的电压会上升,以导通N型晶体管Nout2,从而增加输出级电路830对负载的放电速度。另一方面,电流源I2的第一端耦接至N型晶体管Nout2的栅极,即第二控制端B。电流源I2的第二端耦接至接地电压。当电流源I2开启时,第一控制端A与第二控制端B的电压会下降,以导通P型晶体管Pout1,从而增加输出级电路830对负载的充电速度。In this embodiment, compared with the output stage circuit 230 , the output stage circuit 830 further includes current sources I1 and I2 . The first end of the current source I1 is coupled to the system voltage VDD. The second terminal of the current source I1 is coupled to the gate of the P-type transistor Pout1 , that is, the first control terminal A. When the current source I1 is turned on, the voltages of the first control terminal A and the second control terminal B will rise to turn on the N-type transistor Nout2 , thereby increasing the discharge speed of the output stage circuit 830 to the load. On the other hand, the first terminal of the current source I2 is coupled to the gate of the N-type transistor Nout2 , that is, the second control terminal B. The second terminal of the current source I2 is coupled to the ground voltage. When the current source I2 is turned on, the voltages of the first control terminal A and the second control terminal B will drop to turn on the P-type transistor Pout1 , thereby increasing the charging speed of the output stage circuit 830 to the load.
另外,在本实施例中,比较器电路823受控于致能信号EN,用以比较目前输出电压VOUT+与先前输出电压VOUT-,并且据此输出一比较结果。详细而言,比较器电路823具有第一输入端、第二输入端、控制端及输出端。第一输入端接收先前输出电压VOUT-。第二输入端接收目前输出电压VOUT+。输出端输出两者的比较结果。控制端接收致能信号EN。因此,比较器电路823会根据致能信号EN来决定是否比较目前输出电压VOUT+与先前输出电压VOUT-。In addition, in this embodiment, the comparator circuit 823 is controlled by the enable signal EN to compare the current output voltage VOUT+ with the previous output voltage VOUT-, and output a comparison result accordingly. In detail, the comparator circuit 823 has a first input terminal, a second input terminal, a control terminal and an output terminal. The first input terminal receives the previous output voltage VOUT-. The second input terminal receives the current output voltage VOUT+. The output end outputs the comparison result of the two. The control end receives the enabling signal EN. Therefore, the comparator circuit 823 determines whether to compare the current output voltage VOUT+ with the previous output voltage VOUT− according to the enable signal EN.
换句话说,当比较器电路823判定目前输出电压VOUT+与先前输出电压VOUT-的关系后,即动态调整电流源I1、I2的电流值。如果先前输出电压VOUT-大于目前输出电压VOUT+,比较器电路823会开启电流源I1,并且开关闭电流源I2。因此,第一控制端A与第二控制端B经由电流源I1充电至高电位,使得N型晶体管Nout2的放电能力增加。反之,如果先前输出电压VOUT-小于目前输出电压VOUT+,比较器电路823会关闭电流源I1,并且开启电流源I2。因此,第一控制端A与第二控制端B经由电流源I2放电至低电位,使得P型晶体管Pout1的充电能力增加。In other words, when the comparator circuit 823 determines the relationship between the current output voltage VOUT+ and the previous output voltage VOUT−, it dynamically adjusts the current values of the current sources I1 and I2. If the previous output voltage VOUT− is greater than the current output voltage VOUT+, the comparator circuit 823 turns on the current source I1 and switches off the current source I2. Therefore, the first control terminal A and the second control terminal B are charged to a high potential through the current source I1, so that the discharge capability of the N-type transistor Nout2 is increased. On the contrary, if the previous output voltage VOUT− is smaller than the current output voltage VOUT+, the comparator circuit 823 will turn off the current source I1 and turn on the current source I2. Therefore, the first control terminal A and the second control terminal B are discharged to a low potential through the current source I2, so that the charging capability of the P-type transistor Pout1 is increased.
图9绘示本发明一实施例的提高运算放大器电路的驱动能力的步骤流程图。请同时参照图2及图9,本实施例的提高驱动能力的方法至少适用于上述实施例所公开的运算放大器电路。在步骤S900中,前置运算放大器210比较目前输入电压VIN+与目前输出电压VOUT+,并且根据比较结果来产生致能信号EN。接着,在步骤S910中,检测电路222根据致能信号EN来检测目前输出电压VOUT+与先前输出电压VOUT-。之后,在步骤S920中,检测电路222再根据检测结果来增加输出级电路230对负载的充电速度或放电速度。FIG. 9 is a flow chart showing the steps of improving the driving capability of the operational amplifier circuit according to an embodiment of the present invention. Please refer to FIG. 2 and FIG. 9 at the same time. The method for improving the driving capability of this embodiment is at least applicable to the operational amplifier circuit disclosed in the above embodiments. In step S900 , the pre-operational amplifier 210 compares the current input voltage VIN+ and the current output voltage VOUT+, and generates an enable signal EN according to the comparison result. Next, in step S910 , the detection circuit 222 detects the current output voltage VOUT+ and the previous output voltage VOUT− according to the enable signal EN. Afterwards, in step S920 , the detection circuit 222 increases the charging speed or discharging speed of the load by the output stage circuit 230 according to the detection result.
另外,本发明的实施例的动态影像检测方法可以由图2至图8实施例的叙述中获致足够的教示、建议与实施说明,因此不再赘述。In addition, the dynamic image detection method of the embodiment of the present invention can obtain sufficient teachings, suggestions and implementation descriptions from the descriptions of the embodiments in FIG. 2 to FIG. 8 , so details are not repeated here.
综上所述,在本发明的范例实施例中,在本发明的范例实施例中,运算放大器电路的输出级模块包括检测电路。检测电路可动态的检测输出电压的大小,来调整输出级晶体管的栅极源极跨压,从而提高输出级电路对负载或者下一级电路的充放电能力。To sum up, in an exemplary embodiment of the present invention, in an exemplary embodiment of the present invention, the output stage module of the operational amplifier circuit includes a detection circuit. The detection circuit can dynamically detect the magnitude of the output voltage to adjust the gate-source cross voltage of the output stage transistor, thereby improving the charge and discharge capability of the output stage circuit to the load or the next stage circuit.
虽然本发明已以实施例公开如上,然其并非用以限定本发明,本领域技术人员在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视所附权利要求书界定范围为准。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Those skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention The scope defined by the appended claims shall prevail.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310071528.3A CN104038166B (en) | 2013-03-06 | 2013-03-06 | Operational amplifier circuit and method for improving driving capability thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310071528.3A CN104038166B (en) | 2013-03-06 | 2013-03-06 | Operational amplifier circuit and method for improving driving capability thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104038166A CN104038166A (en) | 2014-09-10 |
CN104038166B true CN104038166B (en) | 2017-07-28 |
Family
ID=51468789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310071528.3A Active CN104038166B (en) | 2013-03-06 | 2013-03-06 | Operational amplifier circuit and method for improving driving capability thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104038166B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110401424B (en) * | 2018-04-25 | 2023-08-18 | 奇景光电股份有限公司 | Operational Amplifier |
CN112072756A (en) * | 2020-09-25 | 2020-12-11 | 杰华特微电子(杭州)有限公司 | Battery pack equalization circuit and equalization method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1461519A (en) * | 2001-02-22 | 2003-12-10 | 新泻精密株式会社 | FET band amplifier |
CN101645696A (en) * | 2008-08-05 | 2010-02-10 | 恩益禧电子股份有限公司 | Differential amplifier |
CN102195571A (en) * | 2010-03-05 | 2011-09-21 | 精工电子有限公司 | Switched capacitor amplifier |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5457220B2 (en) * | 2010-02-18 | 2014-04-02 | ルネサスエレクトロニクス株式会社 | Output circuit, data driver, and display device |
-
2013
- 2013-03-06 CN CN201310071528.3A patent/CN104038166B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1461519A (en) * | 2001-02-22 | 2003-12-10 | 新泻精密株式会社 | FET band amplifier |
CN101645696A (en) * | 2008-08-05 | 2010-02-10 | 恩益禧电子股份有限公司 | Differential amplifier |
CN102195571A (en) * | 2010-03-05 | 2011-09-21 | 精工电子有限公司 | Switched capacitor amplifier |
Also Published As
Publication number | Publication date |
---|---|
CN104038166A (en) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11056169B2 (en) | Current comparator for submicron processes | |
US9525937B2 (en) | Circuit for suppressing audio output noise and audio output circuit | |
US8531242B2 (en) | Operational amplifier with overdriving circuit and method for same | |
US10284144B2 (en) | Amplifier circuit of high response speed and related clamping method | |
TWI519062B (en) | Operational amplifier and method for enhancing driving capacity thereof | |
US8138834B2 (en) | Current control circuit, class AB operational amplifier system and current control method | |
US20060197591A1 (en) | Device and method for enhancing output current driving | |
CN104038166B (en) | Operational amplifier circuit and method for improving driving capability thereof | |
TWI678882B (en) | Amplifier circuit and buffer amplifier | |
US7830207B2 (en) | Amplifier circuit | |
CN104052440B (en) | Device and method for signal loss detection | |
US9520849B2 (en) | Rail-to-rail constant transconductance differential input stage | |
US20110163811A1 (en) | Fast Class AB Output Stage | |
US8624671B2 (en) | Audio amplifying circuit with improved noise performance | |
US8232842B1 (en) | Output buffer | |
CN103715998B (en) | Operational amplifier module and method for increasing slew rate of operational amplifier circuit | |
US8456196B2 (en) | High-speed comparator | |
US8493150B2 (en) | Class-AB output stage | |
US10056898B2 (en) | Input stage of chip and method for controlling source driver of chip | |
US10333506B2 (en) | High-speed current comparator suitable for nano-power circuit design | |
EP3334039B1 (en) | Source follower | |
US7605634B2 (en) | Subtractor circuit and operational amplifier | |
US20240356491A1 (en) | Amplifier and method for controlling the same | |
US11736073B2 (en) | Amplifier circuit and circuit system using the same | |
US9979351B2 (en) | Differential amplifier circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |